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OPTIMAL SHAPE DESIGN FOR ELLIPTIC
EQUATIONS VIA BIE-METHODS

KARsSTEN EPPLER*

A special description of the boundary variation in a shape optimization problem
is investigated. This, together with the use of a potential theory for the state, re-
sult in natural embedding of the problem in a Banach space. Therefore, standard
differential calculus can be applied in order to prove the Fréchet-differentiability
of the cost function for appropriately chosen data (sufficiently smooth). More-
over, necessary optimality conditions are obtained in a similar way as in other
approaches, and are expressed in terms of an adjoint state for more regular data.

Keywords: optimal shape design, fundamental solution, boundary integral
equation, first-order necessary condition

1. Introduction

Let us consider an optimization problem with a cost function 7 depending upon the
shape of a bounded domain

J(Q) = J(Q;ug(~)) = /j(m,un(z)) dz, (1)

Q

where 0 C R? is the domain to be optimized, and ug is the solution to a Dirichlet
boundary value problem

Aug = f(z) in Q, (2)
ug|r = g(z) on I'=80.
Here f(-), g(-) and j(-,-) are sufficiently regular functions and, for convenience, we

assume (0 C D C R?, with a fixed closed ‘hold all’ D.

To deal with the problem, a related shape differential calculus should work well
in connection with the solution method for the state equation. Especially, the velocity
field method (see Sokolowski and Zolesio (1992) and references therein) is often used,
combined with a a weak solution approach to the treatment of the state equation.
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In this paper, we shall study shape optimization problems for two-dimensional
simply-connected bounded domains §2, where the domains under consideration, satisfy
a condition of star-shapeness with respect to a neighbourhood Us(zo) = {y € R?| |y —
zp] < 8}, with some fixed § > 0. Without loss of generality, in the sequel we assume
Zg = 0.

The main advantage of this assumption is that the boundary T' = 89 of such
domains can be described by a Lipschitz continuous function r = r(¢) of the polar
angle ¢ (i.e.

S [r@cose ]
ri= {7(¢)— [ $)eind ] |¢ep.2 ]},

cf. (Mazja, 1979)). In other words, the boundaries are graphs in polar coordinates
and the description of domain or boundary perturbations is possible in the same way.
More precisely, given a reference domain ) associated with the boundary ‘describing
function’ r(-), a sequence of perturbed domains Q. is associated with r. = 7 + ery
and a (directional) shape derivative is defined by

4T (1] = dJ(Q; ug)fr1] = lim L) =T E)

e—0 €

where 71 denotes the direction of variation, and T', T, € C*7 for a suitably chosen
k €N, v €[0,1]. This domain (boundary) regularity is obviously equivalent to (‘p’
denotes ‘periodic’)

r(-), r1() € CE¥7[0,27] := {r(-) € C*00,2x)lr@(0) =+ (2m), i= O(l)k}. (3)

Consequently, a Banach space embedding of the shape problem is possible, which
allows us to apply standard differential calculus.

A potential theory is used for solving the state equation. This and the boundary
description via polar coordinates allow the transformation of the double layer part of
the solution representation as well as the related boundary integral equation (BIE) for
the density into an integral and an integral equation over the interval [0,27], respec-
tively, where all the information about the shape is now contained in the kernels of
the related integral operators. A set of (almost) explicit formulae is obtained, useful
for ‘straightforward’ computation of the first-order directional derivatives of the cost
function. However, for ‘pure’ boundary perturbation methods a ‘complete’ mapping
between reference and perturbed domains (like for perturbation of identity or the
general velocity field method) is not explicitly given. As a result, only the so-called
local derivative of the state can be treated and the concept of material derivatives for
the shape differentiation is not directly applicable. In particular, additional investi-
gations are necessary to guarantee the existence of directional derivatives d7[r1], in
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polar coordinates formally given by

2m

AT ()l = [ rri(€ 9©)(@) a8

0

271'7'(!

+ ) dufr1](p, @) pdp da.
0

In order for that expression to make sense, we assume the local derivative du[r]
to be at least in L;(Q), but only a more technical second property (see Appendix A)
completes the proof. Consequently, by showing the existence of the material derivative
in a suitable weak sense (Sokolowski and Zolesio, 1992), the existence of the directional
derivative for the cost follows immediately. For example, Gillaume and Mahsmoudi
(1994) and Gillaume (1996) used material derivatives (combined with a perturbation-
of-identity approach, cf. Murat and Simon (1976), Simon (1980), Pironneau (1983))
‘to differentiate with respect to the domain’ and to apply well-known relationships
with local derivatives, as well as integration by parts (the Green formula), to obtain
intrinsic or boundary formulations for the derivative, which are helpful when dealing
with integral-equation methods. Nevertheless, the approach presented here seems to
be applicable to obtain such expressions, too. Whereas it is not important for most
applications, this incidentally requires no differentiability assumption on the integrand
j of the cost function with respect to the spatial variable z. Moreover, discussing
shape derivatives of BIE-solutions (‘density’) and of related volume and double layer
potentials is of some interest in its own right.

Especially, the derivative of the density can be viewed as a Fréchet derivative for
the BIE ‘transported to the parameter space’. Similarly, the Fréchet differentiability
of the cost function can be shown based on explicit representations of dw inserted into
dJ, even for some ‘non-regular’ case. Regularity is understood with respect to the
regularity of the (local) state derivative du and is given if all data (e.g. the boundary
generating function r € Cp, right-hand side f € C(D) and, in particular, boundary
data g € C17(D)) are smooth enough such that the characterization theorem for du
holds and VJ is given as a complete boundary integral expression by introducing the
adjoint state p (Section 4). Like for other methods (Gillaume and Masmoudi, 1994;
Fujii, 1986; Pironneau, 1983; Sokotowski and Zolesio, 1992), this leads to ‘standard’
necessary optimality conditions for the optimization problem (1)-(2), in the paper
also denoted by Problem (P).

It is not difficult to extend the method to star-shaped domains of higher di-
mensions, but also a combination of potential methods with boundary variation by
smooth fields is possible for more general domains. Such methods are used by Pot-
thast (1994a; 1994b) for the shape derivatives of the state in an inverse scattering
problems. Obviously, boundary variation by smooth fields can be viewed as some
perturbation of identity, ‘reduced to the boundary’.

We conclude the introduction with some remarks regarding the contents and
notation. In Section 2, the notation from potential theory and some basic facts are
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given. Section 3 contains the complete first-order shape calculus for the problem.
In Section 4, we discuss a boundary integral representation formula for the gradient
and a necessary condition in relation to other approaches. Some technical details
are studied in Appendix B. In the paper, shape derivatives are usually denoted by
d-[r1] or V-[ri] if they are Fréchet derivatives. Spatial gradients V, and partial
derivatives with respect to polar coordinates (especially 8(:)/07 = (V,(-),&,)) or
boundary normals 9(-)/8n often occur in the formulae and should not be confused
with shape derivatives.

