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LINEAR QUADRATIC CONTROL PROBLEM WITH
FIXED FINAL STATE FOR DISCRETE-TIME
DISTRIBUTED SYSTEMS

Lotri CHRAIBI*, JamiLa KARRAKCHOU*,
ABDELATIF OUANSAFI**, MosTara RACHIK™*

The problem considered is that of minimizing a quadratic cost functional for
a discrete distributed system with fixed initial and final states. It is shown
that under suitable controllability assumptions, there is a close relationship be-
tween this problem and that of exact controllability with minimization of a
time-varying energy criterion. The HUM technique is then extended to treat
the exact controllability problem in the time-varying case and applied to provide
an explicit form for the optimal control and the optimal cost.

Keywords: exact controllability, feedback law, open loop, optimal control,
quadratic control

1. Introduction

The present work deals with the linear quadratic control problem for a discrete-
time distributed parameter system with fixed final state. The system considered is
described by the difference equation

Tit1 = Pz; + Du;, i€ {0,...,N-—1},

1)
o € X,

where z; € X, &: X — X and D: U — X are bounded linear operators, X
and U being Hilbert spaces. For a desired state d € X, consider the set of admissible
controls

Yp={u=(uo,...,un—1) € UV: z% =d}, (2)

where zf; is the state of system (1) at stage N corresponding to a control w.
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The control problem with a fixed final state, denoted by (P), is the following:

Find up = (uf,uf,...,u&_,) in ©p minimizing the cost functional
N-1
Jw) = Y {(Qui,z:) + (Rui,w)}, 3)
=0

where @ and R are self-adjoint and non-negative with (Ru,u) > 6]|ul|?, § > 0.

The unconstrained case of this problem is well documented in the literature. It
was initially considered in (Lee et al., 1972) where the optimal control was given
in a feedback form using a discrete Riccati equation. Recently, the same problem
has also been studied in several papers for discrete systems with delays, using the
HUM approach (Hilbert Uniqueness Method). The optimal control is obtained there
efficiently in an open loop (Karrakchou and Rachik, 1995; Karrakchou et al., 1998).

The linear quadratic control problem with a final condition was examined in
(Curtain, 1984) for systems governed by evolution operators. In that paper, a rela-
tionship between the problem considered and a minimum-energy control problem was
established, and then the optimal control was expressed, in the case of approximately
controllable systems, as the weak limit of a sequence of approximating controls. These
results were complemented in (Emirsajlow, 1989) where both open loop and feedback
descriptions of the optimal control were presented under a sufficient controllability
condition.

Inspired by the idea developed in (Curtain, 1984), we show in this paper that a
solution to the problem (P) can be obtained by solving a time-varying exact control-
lability problem. This will require perturbation of the state equation by the feedback
law appearing in (Lee et al., 1972) and therefore investigation of a possible equiva-
lence between the controllability assumptions about the original system and those
about the perturbed one. Then the HUM techniques developed in (Karrakchou et al.,
1995; Chraibi et al., 1998) are extended to the time-varying case and applied to pro-
vide an explicit expression for the solution. As an illustrative example, the numerical
simulation of a production control system is presented.

Notation:

e 0B stands for the set of indices defined by of ={a,a+1,...,6-1,8}.

o 1?(68,Y) = {(i);c,s, 7: € Y; Y is a Hilbert space} is a Hilbert space with
usual addition, scalar multiplication and with the inner product

(xay>12(o-g,y) = Z (i, yi)- (4)

iEcrg

e For a family of operators {L;: ¥ -V, i€ aévﬁl, N > 1}, the operator L is
defined by

L: PloytY) - Plod=LY): 2w (Lo(20), - .-, Ln—1(2n=1)).
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o For a given finite sequence of operators (Ag)rer on a Hilbert space, the operator
4_; Ax is given by

AiAipr---Aj1A; if i<,

2. Perturbed System

2.1. Preliminary Results

Let Hp: 12(c) 7', U) — X be the controllability operator of system (1) defined by

N-1
Hp(u) =Y ®N~F 1Dy, (5)
k=0

If Vp denotes the set of reachable states,
Vp =range Hp,

then we have the following result on the existence and uniqueness of a solution to the
problem (P):

Proposition 1. The problem (P) possesses a unique solution if and only if

d-—- (PN:EO € Vp.

