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ON PARETO AND SALUKWADZE OPTIMIZATION
PROBLEMS

Wieseaw KOTARSKI*

In the paper, some problems of vector optimization are considered. Vector opti-
mality is understood in the Pareto sense. Using the notion of Ponstein convexity,
we formulate a ‘scalarization’ theorem. Two examples (vector optimization in
R? and an optimal-control problem for a parabolic equation with a vector per-
formance index) are discussed. A Pareto boundary and a Salukwadze optimum
are obtained for each of them. Additionally, for some vector optimization pro-
blems in R?, a criterion space is found. All calculations are performed with the
use of Maple V. In the Appendix, a sketch of the proof of the main theorem on
‘scalarization’ is given.
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1. Pareto Optimality

Let @ be a closed, convex set with non-empty interior in a Banach space X , I
X =R, i=1,...,s be given functionals and I = [I;,...,[,]T, ie. I: X s R*, be
a vector performance index.

Consider the following vector optimization problem:
Problem (P): Find z° € Q such that

Pareto min _ I(z) = I(z°),
z€QNU(z0)

where U(z%) is some neighbourhood of z°.
Definition 1. A point z° € X is called global (local) Pareto optimal for Problem (P)

if 2° € Q and thereisno z° # z € Q (QNU(2%)) with I;(z) < I(z°) for i = 1,...,8
with strict inequality for at least one i, 1 <i < s.

Following (Salukwadze 1974; 1979), we recall the following definitions:
Definition 2. A set T:={y=1I(z): z€Q} CR® is called the criterion space.

This means that the criterion space is the image of the set Q through I (z).
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Definition 3. The product Yg := T; X Yo x --- x Ty C R, where T; = L;(Q),
i=1,...,s,is called the extended criterion space.

The components of I(z°) for a Pareto solution z° characterize a point in R®

lying on the boundary of Y. In the rectangular coordinates with I,...,Is axes, all
the Pareto solutions to Problem (P) form the so-called Pareto boundary.

For special cases one can find a criterion space and a Pareto boundary which
is some segment of the boundary of the criterion space. We give three examples to
demonstrate that.

Example 1. Take

I = IB% +ZE%, Iy = (1 - 3)1)2 + (1 - Ez)z,

Q= {(z1,22) €R’: ~1<@, 22 <1}, ¢
Example 2. Take

hi=gzi-g2, L:=(1-2)+(1-2),

Q = {($1,$2)€]R2: -—15.’111,1}251}. ¢
Example 3. Take

I = sin(a:% + 33%), I = \/(1 — .’L‘1)2 + (1 - 1112)2,

Q= {(zl,xz)elez -1§x1,m2§1}. ¢

Usually it is not possible to obtain a criterion space analytically. But we need
only few lines of a Maple V code to obtain an approximation of the criterion space
numerically. Points from the square —1 < 7,22 < 1 are generated randomly. Then,
through I{z), we obtain their images which are elements of the criterion space. Taking
a sufficiently large number of points, we can obtain a satisfactory approximation of
the criterion space. Knowing the form of the criterion space, we can have introductory
information about the Pareto boundary.

In Figs. 1-3 the criterion space for Examples 1-3, is shown, respectively. The
Maple programme below determines the underlying criterion space:

> n:=2000:

> die:=rand(-100..100):

> for i from 1 to n do

> x:=[evalf(die()/100,evalf(die()/100)]:
> Il:=x[1]~2+x[2]"2:

> I2:=(1-x[1])~2+(1-x[2])"2:

> 1[i]:=[11,12]:

> od:

> with(plots):

> pointplot([seq(1[i]l,i=1..n)],labels=[’I1",°12°],
title=‘Criterion Space‘);
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Fig. 1. Criterion space for Example 1.

Fig. 2. Criterion space for Example 2.



468 W. Kotarski

0 o0z 04 06 08 1
Fig. 3. Criterion space for Example 3.

The examples above show that the form of the criterion space is rather difficult
to predict.