2. Potential Theory, Domain Perturbations and Transforma-
tions into Polar Coordinates

It is well-known (Hackbusch, 1989; Giinter, 1957; Michlin, 1978; Kress, 1989) that,
using the fundamental solution to the Laplace operator, an integral representation for
the solution u to the state equation of Problem (P) can be given as follows:

= - [ B0+ [ FeDugas,
Q r

=V(f;i2)+ W), z€Q, (4)
where p(-) satisfies the BIE

OE(
u(e) - / S u(e) a5 = ~a(e) - [ Bw,0f©d, weT,
Q
and the fundamental solution E(z,£¢) in R? is E(z,€) = —(1/27)In|z — €|. The
parts
0E(z, &)

e GLY

- / E(z,6)f(€)d¢ and W(uz) =
Q

are called the volume potential part and the double layer potential part of uq, re-
spectively. Furthermore, we introduce the boundary integral operator K, defined
by

(Ku)(z) = /8E ad f £)dSe, zeT,

which implies a more compact notation for (5):

(%x ; K) p=—g+ V(i (6)

Lemma 1. If f € C(D) and g € C1(D), then for every bounded domain Q C D
with T € C? there exists a unique generalized or potential solution uq of (2), which
is given by (4) and, for arbitrary € € (0,1) and p € [1,00), satisfies

ug € CHIE@)NC™5(Q) and ug € WHP(Q). (7
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Proof. In order to recall some known facts, we briefly sketch the proof. From the
potential theory (Giinter, 1957) it follows that V(f;-) € C*'~¢(R?), which implies
for the right hand side of the BIE (5)

- [Bo5@ e e A,
Q

Therefore, for the unique solution p € C(I') (Hackbusch, 1989) we have
i € CHT) because of the smoothness of the right-hand side and the lifting pro-
perties of the boundary integral operator K. More precisely, this holds for a C?-
boundary ' and for every v € (0,1): K € L(L*(T),C%"(T)), cf. (Hackbusch,
©1989), and K € L(C®7(T),CH(T)), cf. (Kress, 1989), respectively. Consequently,
the C!-regularity of the right-hand side carries over to the solution u. Moreover,
double layer potentials with C*-densities satisfy W (y;-) € C®(Q) N C%1=#(Q) for
€ > 0 (Hackbusch, 1989; Kress, 1989), which implies the first relation of (7). For
ug € WB? see Remark 1. =

Remark 1. As a counter example, Giinter (1957) shows that f € C(Q) guarantees
neither V(f;-) € C%(Q) nor V(f;:) € W>*®(Q), but V(f;-) € W*P(Q) is valid,
see (Michlin, 1978). Moreover, ;1 € C* does not imply W(u;-) € C1(Q), whereas
€ CHY = W(u;-) € CH(Q) holds for T € C? (Kress, 1989). Nevertheless, due to
Hackbusch (1989) we have VW (y;z)| < ¢|In[d(z,T)]|, which implies Vug € L,(f)
for arbitrary p € [1, 00).

Remark 2. The assumption T’ € C? is equivalent to (cf. (3))
r() € G2l0,2n) := {r(-) € C*0,2e]rD(0) = rD(2m), i=0,1,2, 7(¢) >3}.
Moreover, the unscaled and scaled outer normals to the boundary are respectively

given by

alg) = o A(f) = ————a($). ()
r($) sing — r'(P) cos ¢ r2(¢) + T,2(¢)

Due to the special form of the fundamental solution in R?, we get for the volume

potential part

(r@ﬂw¢+wwmm¢) 1

V(fia) = o [ Inle—l(6) de = 77¢m1z— (59116, 9) 00046, (9
Q

and for the double layer part (for polar coordinate transformations)

a1 1 -
Wiia) = 3= [ Fo e ase = 5 [ (Vemla - el ndu as,
r T

2w

= 5 [ (Vemlo - €@l a@)ue@) d / R (@, 6)u(#) 49,

0
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where

& ((2) , ¢> _ <(£<|¢;)_—E:2;)«]fz(¢)>

r(}) cos ¢ — 11 r(¢) cos ¢ + 7' () sin ¢
_ r(¢)sing —xza |\ r(4)sing —r'(¢)cos ¢ (10)

(z1 — r(®) cos ¢)2 + (z2 — r(¢)sin ¢S)2

Therefore, (4) becomes

Ty sin o

u(z) = V() - 5 /K(z ou@ b o= () =p(Gre) e

In much the same way as for the BIE (5), we arrive at

1M(Ot) b K(a,¢)p(d)d¢ = —g(@) + V(f;a), a€0,27]. (11)
2 2T
0

Here we use the following notation for kernel functions of boundary integral operators:

K(a, ¢) = d(a, g)m(a, 4),
d(a, ¢) = 1*(¢) — r(¢)r(e) cos(¢ — a) — ' ($)r(e) sin(¢ —a), o (12)
m(a, ¢) =r*(¢) +r?(a) — 2r(¢)r(e) cos(¢ — o),
and g(a) := g(z(a), V(f;0) :=V(f;z(a)).

Remark 3. For 7(-) € C? the kernel K is regular i.e. KX can be continuously
extended to [0, 27] x [0,27] with limiting values

P29)+ 5 ()~ (O (@)
K(¢: ¢) = 1‘2(¢) n T’2(¢) = 5ﬂ(¢)l(¢)) b€ [Oa 27T]>

where k(-) and I(-) denote the (local) curvature and the arc length of the boundary,
respectively.

The admissible perturbed domains (or boundaries) 2. are defined by (see the
Introduction)

L. & 1.(¢) =1(g) +eri(¢), r1 € Cp[0,2n],

€ > 0 being sufficiently small, provided that r.(¢) > §, ¢ € [0,27]. Moreover, the
subscript € is used in the sequel to denote the quantities related to .. Thus we will
use differential calculus in the Banach space C2[0,2n] for the study of Problem (P).
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Remark 4. Since

.
(En, i) =~ > ¢ > 0,

V42 T
— (COS

€r = ( sin ¢ ) being the radial unit vector, the above perturbations are always regular,
i.e. the perturbation field is tangential if and only if 7 (-) = 0. Moreover, an easy
calculation shows the well-known fact (Sokotowski and Zolesio, 1992)

d

rry —1'ry
de

ﬁs(¢)l€=0 - > 2 7?(¢) 1 ﬁ(¢)a d) € [0,271‘]

[ o
where 7(¢) denotes the unit tangential vector on T' directed to increasing ¢. In order
to obtain the derivatives for the shape problem, some results on the differentiability
of domain and boundary functionals are also used.