Proof. That d — ®Vzy € Vp amounts to the existence of a control u in (a1, U)
such that

N-1
d—®Vgo=Hpu)= Y VN 1Dy (6)
k=0
Therefore
N-1
d=3Vzo+ Y @V Dy =} (7)
k=0

Hence u € 3" p and Y p # 0. Moreover, 3 p is closed and convex, so the functional
J attains a unique minimum u = (uf,...,uk_;) € 3 p (Lions, 1968). Conversely,
if (P) admits a unique solution u, the corresponding response at the step N is d,
which forces

z% =d=®Vzo + Hp(u). (8)

Hence d — ®Nzo €rangeHp=V,. W
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Let us now recall some results concerning the unconstrained problem (1)—(3)
presented in (Lee et al., 1972).

Theorem 1. The optimal solution to the problem (1)-(3) with a free-terminal state
has feedback form and is given by

U; = —R—ID*KH.] (I+ DR*ID*Ki.i.l)_l(P.’L'i, 1 € O'év_l, 9)

where (mi)iEUév_l is the optimal state and {K;, i € crév_l} s a family of bounded

self-adjoint non-negative operators which constitute the unique solution to the discrete
Riccati equation

K;=®Ki (I +DRD*K; ) '@+Q, i=N-1,N-2,...,0, w0
10
Ky =0.

Moreover, the optimal cost is given by

J* (u) = <I(0.’L’0, (L‘0>A

2.2. Perturbation by a Feedback Law

Now consider the control system (1) starting at time ¢ with an initial state h € X,

ZTjy1 = ®z; + Duy, jGO';NMI,
(11)
Ir; = h.
For an arbitrary control v = (v;,...,un-1) € lz(afv"l; U), suppose that the system

so obtained is excited by the control
uj =v; — R\D*K;41 (I + DRT\D*Kj41) '@z, jeolM . (12)
The difference equation (11) then becomes
zjt1 = [T~ DR D" K41 (I+ DR'D* K1) ™| @05+ Doy, j € oY,
and hence
zj+1 = (I+ DR™'D*K;y,) " &z, + Du.
Taking B; = (I + DR™'D*K;11)~'®, for j € o) 7!, the difference equation

N-1

7 )

zjy1 = Bjz; + Dv;, j€o
(13)
Z; = h
can be considered as a perturbed system of eqn. (11) by the family of operators

{-DR™'D*K;;1B;, jeol'}.
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Remark 1. It is clear that if » and v are two controls in lz(afv ~1U) satisfying (12),

we have

1

u _ v . N—
z; = zj, J € o; y
v

where z* (resp. z") is the solution to (11) (resp. (13)) corresponding to the control

u (resp. v).

Proposition 2. Assume that the system (11) is excited by applying the control

law (12) with v = (vj)

iEUéV"l:

Jj€a;

N-1

N-1 € lz(O';N_l,U).

The following equality holds for

(K,fb,h) = Z <2L'j, (Q +B;I{j+1DR_1D*KJ’+1Bj) .’Ej>

j=i

N-1

-2 Z (D*Kj+1Bj(IJj,Uj) - Z (Kj+1D’Uj,D’Uj> .

J=t

N-1
(14)

i=i

Proof. Using (12), the right-hand side (RHS) of the identity (14) can be written down

as

N-1 N-1

RHS = ) (z;,Qz;) + Y (BjKj41D (v; — ;) ;)

Jj=i j=t

N-1

-2 Z (D*Kj+lBj2}j,1}j)

j=i
which implies

N-1 N-1

N-1

— > (Kj+1Dvj, Dvy),

i=i

RHS = Z(zj,sz> — > (B;Kjs1Dvj, ;)

P

j=i

N-1

- Y (B;Kj41Duj,z;) -

j=i
Since
Du; =z, — ®z;,
eqn. (15) becomes

N-—-1 N-1

Duj = 2541 ~

N-1
> (Kj41Dvj, Du;).

1=

(15)

Bjzj = zj+1 — Bjzj,

N-1

RHS = ) (z;,Qz;)-2) (B;z;,Kjp17541)+ Y (Kj41Bjz;, Bjz;)

j=i j=i

N-1

+ Y (zj, " Kj41Bj;) —

j=i

j=i
N-1
> (Kj41Dvj, Dv;) .