2. Problem ‘Scalarization’

With Problem (P) the following scalar one can be associated:

Problem (S): For some A € R® find 2§ € @ such that

s 8
0y — ; 7.
i:Zl /\1[1(17)\) - weélrl‘llUn(zU) ; }‘1,I’L ($),
where \; >0, i=1,...,s, ¥.;_; Ay =1, Q being defined as in Problem (P).

Under additional assumptions, Problem (P) is equivalent to Problem (S) in the
following sense: if z° is a Pareto optimal solution to Problem (P), then z° = 2§ is
an optimal solution to Problem (S) for some X\; >0, i =1,...,s, > :_, A =1, and
vice versa.

The procedure of replacing Problem (P) by the equivalent Problem (S) is called
the ‘scalarization’ of Problem (P).

A key role in the ‘scalarization’ problem is played by a special kind of convexity,
namely the Ponstein convexity (Ponstein, 1967).

Definition 4. A functional F: X — R is called Ponstein convez if

F(z9) < F(z1) = F(Az1 + pz2) < F(z1), V31 #T2, AMp>0, A+pu=1L1
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Strictly convex functionals are also Ponstein convex, but not every convex func-
tional is Ponstein convex (Ponstein, 1967). The examples below show that the notions
of convexity and Ponstein convexity generally are independent of each other.

In Figs. 4-7 we denote by SC, C and PC the strict convexity, convexity and
Ponstein convexity, respectively. The notation ‘SC: +’ means that the function is
strictly convex, while ‘PC: —’ means that the function is not Ponstein convex, etc.

Fig. 4. SC: —, C: +, PC: +.
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Fig. 5. SC: —, C: +, PC: —.
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Fig. 6. SC: —, C: —, PC: +.

Fig. 7. SC: +, C: +, PC: +.
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We have the following ‘scalarization’ theorem:

Theorem 1. Assume that I, : X — R, § = 1,...,s are Fréchet differentiable,

Ponstein convez and there exists a local Pareto optimum z° for Problem (P) such that

2% € domI; and inf I;(z) < I;(z°). Then Problem (P) is equivalent to Problem (S)
T

in the sense explained above.

Remark 1. If, additionally, I;, ¢ = 1,...,s are convex, then every local Pareto
optimum is also global Pareto one.

The proof of Theorem 1 is given in the Appendix. Accordingly, we can solve
Problem (S) instead of Problem (P).

It is often observed that in the minimization of weighted combinations of ob-
jective functions an even spread of weights A does not produce an even spread of
points on the Pareto boundary. The points obtained using a uniformly spread set of
values are actually concentrated in certain regions of the Pareto boundary. Roughly
speaking, the weight A is related to the ‘slope’ of the Pareto boundary in the crite-
rion space. This problem is widely analysed in (Das and Dennis, 1997). To overcome
this drawback of the ‘scalarization’ method, Das and Dennis (1998) proposed a new
method called NBI (Normal-Boundary Intersection) which provides an even spread of
points on the Pareto boundary. The NBI method is worked out for finite-dimensional
spaces.

3. Salukwadze Optimality

Usually the set of Pareto solutions to Problem (P) has infinitely many elements.
Therefore one has the dilemma which Pareto solution should be chosen as the best
one. One of the methods to solve this problem was proposed by Salukwadze (1974;
1979). According to his suggestion, every component of the performance index, i.e. I;,
has to be minimized separately on the constrained set Q. A point with all minimal
components is called the ‘ideal point’ (utopia or nadir). An ‘ideal point’ § belongs
to the extended criterion space Yr and usually it is not an element of T. A point
on the Pareto boundary which is the nearest to the ‘ideal point’ in the sense of some
metric is called the Salukwadze point. To that point in @ corresponds the Salukwadze
optimum.

The Salukwadze point y° (if such a point exists at all) on the Pareto boundary
nearest to the ‘ideal point’ § in the sense of a metric ¢ (¢ can be chosen arbitrarily,
e.g. 0(#,y) = /2 i—1 (i — y:)?) is an element of the criterion space Y. This point
determines a solution z* such that I(z*) = ¢°. The point z* is a Salukwadze
optimum to Problem (P).