Lemma 2. Let f € C(D) and g € C*(D) be given. Then the functionals J;(Q) =

Ji(r) = /fdz and J2(Q) = Jo(r) = / 9dSt are Fréchet differentiable with respect
Q

r
to C; [0,27], where the derivatives are given by

2w

VA ()] = /r(fb)n(aﬁ)f(r(qﬁ),qﬁ) a, (13)

0

and

27

VJy(r)[r1] :/rl V2 +r’2%,(T(¢)a 9) +9(r(4), ¢) %dq&. (14)

0

Remark 5. For the proof, see (Eppler, 1998a; 1999). Obviously, we have directional
derivatives given by (13) and (14), respectively, linear and continuous with respect to
r1. Moreover, the related operator norm of the Géateaux derivative depends continu-
ously on the C; [0, 2] norm of r. This ensures the continuous Fréchet differentiability
of the functionals by standard arguments from functional analysis (Bogel and Tasche,
1974).

3. Derivatives for the Shape Problem

Owing to the character of potential solutions, we have three steps for the derivation
of the corresponding formulae for derivatives. We start with the investigation of the
BIE for the density, then we will discuss the variation of the state and, finally, the
derivative of the cost function. According to Lemma 1, we assume g € C*(D) and
[ € C(D) throughout this section.
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3.1. Derivative of the Density

The BIE is transformed into an integral equation over the interval [0, 27], where all
the information about the boundary is contained in the kernel and the right-hand
side. Therefore, straightforward differentiation leads to the following result:

Theorem 1. The mapping 7(-) > p(r;-) is Fréchet differentiable at v(-) as a
mapping from C;[0,27] to Cyp[0,2n], where the derivative du[ri] € Cp[0,27] satisfies
the following BIFE (cf. (11)):

(%1 + K) dplr] = —dg[r] + drV[m](f;-) — dKfrilu, (15)

with dg[r1], drV[ri](f;-) and dK[ri]p defined as follows (a € [0,27]):
dolr(e) = () (Vg (71 02 ) (529)) = (@) 0,

2w

arVirl(fio) = 5 [ 1@ (@) fs(e) - €@ 7(E(9) o

0

BV(f;:c(a))

+ 7‘1(0() oF

and

2

(AK[nlu) (@) = 5- [ dKlril(e )a(s) do.

[

The kernel derivative dK[ri](a,¢) is given by (cf. (12))

a0 = D . Sl

where the shape derivatives of the numerator and denominator are respectively deter-
mined from

ddfr1](c, ) = 2r(¢)r1(¢) — [r1(¢)r(a) + 7(¢)r1(a)] cos(a — ¢)
+ [ri(@)r(a) + 7' (¢)r1 ()] sin(a - ¢),
and
dm[ri)(a, ¢) = 2r(¢)r1(¢) + 2r()r1(a)
= 2(r1(¢)r (@) + r(¢)r1(a)) cos(a — ¢).
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Moreover, the shape derivative dK of the boundary integral operator K has a non-
trivial kernel, i.e. ker {dK[r]} contains (for arbitrary r) the constant functions

K[ri]1=0, or 51; /dK[rl](a,gb) +1d¢p =0, forall a €[0,27]. (16)
0

Proof. We have g € C*(D) and the kernel derivative dK[ri](-,-) is regular with
limiting values

dnl(6,d)  TOM@) + 2O @) - S (O (@) + n(@r(8))

m(4, ¢) r2(¢) +1'%(9) ’

and

dm[r)(¢,9) _ 2r($)ri(¢) + 2ri'($)r'(9)
m (e, $) r2(¢) +r'*(¢)

Therefore, formal differentiation of (11) leads to (15). In order to see the structure of
drV[r](f;-), let us note that

. pelo,2n].

Ve (f57e (@) — Ve(fi2(e)

drVir](f;e) = lim

Ve(f32() — V(f52(e))

The weak singularity of the logarithmic kernel and f € C allows us to apply
Lemma 1 and gives the first part of drV from the second expression above. We
obtain the second part by taking the limit as € — 0 in

/ @) [Inlze(@) - y| — In|z(a) — yl] dy

=r(a /f x” y"”(“))dy, ve (),

a) —y?

because the related domain integrals are weakly singular and spatial differentiation
can be performed under the integral sign as follows:

&(1;5_;”(_04))_ = % /f(y)(vz In|z(a) — yl, &-(a)) dy. (17)
Q

Furthermore, the continuity of the right-hand side and the properties of (3I + K)
imply the existence of the directional derivative du[ri] € Cp[0, 27].

To show Géteaux differentiability, we only need an estimate of the right-hand
side of (15), because (3I+ K) is independent of r; and so is the norm of its inverse.
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This is immediately possible for the first two parts dg[r1] and drV{ri](f;-), in both
the cases with respect to the C-norm of ;. Using the formulae for limiting values of
dK][r;], an estimate of the third part with respect to the C?-norm of r; is also valid
and we obtain

ldu[rillle < c(r)lir1llcz, for all admissible r € CZ[0, 27].

For the continuous dependence of the norm c¢(r) on r, we only remark that the
estimate

2@)+ @) 2, ¢,

holds uniformly in a sufficiently small neighbourhood of every admissible r. Conse-
quently, the Fréchet differentiability of the mapping r(-) = u(r;-) follows by the
same arguments as for the functionals.

To deduce (16), we recall the well-known identity

27

/aE(z,E) (€)dSe = /1((a p)dp ==, z(a) €T, (ac]0,2n], resp.),
T

0

which is valid uniformly for all the boundaries under consideration. Due to the regu-
larity of dK[ry](:,-), differentiation with respect to the boundary variation is possible
under the integral sign and leads to (16). [ |

Remark 6. With the aid of (16), rewriting dK|[r;]p as

(dK[r]1) (a /Mmmw(@ () dg,

and using p € C!, we obtain in fact a C'-estimate for the norm of the Gateaux
derivative. Altogether, we have ||du[ri]llc < cllrillcr, ¢ = c(||r]lc2)-

Remark 7. The regularity of dX[r;1](-,-) and the property (16) are similar to results
of Potthast (1994b) (cf. Ch. 3.2 (examples) and the proof of Thm. 3.17). Moreover,

the integral operator dK[ry] is bounded from C%2[0,27] to C1[0,27], and dp[r]
can be expressed in accordance with Potthast (1994a) as

dulry] = (%I + K) _ { = dglr] +drV[r](f;-) - dK[ri]u}
1 -1
= (51 + K) { —dglri] +drV[r](f; )}

(k) i (Je) (-0 Vi)



Optimal shape design for elliptic equations via BIE-methods 497

3.2. Derivative of the State

One difficulty in using boundary variational approaches in shape optimization is that
the solutions u. to the state equation for perturbed domains are not comparable to u
in the whole Q, because they are defined on different domains ((Q: \Q)U(Q\Qc) # 0).
Therefore, when dealing with local derivatives only, the Fréchet differentiability of the
state, e.g. with respect to C() or L,(2) for a suitable p > 1, is not possible. Only
particular results can be obtained by embedding into a Banach space, defined on
compact subsets of Q (cf. (Potthast, 1994b) or Corollary 1 below). However, this is
not sufficient for the investigation of our cost function.

Remark 8. To avoid this problem, the material derivative concept was developed
(Sokotowski and Zolesio, 1992), applicable if an explicit mapping between reference
and perturbed domains is given (perturbation of identity, cf. Murat and Simon, 1976)
or if such a mapping is constructed more implicitly (the velocity field method). Ho-
wever, material derivatives contain not only ‘shape variational’ parts of the solution
but also some ‘transport of domains’.

Nevertheless, a shape directional derivative exists pointwise on €.

Theorem 2. The directional derivative du[ri] of the state u exists for all z € Q
and is given by

du[ri](z) = dV[r](f; z) + W(dp[r1]; z) + dW[ri](g; z), (18)

where dV[r1](f;z), W(du[r1];z) end dW(r](g;z) are respectively defined as (z €
Q, ¢ €[0,27))

27

AVIrl(fia) = 5= [ 1@ (@)nls - €O () o,

0

W(dulnlsa) = —5- [ K(z,6) dulri](@) do,
0

27
AWlnl(iz) = - 5- [ aRlril@, oule) do.

where dulr1] satisfies (15). The kernel derivative dE (r)[r1](z,d) is the derivative
of K(r)(z,¢) in direction 71

K 1(z. &) = 210 |z — . r1(¢) cos ¢ i
4R [n)(z,9) <v51 o - ¢(9)] (w)sin ¢), (¢>>

+(Veln|z - £(¢)1, dd(9)).
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Moreover, as is the case of (16), we have

27

dW{r](1;) =0, or i/dK’[rl](:z:,d)) -1d¢p =0, forall z€Q. (19)
27
0

Proof. The shape derivative dd(¢) of the (unscaled) normal is obviously given by

oo [r1(@) cos ¢+ 7ri(¢)sin g
da(g) = (7‘1 (@) sing — 1 (¢) cos gb)

For the volume potential part we obtain the derivative similar to Lemma 2, because
the logarithmic singularity of the kernel of V(f;-) causes no additional difficulty
(z € Q is fixed). Furthermore, differentiation of the double layer potential part leads
directly to the second and third parts. By using polar coordinates for z (:cl = pcosa,
T2 = psina), the kernel K(z,¢) = K(p,a,4) and the derivative dK[r](z,¢) =
dK[r1](p,, ¢) can be written down as

r(¢) — r(¢)pcos(d — &) —r'(¢)psin(¢ — a)
r2(¢) + p* — 2r(d)pcos(¢ — @) ’

=T ((b)é}( ) rle¢(¢) ¢ € [0,271'].

K(p,a,¢) =

and

2r(¢)r1(4) — r1(d)pcos(d — a) —ri(¢)psin(¢ — @)
r2(¢) + p* — 2r(¢)pcos(¢ — a)

] 2 ()1 (8) — 2 () pcos($ — a)
~Reed) O T o (@)pcosio—a)

dK[r](p, e, ¢) =

respectively. The basic identity for (19) is (just as in Section 3.1)

2m
OE(x, I 5
_./ 8(;55 5) (6) dS€‘: 57—7_ /K(p7a,¢) dp=1, z= (p> a)T €, ae [0,271'],
T 0

which is valid uniformly for all the boundaries under consideration. By dist(z,T’) > 0,
z € Q, the kernel dK[rq] is regular and differentiation with respect to the boundary
variation under the integral sign leads to (19). |

Remark 9. dV[r;](f;-) can be interpreted as a single-layer potential with density
f(&) - (r1€r,7i¢). Due to the continuity property of the single-layer potential on the
boundary, we have only the first part of drV[r1](f;-) (cf. Section 3.1) as limiting
values

27

lim V[ )(fi0) = 5= [ r(@n(@)lnfa(e) - €O (E) a6, a5 5 E(@) €T,

0

which implies drV[r(](f;-) # dV[r1](f;)|r-
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Remark 10. Whereas lim,_,,(q) K(z,¢) = K(a,¢) holds for a # ¢, the same
relation for the differentiated kernels is not true, i.e. limdK[ri](z, ¢) # dK[r1](a, ¢).

Moreover, in contrast to the regularity of dK[r1], the kernel dK[ri] has a singularity
of order 2 on the boundary for (p,a)T — (r(¢),$)T. More precisely,
_ _ c
dK[r|(z, = {dK[r1](p,a, 9)| < =7
c

" r2(g) + 92— 2r()pcos(d —a)’

Hence, the singularity of the differentiated kernels for the solution representation
increases by one order for each step of differentiation.

Obviously, this singularity influences essentially the behaviour of du[r;] close
to I'. In particular, neither continuity nor boundedness on 2 can be expected without
additional assumptions. Together with the non-comparability of perturbed solutions
u. with u on Q, this leads to problems with the investigation of the derivative of
the cost function. Before discussing this in more detail, we present some immediate

consequences.

Corollary 1. The mapping r(-) — u(r;-) is Fréchet differentiable as a mapping from
C2[0,27] to C(K) for every compact subset K C Q.

Proof. Since d(K,T") > 0, we have K C Q.N$ (for sufficiently small €) as an essential
assumption for the investigation of Fréchet differentiability. Discussing the three parts
of dufri] (cf. (18)) simultaneously, we immediately observe the linearity. A uniform
estimate (in order to have a Gateaux derivative) is directly possible for the first part
(V] (£ 2)] < lirllel(1/2n) fy7 r(9) In|o — £(8)[£(€(4)) d¢]) and can be obtained
for the second part by the results of Section 3.1. By using d(K,T') > 0, a similar
estimate holds for the third part. Moreover, we have K C Q. N Q7 (for ||F — r||c2 <
d(K,T")/2), and the norm estimates depend continuously on 7 € Us(r). [ |

Corollary 2. The directional derivative du[ri] satisfies the Laplace equation in §
(in a classical sense).