Assuming that @ C X is a closed, convex and bounded (i.e. weakly compact)
subset of a Hilbert space X for functions I;(z) which are continuous with respect
to z, the existence of the Salukwadze optimum z* results from the following consi-
derations. '
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Define
I)\ = i AiI.L' = )\1[3‘
ggggég () ;é;

We have the following estimate (see Appendix III in (Demyanov and Malozemtsev,
1975)):

1 = |mi Aili(z) — mi NI |
I | ggg; ili(z) ggg; (z)
s S ~
< max ' Z Xili(z) — Z )\iIi(-T)I
e€@ i i1
s ~ —~
= A = ) 1%0 Ao i, i=1,...,s.
rmneac)?c | ;( i VI (z) as i 1 s
This means that I* is continuous with respect to A = [A1, ..., As]T. The vector with
components I3, i =1,...,s corresponds to that with I*.

The function S°;_, (I} —7;)* representing the squared distance between the ‘ideal
point’ 4 and the points of the Pareto boundary is also continuous with respect to A.
Therefore, according to the Weierstrass Theorem, this function attains its minimum
ontheset \; >0,i=1,...,8, > A =1for,say A, i=1,...,s.

If X2>0,¢=1,...,s, then I (with A% = [A2,X%,...,A%)T) characterizes a
point of the Pareto boundary and determines the Salukwadze point in the criterion

space. A point z* such that I;(z*) = I{\O, i=1,...,s is a Salukwadze optimum for
Problem (P). '

4. Examples
4.1. Vector Optimization in R?

We have to minimize a vector performance index in the Pareto sense as in Example 1.
All the assumptions of Theorem 1 are satisfied, so we look for a minimum of the scalar
function

Maf+a3) +(1-N[1-2)*+(1-22)°], 0<A<L

Consequently, we get the global minimizers

1-2)

ZTix = T2y = m

Their images through functionals [I;,I3]7 for A € (0,1) characterize the Pareto
boundary. The ‘ideal’ point is simply the origin, while the Salukwadze point obtained
for A = 0.33 has the coordinates (0.5075,0.4925) in the criterion space and z1s =
zas = 0.5037.
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In Fig. 8 the criterion space, Pareto boundary and Salukwadze point are presen-
ted.

Fig. 8. Pareto boundary and Salukwadze point for Example 1.

4.2. Multi-Criterion Optimal-Control Problem

Consider the following Pareto optimization problem:

%_gig =u, z€(0,1), te(0,T), )
y(z,0) = yp(z), =€ (0,1), (2)
y(O, t) = y(1>t) =0, te (O:T)a (3)
0<u(z,t) <M, z€(0,1), te(0,T), (4)

1

T
2
A //u (z,t) dzdt
[ } =| ,00 — min (in the Pareto sense). (5)
/(y(w, T) — z4(z))? dz
0

Equations (1)—(3) describe the process of heating a unit-length bar. While heating,
the temperatures at both its ends are assumed to be constant and equal to zero. The
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initial distribution of the temperature is equal to yp(z). The time of heating T is
assumed to be fixed and the maximal value of a non-negative control is less than a
given number M.

The aim of the control is to achieve the required distribution of the temperature
along the bar at the moment ¢ = T' as close as possible to a given terminal state z4(z)
caused by the smallest possible amount of the control energy. It is not possible to
minimize both these quantities simultaneously. Therefore we look for a compromise,
i.e. for some point on the Pareto boundary, namely the Salukwadze point.

Remark 2. The precise statement of the problem (1)—(5) requires a suitable choice of
the state and control spaces (Kotarski, 1989; 1997a; 1997b; 1997c), but this problem
will not be discussed here.