Proof. From f € C and g € C* (hence p € C! and du[r;] € C), we deduce that
du[r;] € C?(£2). Moreover,

A dV[ri](f;2) =0 and A, W(du[r1];2) =0

hold for all z € ), because these are a single and a double-layer potential, respectively.
The third part contains partial derivatives of the fundamental solution (combined with
at least continuous ‘densities’), implying also A, dW[ri](u;z) =0 for z € Q. [ ]

Remark 11. In general, neither the existence nor information about concrete values
of du[ri]|r are known without additional assumptions.

Remark 12. In much the same way as in (Potthast, 1994b), an abstract formula for
dufr;] is valid. Namely, from v =V (f;) + W(((1/2)I+K) H{-g+V(f;)Ir}; ") we
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conclude that

dufrs] = AV[r)(f;) + AWra] ((éx n K) =g+ VIS )

W ((%I+ K)_ {~dglrs] + drV [ (£ )}

- (%1 + K) - dK([r] (-;—I + K)

The last result of this subsection will be essential for the investigation of the cost
function.

-1

{=g+V(f)r}; > :

Theorem 3. The shape derivative du[ri] satisfies

) du() € Ly(Q) for p<2,
(ii) / e (@) — u(z) — & dufr1)(2)] dz = o(c).
Q.nQ

Proof. Using (18), we immediately get
dVIr](f;) + W(dplri); ) € C(Q),

because this is the sum of single- and double-layer potentials with continuous densities
(cf. the proof of Corollary 2). For the strong singular part we apply (19) and get

dW([ri)(p; 2) = dW[r1](w; p, @)

- _% / dE[r1](p, o, ) () — ()] d.
0

Since (€,,7) > ¢ > 0 (see Remark 4) and u € C*, we have the estimates

ln(e) — (@)l = |u(é(a)) — n(E(@))] < clé(a) — &(4)]
Sklz—&(D), z=(pa)€Q,

provided that |a— ¢| is sufficiently small. Due to the structure of dK{r1](p, c, ¢) (cf.
the proof of Theorem 2), this reduces the strong singularity of order 2 to a singularity
of order 1, which is integrable for two-dimensional domains up to an order of p < 2.
The weakly singular part of dK[r1](p, @, ¢) becomes regular by the additional [u(¢)—
p(a)] term.
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The proof of relation (ii) is rather technical and uses extensively estimates of
singularities of potential kernels and its spatial derivatives. Therefore we present the
detailed investigation separately in Appendix A. We only remark that the volume and
double-layer potential part of the solution satisfy independently

(iia) / Vo(fs2) = V(fiz) — e dVnl(f;2)|ds = o(e),
QN0

(iib) / (W, (e 2) = W (15 2) — € {W (dplra)s 2) + AW [r1] (1 2)} d = o(e),
Q.NQ

where the volume potential part allows, in fact, the estimate (uniformly for z € Q.NQ)

Ve(£i2) = V(fiz) —edVIn](fiz) =oe). =

Remark 13. Relation (ii) means that du[ri] is a uniform Li-directional derivative
of the solution on every compact subset of  (which is not directly clear from the
pointwise existence of du[r;](z)). Moreover, this result is in some sense similar to the
existence of a strong material L;-derivative for the velocity method.

Remark 14. The result (ii) can be particularly improved (see the last remark in the
proof), but this is not necessary for the existence of a directional derivative of the
cost function. Therefore, a more careful discussion is only contained in the Appendix.

3.3. Derivative of the Cost Function

Similarly to other cases of composed functionals, one may argue in a ‘straightforward’
sense as follows: The solution to the BIE (the density) has a Fréchet derivative, hence
the solution to the state equation is Fréchet differentiable, so the same must hold true
for the cost function. This argumentation fails, however, as we have already discussed.
Nevertheless, the Fréchet differentiability of the cost function can be shown.

Theorem 4. In addition to f € C(D) and g € C'(D), we assume that j(-,-) is
continuous and has a continuous partial derivative 9j/0u on D x R. Then the cost
function is Fréchet differentiable and the derivative V7 (r)[ri] = VJ(Q;u(:))[r1] is
given in polar coordinates by

2

VIl = [ r@n @), 9(€@)) a6

0

2m ()

+/ / Z%j(p’a’“(p’a)) dulr1](p, a)pdp da,
0 0
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where the (formally) strongly singular part

/ 0(2) AW r1](4; ) da
Q

27 () 27

=5 | [ #6.a / dRolr1](p, @, d)tio () ddpdp da,
0 0 0

(here §2(z) = 1%(p, @) = Bj(p, o, ulp,))/u) can be redefined by

/ (@) AW [r1)(u; ) da
Q

27 7‘(¢') 27
= —1/2r / / (0, 0) / AR [](p, s 8) [1(6) — ula)] dé pdpda,
0 0 0

as a weakly singular integral.
Proof. At first we fix the direction 7y, show the existence of the directional derivative

J(Qe;u:) = J(9;u)
13

dJ[r1] = lim
e—=0
and compute it. To this end, we split J(Qe;ue) — J(Qo;u) as follows:

J(Q£§Ue) - J(Q)u) =L +1,— 13:
with

L = / [ (2, ue(2)) = j(z,u(z))] dz,

Q2.n0

I, = /j(x,us(:c))da:,
20\

I3 = /j(m,u(x))dz.
a\Q.

Although the situation for I, and I is not equivalent to Lemma 2, we are able to
proceed similarly to the proof by using the boundary condition for u. on T, and for
u on I'. We arrive at the first part of (20) with an estimate of o(¢) for the remainder,
because g. = g|r., = g = g|r uniformly as £ — 0.

Due to relation (i) of Theorem 3, the second part of (20) makes sense in the way
discussed above. Moreover, this part is connected with lin%) I, /e. Now the existence
e—

of this limit follows by the assumption on j, the properties of u and from relation
(ii) of Theorem 3. Therefore dJ[r;] exists for arbitrary r; € C? and is given by (20).
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Fréchet differentiability is ensured along the lines of our standard arguments, i.e.

(i) dJ(r)[r1] is linear and continuous (with respect to r1) (hence it is a Gateaux
derivative),

(ii) the norm of the Gateaux derivative depends continuously on r, because (20)
contains only (at most) weak singular integrals which are continuous with re-
spect to r. |

In order to simplify the gradient and the standard necessary condition
VJ(r)[ri1] > 0 for all admissible r; € C2[0, 2],

by introducing an adjoint state, it is useful to assume more regular data (especially
for the boundary-value field g).

4. Necessary Optimality Conditions for More Regular Data

From f € C and g € C!, we can only conclude that v € C%'~5(Q) and du[r;] €
L,(Q) (but not u € C*(Q) and dulri] € C(Q)). To prove the characterization
theorem about dulr;] as the solution to a related boundary-value problem of Dirichlet
type, more regularity of the data field g is necessary.

Lemma 1. For g € CY%(D) the directional derivative du[r;] satisfies
Adulr] =0 in Q

Quln](r(6),8) = r1(9) | S2(r(8),9) — 9a(r(#),6)| on T=80. (20)

Proof. Since g € C'7(D), we have u € CY7(Q)) and u. € CH7(Q.). Therefore
the right-hand side of the boundary condition in (20) is well-defined as an element of
C%7(I'). Moreover, we can conclude, in addition to Corollary 2, that du[r;] € C%7(Q)
(see Appendix B). It remains to compute the boundary values in the sense of

dU[Tl](T(¢),¢) - lim UE(ms(¢)) - U(ms(qs)) , m5(¢) € B(Q OQS).

e—0 g

We follow Pironneau (1983) and split [0,27] into three sets M;", M; and M?
according to the sign of ry:

M = {¢ € [0,27]|r1() >
MY = {¢ € [0,27]|r1 ()

We obtain
ue (r(9), ¢) — u(r(9),9) = ue(r(9),9) — ue(re(9), 9)
+9(re(),9) — 9(r(¢),9)

1o} du,
= eru(@) [é‘g T or

}’ Ml_ = {¢ € [O’Qﬂllrl(¢) < 0}7
}.

0
0

e M
r+9r1:|, ¢ 10
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and
ue (re(6), ¢) — u(re(9), @) = u(r(4),4) —u(r=(¢), ¢)
+9(T5(¢),¢) —g(r(¢),¢)

0 ou _
= 6’!’1(@5) 1:579; - '5‘7‘_'; T+0T1] ; (j) S Ml .

For ¢ € M the definition of the boundary values can be formally extended, since
ue(ze) —u(ze) = g(ze) —g(ze) =0. W

Remark 15. Owing to the Dirichlet condition for u (i.e. u — g =0 on I'), we have

W[ 2] <[22

97  OF on On
:M[Sﬁ( ).6) - 24(r(0),9)
12(8) + (@)

Furthermore, du[r;] € C%7(f)) is a classical solution to the Laplace equation, which
can be expressed in terms of a double-layer potential only, where the associated density
satisfies a BIE with the boundary values of (20) as the right-hand side.

The adjoint state p is defined as the solution to the following boundary-value
problem:

(21)

—Ap=39(,") in Q,
p=0 on I' = 90.

Remark 16. The adjoint state can be expressed in terms of a potential representa-
tion, too. Moreover, according to the continuity of our right-hand side 72, we have
p € CL7(Q). Substituting Ap into VJ(r)[r1] and integrating twice by parts, we
obtain

V] = / —Apdufr]dz + / (r1,, )7 () dSr
Q T

:/( «D, Vdu[r]) dz /———du [r1]dSr +/(T1é},ﬁ)j2(a:)d5p

Q r

= /—-pAdu[ﬁ d:r:—/ dufri] dSt
Q

+/a—d(;t;b[-ﬁlpdSP+/<T1é'r,ﬁ)j2(I)dSr‘
r r



Optimal shape design for elliptic equations via BIE-methods 505

/@mm%Mﬂ % (%-24)] ase

27

= [n@r@ |2001.0) - 20,0 (2000 - 52060.9)] @0

0

Although the explicit transformation requires the existence of ddu/dn at least in
some weak sense, the result for V.7[rq] is valid even for dufr;] € C%7(Q?). This
can be seen as follows: We take a sequence {gn} C C7(I') with g, — du[r]|r
in the sense of C(I'). Due to the maximum principle, for the associated solutions
un € CH7(Q) we have the property u, — dufr;] in the sense of C(Q). Therefore

/—Apun dz + /(rlé},ﬁ) jg(a:) dSr = VJ[r1],
Q

T

Op (0 0
/(rler,n) undSp%/rler, 8 (ai 82) dSr,
T

VJ[rl]:/(rleT, )[u( ) - g—% (gz g::)] dSr.
r

Similar results are also known for several approaches (Gillaume and Masmoudi, 1994;
Fujii, 1986; Pironneau, 1983; Sokotowski and Zolesio, 1992). As a conclusion, we
obtain the necessary optimality condition in the case of a free minimum (all r, €
C?[0,27] are admissible).

and

which implies

Corollary 3. Let Q € C? be a local optimum for all the domains which are star-
shaped with respect to a neighbourhood U;(0). If all r1 € C2[0,27], admissible without
any additional restriction, then the function

. Op (Bg Ou
0 B - At
Ju(@) on (677, 877.)

must vanish on the boundary T, i.e.

7u(r(9),¢) = g(ww(%mm@—%0wﬁﬂ=&¢emM-

Remark 17. For some applications of shape optimization methods, see the mo-
nographs by Haslinger and Neittanmé&ki (1988), Khludnev and Sokolowski (1997),
Pironneau (1983) and Sokotowski and Zolesio (1992). Few additional references are
(Fujii and Goto, 19941; Henrot and Michel, 1991; Kirsch, 1993; Leal and Mota Soares,
1990; Ring, 1995; Roche and Sokotowski, 1996).



506 K. Eppler

Remark 18. The approach presented here is also useful for the computation of
higher-order derivatives (Eppler, 2000b). It is of some interest while studying sufficient
optimality conditions for shape optimization problems (Eppler, 2000a).

Appendix

A. Proof of Relation (ii) of Theorem 3
As was already discussed, the volume and double-layer potential parts of the solution
will be investigated separately. We have to show that

(iia) / Va(f32) = V(f; 2) — ¢ dVr](f; )] dz = o(e)
QNN

(iib) / (W, (5 7) — W (32) — € {W (dulra]; 2) + dW[r](1 )} | dz = o(e).
QNN

For the proof of (iia), we define e;(;z) = 2n[V.(f;z) = V(f; 2) — e AV [r](f; 7)]
and rewrite the remainder as

e1(e;2) = / Infz - y|£(y) dy — / In|z - ylf(y) dy
Q:\Q Q\Q,

2m

e / r($)r1($)In |z — £($)|F (E(¢)) do

0

2m 7':(‘1’)
- / / In|z - y(o, &)f (y(p, ) pdp do
0 r(¢)