We have the following necessary and sufficient conditions of the Pareto optimality
for the above problem (Kotarski, 1989; 1997a; 1997b; 1997¢):

3y0 82 yO 0

XL = e, te(T), (6)
y’(z,0) = yp(e), € (0,1), (7
y°(0,t) = y(1,t) =0, te (0,T), (8)
~%—§%’=o s€(0,1), te(0,T), )
(@, T) = (1) [°(@,T) - za(x)] =€ (0,1), (10)
p(0,8) =p(1,) =0 te (0,T), (11)
T3
//(p-l—Au Ju—u)dzdt >0, 0<u<M, (12)
53

where u° and y° denote optimal control and optimal state, respectively, A € (0,1).
The system of equations and inequalities (6)—(12) cannot generally be solved
analytically because of mutual connections between the unknown functions «°, 4°
and p. Therefore we have to resort to numerical methods.
In the region {(z,t) € R?; 0<z <1, 0<t< T} we construct a grid of nodes

(zi,t;). We have z; =ih = z/n+1 t; = _7/7' = jT/m, where h and 7 stand for the
step lengths along the z- and t-axes, respectwely



On Pareto and Salukwadze optimization problems 475

Writing ug = u(th,jr) and yi. = y(ih,j7), we can represent eqns. (6)—(11) in
the difference form

yitl = Byl +rud,  j=0,1,...,m—1,
(13)
yo = yp(Zh), 1=1,...,n,
1 = By, j=m, m-—1,...,2,
(14)
PP = dalym - min),  i=1m,
where
[1-2a, a 0 ]
a 1-2a o 0
B=
0 a 1-2a a
i 0 a 1-2a |

is an n x n tridiagonal matrix with o = 7/h? < 1/2 (this well-known condition
guarantees the stability of the difference scheme).

The constraints on the controls can be presented in the form
0<u! <M, i=1,...,n, j=1,...,m. (15)

The scalar performance index is approximated by the rectangle formula

L, y?) =23 S hr(ud)’ + =N S n(r - 2a(ih))’> — min  (16)
i=1 j=1 =1
The gradient is given by

1 (), () = () + M ).

We used the gradient-projection method (Vasilev, 1981) for the approximated problem
(13)-(16) described by the formula

(uf)k‘ﬂk((l’f)ﬁf\(uf)k) if 0< (“{)kSM’
(W) sy = M | it (), >M, (17
0 if  (ul), <0,

where ¢ =1,...,n, j=1,...,m.
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Remark 3. The values of the components of the performance index I; and Iz usu-
ally have different orders of magnitude.Therefore taking into account their influence
on the global performance index Zle AiIi(z) as well (according to the recommen-
dations given in (Salukwadze, 1979)), one has to normalize them in the following
way:

= I — I,
I = ——2—, i=1,2
’ I":max - I”;min ’ Y
where I, and I;_, denote the minimal and maximal values of I; on the set @,

respectively. After normalization the ‘ideal point’ § has two zero coordinates.

We applied normalization to the investigated problem. The convergence problems
will not be discussed here. Numerical experiments showed that the computational
process for the optimization problem under consideration was stable and convergent,
but unfortunately the convergence speed was rather small and strongly dependent
on the initial point uo and the step length fy. They also confirmed the intuitive
dependence of the parameter A* (which characterizes the Salukwadze point) on y,,
zq and M. An in-depth analysis of that problem has not been made.

The problem (13)-(16) was solved for the following data:

1 1
N YT 13’
12 1
== == =1 i1=0
3387 « 21 M O) yP[L] ’
— ) 1
2qli] = (1—33—6"”—)1 woli,j] = g (1B =1)ij, i,j=1,....12.

The initial coefficient of step S, was chosen experimentally as 8(1 — A)2 + 1, the
maximal number of iterations in the gradient-projection method was equal to 10 and
the number of the calculated points on the Pareto boundary was equal to 21. The
parameter ¢ in the stopping condition

Iy 1 — I

| Iy 1 — Ir_2| <e (18)
Iy

was equal to 0.001. We obtained A\* = 0.11 which characterized the Salukwadze

point on the Pareto boundary.