2

e / F(@)r (@) In [z — £(8)|F (6(4)) o

0

= [ 1@ [ 1@+ @) nls - y(0)
0 0

x F(u(r,)) = (@) Inlz - ()| (6(#)) dr dg

= [n@r@ [ [l -y, 9l (47, 6) - nlz - @I (60)] arag
0 0

27 €

+ [0 [rinle -y 917, 0) ar o

0 0
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2 €
= [n@r©® [ [imle - yir. 9] ~1nle - @) 1 (v(r, ) dr g
+ [ @) [1le - @[ (v 0) - (6] dras

0

€
2

2(4) /rlnlm —y(r, $)f(y(r,$)) drd, zEQNQ

0

+
0\§ =
3

Now we additionally show that (also for continuous f only) the remainder satisfies
an estimate of the type |ei(e,z)| < co(e) uniformly for all z € Q, N Q (i.e. ¢ does

not depend on z and €). This is in fact a uniform C-type estimate implying clearly
a related estimate for the Li-norm. We have

ler(e,2)| = [Ve(f;2) — V(f;2) — edVIrn](f;2)| dz
21 €

<Wrllrrsl [ [ inle(e,0) = (7, 0) = 1ol ) — €@ dr g
0 0

2T
T llrrleds (€) / |1n|2(p, @) — £(9)] do
0

2m €

T ellF i 2 / / lInle(p,a) — y(r, )| dr d

2 €

< off,rm) / / lIn|2(, @) — y(, 8)| — In|a(p, @) — E(#)|| dr do

+ (@) [e8; @llrmall + 1],

where d¢(-) is the continuity modulus of f, because foz" [In|z(p, o) — &(P)|de <

c1() and f027r [In|z(p, &) —y(7, )| dé < ¢1(), uniformly for all z € Q@ and 7 € (0,¢)
(these are at most weakly singular integrals).

Moreover, we have the estimate (uniformly with respect to 7, &(¢) := &(¢) +

tlé=(¢) — E(9)], te[0,1])
|In|z —y,| —In|z —¢|| = (VIn (z — € +nlé — y-]),yr — &0)|

< l&(9) — &(9)l
~ minjz - &(4)]
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Introducing the set

B.(¢) = { € 0, 1l min o — & le — €1} = Lelrs (6)] = it (9 —£(¢)|},

we have
|z~ &| > & — ol

|z — &o| < |6 — ol + |z — &| < 2|z — &

(A1)

As a result, for all z = z(p,a) € Q. N Q with d(z,T9) > ev5/2||r1|lc (where
8(Q N Q) :=T2 = {€2(¢) = (2(B))((25), ¢ € [0,2n]}, r2(¢) = minfr(¢),re(¢)} =
T+ €(1 — sgn(r1))r1 /2}, we have

2m

/ I |z(p, @) - y(r, 8)] — In|z(p, &) — £(8)]| do

0

7 le(9) - £6)]
RO il /iz—i(qﬁ)!*’

<2

where the last integral is at most weakly singular and therefore uniformly bounded.

For z ‘close’ to the boundary of Q. N Q (d(z,T?) < eV5|Ir1llc/2), the situation
is more complicated, because the estimates above do not hold for all ¢ € [0,2x].
Therefore, we split the interval [0, 27] into A.(a) := {¢ € [0, 27]| min{|z — & (P)], |z~
£(¢)|} > eVllrillc/2} and [0,27)\ Ac(@). On the other set (A1) is satisfied and the
estimate above holds. For A.(a) we have

Ac(a) Cla—ae,a+ce] and ce 2 |z(p, ) — y(7, ¢)| 2 csla - 4],
which implies (for a sufficiently small € and ¢ € A.(a))
|In|z(p, @) —y(7,¢)| — In|z(p, @) — £(B)]] < 2] Incsla — .

Hence for all 7 € (0,¢) (0 < A < 1) we obtain

/ |n]z(p, @) - y(r, 8)] — In |2(p, @) — Eo(4)]| dg

Ac(a)

< 4/|ln 6]do + O(e) = o(e™).
0
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Consequently, we get

2w €

[ [ 1nlete.c) = vt 6 = nla(p,0) - (@] dr do < s,

where the constant ¢ can be chosen independently of z and ¢.
For the proof of (iib), we split the double-layer potential part as follows:
W (ue; 2) — W (u; 2) — e{W(dulr1]; z) + dWri](u; z) }

= 62(5,517) + 63(E,IE) + 34(6)‘7}),

where
1 2m
x6,0) = ~5- [ [Relo )~ K (2,)) [0e(9) — w(0)] 0o,
1 27 ) B _
cale,2) = =5 [ [Kele,d) - K (o) = edRlri)(a, 9] u(0) 40,

ex(6,0) = 5 [ K(e,8)[1e(8) = w(6) — e dulri)(0)] 4o

For the last part, we have |es(e,z)| = o(e) uniformly for all z € Q by the results
of Section 4.1 and the mapping properties of the double-layer potential. For es(e, ),
we have

pe (@) — p(@) = edu(d) + o(e) uniformly for all ¢ € [0, 2n].

From (10) we additionally get the splitting ez (g, z) = ei(e,z) + e2(e,z) by

w((@)e) -5 (G))

(£e(9) — ) - dc(¢) _ (£(¢) — =) - d(P)

e &GP lz—E@)P
_ /K@) -2 . L
- <1x*§(¢)|2)a5(¢)—a(¢)>

€@ =2) _ ED=2) o o0
+<|w—§€(¢)|2 . lz — £(9)12 () (¢) + (¢)>
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Moreover, from 7.(¢) = r(¢) + er1(¢) we have

) ey = o (1B co50 + (@) sin g
50 =30 =< 0 reone)

The Li-norm of the first part el(e,z) of ex(e,z) can be estimated as follows:

es = / le%(s z)|dz

/ /<|z— .0 -9 ) B0 gy

-/ %/ (Bl (n@essrriomoy)

QNN

x [edpu[r1)(¢) + o(e)] dé| dz

<[5+ N/mfdm

For e3(e,z) we discuss only ((&(¢) —z)/|z — & (9)* — (£(4) — z)/|x — £(8) 1%, @(9)).
‘We have

(§E(¢) — :II)
|z — & ()7 Iw -

l/ (Fel€ + t(ge —&) dt

& —ePlg — e

min |z — &|?

d
<2 —él/ e <2
0

In order to estimate e%, we change the ¢- and z-integration and remember that the
estimate (A1) holds on B.(¢) for all ¢ € [0,1]. Therefore, we arrive at

2w
9e]1+A dz
< B [la@lin@Pauni) + o) [ —frao
0 B.(¢)
o [ (@) +8@] [ [Ro9)+1K@ 9] dzds
0 R (¢)
2T d 27
< cl(a:Tl:d“)51+AO/Wd¢+32(aarl) O/[dﬂ 6(¢)] do,
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where R.(¢) := Q. N\ B:(¢) and the last estimate results from

2 ec(d)
[ IRL:EX0l) dz<4// 2) ) 4pda < e,

RE (¢)

For the discussion of e3(e,z), we need the ‘singularity reduction’ (see the proof of
Theorem 3)

cslesa) = =5 [ [Kelwd) - K(o,6) - £ dRlra)(o., )] [1(¢) — (o] 40,
0

where we used (19) and

/K (z,¢)d / K(z,¢)de¢ = 2.