For that example we obtained only the Pareto boundary and Salukwadze point.
Calculation of 21 points on the Pareto boundary took about 15 minutes on a PC with
Pentium II processor. Finding the whole criterion space is rather a complicated and
time-consuming problem. We observed that points on the Pareto boundary were not
uniformly spread for even spreads of parameter A (Fig. 9). We found experimentally
the distribution of A (Fig. 11) that ensured an almost even spread of points on the
Pareto boundary (Fig. 10). In Fig. 12 an optimal control for the Salukwadze point is
presented and in Fig. 13 the required and terminal states are given.
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Fig. 9. Non-uniform spread of points.
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Fig. 11. Distribution of A that ensures a uniform spread of points
along the Pareto boundary.
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Fig. 12. Optimal distributed control.
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Fig. 13. Required and terminal states.

5. Final Remarks

The considerations of the paper are valid for vector optimization problems with a finite
number of performance indices. Instead of a Pareto curve, we obtain a Pareto surface
in higher dimensions. The ‘scalarization’ theorem is also valid for such problems.

Obtaining a good approximation of the Pareto surface is an important issue
(Das and Dennis, 1998). For such problems the NBI method should be recommended
instead of ‘scalarization’.

The author of the paper works on a generalization of the NBI method to Hilbert
spaces.

Appendix

In order to give a sketch of a proof for Theorem 1, we need some definitions of conical
approximations (Censor, 1977; Girsanov, 1972). Let A be a set contained in a Banach
space X and F: X — R be a given functional.

Definition Al. A set TC(4,2°) :={he€ X: 3g >0, Ye € (0,60), A7(e) € X;
20 + eh + r(e) € A}, where r(e)/e = 0 as € — 0 is called the tangent cone to the
set A at the point z° € A.

Definition A2. A set AC(4,2°) :={h € X: 3 >0, 3U(h), Ye € (0,&)
V h € U(h); 2° + ch € A}, where U(h) is a neighbourhood of h, is called the
admissible cone to the set A at the point z° € A.
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Definition A3. A set FC(F,2°) :={h € X: 3 g >0, 3U(R), YheU(H),
Ve € (0,e0); F(z° + €h) < F(z%)]} is called the cone of descent directions of the
functional F' at the point 20 € X.

Definition A4. A set NC(F,z°) :={h € X: 3 g >0, 3U(h), Vh e U(h),
Ve € (0,e0); F(z+eh) < F(z%)} is called the cone of non-descent directions of the
functional F at the point z° € X.

All the cones defined above are cones with vertices at the origin. The cones

AC(A,2°), FC(F,z%) and NC(F,2°) are open while the cone TC(4,z°) is closed. If
n

int A = 0, then AC(A,z°) does not exist. Moreover, if 4;,...,4,,€ X, 2°€ N 4,

=1

then
ﬁ TC(4;,7°) > Tc( ﬁ A,-,mo) and ﬂ AC(4;,2°%) = Ac( (n] Ai,z‘)).
1=1 i=1 i=1 3

If the cones TC(A4,2°), AC(4,2°), FC(F,z%) and NC(F,z°) are convex, then
they are called regular and we denote them by RTC(4,z°), RAC(4, 2°), RFC(F, z°)
and RNC(F,z°), respectively.

=1

Definition A5. Let K be a cone in X. The adjoint cone K* of K is defined as
K :={feX", f(z)>0 VzekK},
where X™ denotes the dual space of X.

For Problem (P) we can formulate the following necessary condition for Pareto
optimality:

Lemma Al. For Problem (P) assume that
(i) there exist cones RAC(Q,z°), RFC(L;,z°), RNC(I;,2°), i =1,...,s, and
(ii) z° € Q is a local Pareto optimum for Problem (P).

Then

RFC(Ii,mO)ﬂ( N RNC(Ij,zO))ﬂRAC(Q,zO)z(Z), i=1,--,s5 (A1)
J=1,j#4

Proof. For the sake of contradiction, suppose that there is an 7 (1 <¢ < s) such that
(A1) is non-empty. Then there exists h € X such that:

3UYK) JeE>0 VheUl(h) Vee (0,6); Ii(z°+eh) < Li(z),
JUI(h) 39 >0 VReUi(h) Yee (0,6); I;(e®+eh) < I;(a°),

i=1-8 j#i
JU(h) Jeo>0 YVheU(h) Ye€ (0,e); z°+eheq.
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Let us define

g:=min{e',e?,(j=1,...,s j#14),e},

U(h) = Ui(h) N ( N v (h)) NU(h).