The Taylor expansion of [K(z,#)— K (z,$) —e dK[r1](z, ¢)] now leads to ‘worst-case
terms’ of the type

K.z, ¢) — K(z,6) — e dK[ri)(z,8)| < (@) {Li—f'f-— + }

min |z — &3

One order of the singularity can be reduced by the [p(¢) — p(a)] term and, additio-
nally, a procedure similar to the discussion of es(e,z) can be applied. More precisely,
we have

Ke(zad)) - K(Z, ¢) - EdK[Tll(zv d))

_/E&@)-)  E@)-2) .
_<I$—§e(¢)l2 EE >

P(lemm) _om) [eog oo )

lz =& le—¢?  [lz-¢ |z — &I

where

<(£E(¢) —z) _ (£(¢)—2)
[z =&  |z—-¢&@)f

can be estimated just as e} and the second part similarly to e2:

—z - e — - —JJT e — -
e [ R e LN

This completes the proof. |

G, - a> [14(9) - ()]
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A more detailed investigation of the proof shows that the uniform L;-estimate
can be improved at least to an estimate with respect to L, for p < 2. Furthermore, by
a more careful investigation of Cauchy principal values and their limiting behaviour,
it seems to us that it is possible to show (according to Vu € Ly, cf. Remark 1) that

(1) dul[r](-) € Ly, and

4
() S exlss) € L

k=1

for every p € [1,00), if we use our standard assumptions f € C' and g € C*. More
regularity can be expected for more regular data (cf. Section 4).

B. Regularity of du[r;] for gECl"'(D)

Lemma 4. For f € C(D) and g € CY7(D), the directional derivative dulry] is
Hilder continuous on §, i.e. dulr;] € C%%(Q).

Proof. Owing to T' € C? and the regularity of the data, we have pu € C*7 and
dp € C%7 from the regularity of the right-hand sides of the related boundary integral
equations. More precisely, on [0,27] we have g|r, V(f)|r € C1%, dg[r1], drV[ri] €
C%7 and dKp € CY7 (cf. Remark 7). As an immediate consequence, for the first
two parts we get

dVIr](f;) € COV(@) and W(dulr];-) € CO7(Q).

It remains to prove that dW[r;](u, ) € C%7(?) for u € C*7. Obviously, the crucial
region for this property is close to the boundary. Therefore, in the sequel, we assume
that
z € Bs(T') := {z = (p, B) € | d(z,T) < 6}, (B1)
for a sufficiently small fixed § > 0. Moreover, the following is satisfied for z € Bs(T):
(i) d(z) = d(B(z)) := r1(B)&,(B) is a smooth function of z;
(ii) for p = p(z) we have r(8) — p < M for some constant M > 0;

(iii) from W(u[ri];-) € CV7(Q) for p € C*7, cf. Kress (1989), and (i) it follows
that

(VoW (ulri);),d()) € CO(Bs(T)).

As will be seen below, the formal ‘singularity behaviour’ of the last expression is very
similar to that of dW{ri](u,-). To this end, recall the structure of the kernel dK
of dW:

dK[r](z,¢) = 11(8)(Vi In |z ~ £(9)[€,(9), @(¢)) + (Ve Inlz ~ (9)], dalr1](9))-
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The first part has a singularity of order 2 (for z = 2(8) — £(¢)), whereas the other
is only strongly singular (order 1). One order can be reduced by (19), i.e.

AWl(s2) = 5= [ dRIn)(o,8)[u(6) — u(P)] do

27
1

=~ [ [u¢) — w(®){(Velnlz — &(6)l, dalri](4))

0

+11(8) (Vi In|o - (@) - &(9),@(9)) } do.

Moreover, a comparison to the (spatial) derivative (with d(8) := r1(8)é-(8))

(VoW (15 2) = ———/ Vi Inlz - (9))(9)

-

- _Zi / V2, In |z — £(8)|d(B), 3(4)) [1(6) — w(B)] do
0

= —%/(V&lnlw~ (o)

0
due to V,W(1;z) = 0 and ngE(z,E) = —V%EE(x,f)) shows that the difference
D(p;z) := dWr1](p;z) — (VW (—p; z),d(B)) has the structure

-

(8),d(¢)) [u(¢) — u(B)] dop

27

Disa) = 5= [ 1(a,0) +ia(a, ) 4o,
0
where

i1(z,¢) = [u(¢) — u(B)|(Veln|z — £(¢)], da[r](¢)),

i2(z,9) = [u(9) — n(B)|( Vi Inlz — £(9)|(d(9) — d(B)),@(4))-

Because i; /o can be continuously extended to B;(I')x [0, 27}, we have D(u;-) € C(Q).
To show the Hélder continuity of D, we use the bijection ¢ ¢ £(¢) and reformulate

D(u;z) = / 1(2,€) + a(e, €) dSe,
r

where 7; and 7, are related to i; and iy, respectively. Furthermore, for both the
integrands we have

M
liv — fl, x € Bé(F),
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from which we conclude that
5 ; M|z —y|
7 :E;é- -1 )é’ S Te 7 NI
@8~ 01 < F=5E )

In order to estimate (for given z,y € Bs(I"))

n(z,y) € [z,y].

1@ - 10 =| [, ~itw,9ase| < [ fite,0) - w0 ass,
T r

we split T’ into

Bi={¢eTle- Z5Y <dlo ).

and T'\ B. Obviously, we have mes (B) < L|z—y| for some L > 0 and, for { € '\ B,
i) 1§ —n(z,y)| 2 3lz —yl, |¢ —z[ > 3|z - y|, and
(i) §le—¢&>1E~n(zy)l> 3z ¢

‘We obtain

F(@) - F)| < / fi(e,€) — iy, )] dSe + / iz, €) — iy, £)] dS¢
) B

T\B
3MIE) — n(y,z)|* 7
<2ML|z—y|+ |z — 7/ ds,
| [ +lz =yl 1€ = n(z,y)| ¢
T\B
N M dS;
<Lz —y|l+|z—-y|” ,
<Lz -yl+ ]z -y ) E=ah

which ensures the Holder continuity of D(y;-), because the last integral above is only
weakly singular and hence uniformly bounded. |
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