=150
Clearly, z° # 2 := 2%+ &h(¢) € Q and I;(2) < I;(2°), i =1,...,s with at least one
strict inequality. This contradicts the Pareto optimality of z°. ]

Condition (Al) in Lemma A1 can be reformulated in a more convenient form:

Theorem Al. For Problem (P) assume that
(i) there exist cones RAC(Q,z°), RFC(I;,z°), RNC(I;,2°), i=1,...,s, and
(ii) ° € Q s a local Pareto optimum for Problem (P).

Then the following equations (the so-called Euler-Lagrange equations) must hold:
S
fit Y (P 4e=0, i=1,...s
=1, j#i
where f; € [RFC(L;,z%)]*, ¥ € [RNC(l;,z], j = 1,...,5, j # i, ¢ €
[RAC(Q, z%)]*, and the functionals are not simultaneously equal to zero.
Proof. If z° is a local Pareto optimum for Problem (P) and there exist suitable cones,

then (A1) holds. Applying to (A1) the Dubovitskii-Milyutin Theorem (Lemma, 5.11
in (Girsanov, 1972)), we obtain the required conclusion. [ ]

Remark A1l. If, in addition to the assumptions of Theorem A1, I;’s are such that
for every i =1,...,s, [RFC(I;,z°%)]* = [RNC(J;,z°)]*, then s equations appearing
there in the conclusion reduce to the single equation (the Euler-Lagrange Equation)

D fite=0,
i=1

where f; € [RFC(L;,2%)]*, i =1,...,s, ¢ € [RAC(Q,z%)]* and the functionals are
not simultaneously equal to zero.

Remark A2. If a closed convex set @ is such that int @ = @, then we can apply the
cone RTC(Q,z°) instead of RAC(Q, z°).

To find conditions ensuring the equality [RFC(I;,z°)]* = [RNC(I;,z°)]*, we need
the following results:

Lemma A2. Let F: X — R be continuous and Ponstein convez. If z° € dom F
and inf; F(z) < F(z°), then int {z: F(z) < F(z°)} # 0 and {z: F(z) < F(z°)} =
int {z: F(z) < F(z°)}.
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Proof. The proof of Lemma 5.4 given in (Censor, 1977) is valid without any changes
for any arbitrary Banach space X. ]

Lemma A3. If F: X — R is continuous and Ponstein conver, z° € domF,
inf, F(z) < F(z°), then

[FC(F,z°)]" = [NC(F,z")]".

Proof. 1t is easy to see that
FC(F,.’EO) = AC(A,J:O) and NC(F, :1:0) = AC(B,ZI;O),

where A := {z; F(z) < F(z°)} and B := {z; F(z) < F(z°)}.
According to Proposition 1.2.5(i) of (Laurent, 1972) and Lemma A2, we have
AC(4, 2% = AC(B,z°), which establishes our claim. ]

The next lemma gives conditions under which every local Pareto optimum is also
a global Pareto one for Problem (P).

Lemma A4. Let I;: X —» R, i =1,...,s be convex functionals and Q@ C X a
convez set. Then every point being a local Pareto optimum for Problem (P) is also a
point of a global Pareto optimum.

Proof. For a proof see Theorem 5.1 in (Censor, 1977). |

We formulate now necessary optimality conditions for Problem (P).

Theorem A2. For Problem (P) let us assume that
(i) I;: X — R is convez continuous and Ponstein conver,

(ii) z° is a local Pareto optimum for Problem (P) such that z° € domI; and
inf, Ii(z) < L;(2°), i=1,...,s,

(iii) Q 1is closed and convex in X.

Then z° is a global Pareto optimum for Problem (P) if the Euler-Lagrange equation
from Remark A1 is fulfilled.

Proof. Since all the assumptions of Lemma A4 are fulfilled, any local Pareto optimum
is also a global Pareto one.

The convexity of I; ensures that of A; := {z: IL(z) < I;(z°)} and B; :=
{z: I(z) < Li(z®)}, i = 1,...,s. On the basis of Theorem 1.3.4 of (Laurent,
1972), the cones FC(I;,z°) and NC(I;,z°) are convex. With the same theorem, the
convexity of ¢ implies that of AC(Q,z°). All the assumptions of Theorem Al are
met and, additionally, the conditions of Remark A1 are satisfied, so the conclusion of
our assertion follows. [ |
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Lemma A5. Assuming that I;: X —» R, i =1,...,5 are continuous, convez, and
Ponstein conver with z° € dom I; aend inf, I;(z) < I;(z°), we have

[Rpc(i Mla°)] e E [RFC(;,5°)]"

for A >0,i=1,...,8, S0 A=1
Proof. The convexity of I; ensures that of A4; := {z: I;(z) < I;(z°)} and B; = {z:
Ii(z) < I;(z%)}, i=1,...,s. Using Lemma A3, we get
[RFC(I;,2°)]" = [RNC(L;,2°)]", i=1,...,s.
Then, from Lemma 5.10 of (Girsanov, 1972), it follows that

8§

3 [RPC(F;,2%)]" = [éRFC(Ii,xO)]*. (A2)

i=1
Further, taking into account the following obvious facts:
(a) Ni—; 4i C 4, where 4:={z: > i, NLi(z) < Y7, Mli(2z0)},
(b) AC B = RFC(4,z°) c RFC(B,z°) and
RFC(4,2°) NRFC(B,1°) = RFC(AN B,2°)
for arbitrary sets 4, B C X and z° € AN B,
(c) K1 C K2 = K} C K} for arbitrary cones K;, Ko,

and the definitions of cones RFC and RAC, we obtain

S

ﬁ RFC(I;,2°) = ﬂ RAC(4;,2°) = RAC( () 4,3°) C RAC(4,2°)

i=1 =1 =1

— : 7. A0
- RFC(;)\Jl,a: ) (A3)

From (A2) and (A3), for the adjoint cones we get

s

[RFC(Zj:A,-Ii,zO)]* c [éRFC(I,—,wO)]* =S [RFC(L;,2%)]",

=1
which completes the proof. [ ]

Under additional assumptions on I;, we get an equality in the conclusion of
Lemma A5. This equality means that the functionals appearing in the Euler-Lagrange
equation associated with the performance index have the same form both for the
vector-valued Problem (P) and for scalar ones, i.e. for Problem (S). This implies the
equivalence of Problems (P) and (S).
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And now we are ready to give the proof of Theorem 1.

Proof of Theorem 1. It is sufficient to show that in the conclusion of Lemma A5 we
have the opposite inclusion, namely ‘2’. From the inequality inf; I;(z) < I;(z%) it
follows that RFC(I;,2°) # 0, i = 1,...,s. With Theorem 7.5 of (Girsanov, 1972) we
have RFC(I;,z°) = {Z: I!(2°)Z < 0}. Hence I}(z°) #0,i=1,...,s.

From Theorem 10.2 of (Girsanov, 1972) it follows that an arbitrary element of
>i_ [RFC(I;,2%)]* has the form

f=> ailj(z®), <0, i=1,...,s
i=1

It is easily seen that f = O satisfies the inclusion ‘D’. Let f # 0. Setting
B =35, a;, we have 8 < 0. Further, write A; :=a;/8, As €[0,1], i=1,...,s.
We get
s S
Q; ~
f= Zﬂgﬂ(wO) =Y BAI{(0).
=1 =1

One the other hand, from Theorems 7.5 and 10.2 of (Girsanov, 1972), we deduce that
an arbitrary element of [RFC(3_;_; A\il;(2°))]* has the form

e=7> NIj(%) =) NI, <0
1=1 =1

The products BX; and ~)\; are non-positive. Therefore the functionals f and
¢ are the same up to some multiplicative constant. Taking into account Lemma A5,
we get the required equality, which completes the proof. ]
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