=i

(16)
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Moreover,
N-1 N-1 N-1
> (Kj1Dvj, Dvj) = > (Kjnazin,Ti41) =2 Y (Kjp12i41, Bz;)
j=i j=1 j=i

N-1
+ Z Kj1B;zj, Bjz;),
=i

which yields

N-1 N-1

RHS = Z (l‘j,(Q+(I)*Kj+1Bj)$J Z g+1$3+1,l‘]+1).
Jj=i J=i

Then, from (10), we obtain

N-1 N-1
RHS = ) (2, K;z;) — Y (Kjs1%j51,7541)
j=i Jj=i
N— N-1
Z (zj, Kjz;) Z (Kjzj, ;)
j=i Jj=i+1
= (Kil‘i,wj) = (th:h) =

Consider now the relation (12) and the controlled system (13) for ¢ = 0 and
h = xo, i.e.
Zip1 = Bizi+ Dv;, 1€ U[I)V 1,
(17)
Zop =19 € X.

The equation (17) can be regarded as a perturbed system of (1) by

{-DR™'D"K;41B;};c,v-1. The final state 2z} of this system is

N—j—2
Z}JVZ H BN_] 1| To + Z ( H BN—k——l) D’Uj.

=0 k=0

Consequently, the corresponding controllability operator Hg : 1?(o; LU)— X is
defined by

N1 /N—j—2
Hg(v) = Z ( H BN—k——l) Du;. (18)

j=0 k=0

It is now reasonable to examine whether the original and perturbed systems have
the same controllability properties. We shall generally deal with this question in the
next subsection.
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2.3. Controllability Result

It is known that the controllability of a system is characterized by the range of its
controllability operator. We state this classical result for the system (1).

Proposition 3. We have the following characterizations:

(i) The system (1) is exactly controllable if and only if
range Hp = X.
(i) The system (1) is approzimately controllable if and only if
range Hp = X,
which is equivalent to

ker Hy. = {0}.

Proof. See (Curtain and Pritchard, 1978). [

, I\Sru?pose that the system (1) is excited by a control u = (ug,...,un—1) €
*(og 73 U), given by

. N-1
u; = v; — Fxg, 1 € 0y R

where {F;: X = U; i € 6{' ™'} is a family of operators. Then the perturbed system
is as follows:

Zit1 = (@—DE)Zi‘FD’Ui, 1 GO'(])V_I,
(19)
Zo =xp € X.
Theorem 2. We have
range Hp = range Hy,

where Hy : lz(aév"l,U) — X is the controllability operator for the system (19),
defined by

N—-1 [N-p-—2
Hy@w)=Y | I[ (@- DFN_k_l)] Du,.
p=0 k=0

For the proof of this proposition, we need the following technical lemma.

Lemma 1. Let {®}U{G;, i € )Y 7'} (N > 1) be a family of operators defined on a
space X. For r € o=, we have

r—1 N-1 k+r—N-1
[[@-Gnopa)=0"- > aV-+ig, [ II (@-Gipi)|. (20)
p=0 k=N-—r p=0
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Proof. See the Appendix. n

Proof of Theorem 2. Given y € range Hy, there is a control v € 1?(6)Y™!,U) such
that

N-1[N-s-2
s=mv= 3 | T (0= DAv-sc) oo

§=0 k=0

Applying (20) for Gy, = DFy, k€ 6)'™! and r = N — s — 1, we obtain

N-1 N-1 k—s—2
y=3 {@N-S~1 - > @V *'DF, [ II (e —DFk_,,_l)] }Dvs

s=0 k=s+1 p=0
N-1
— Z @N_S-ID’US
=0
N-1N-1 -2
- Y S eN-k-ipp, [ II (@—DFk_p_l)}Dvs.
s=0 k=s =0
Hence
N-1
y = Z @N_k_lD’Uk
k=0
N-1 k [k—s—2
-y Nk 1DFkZ [ II (e —DFk_p_l)} Dug,
k=0 s=0 L p=0
N-1 k—1 [k—s—2
= @N—k—lD {'Uk *sz H (‘I’—DFk_p_l)] D’l)s} ,
k=0 =0 p=0
which yields
y=Hy (’LU),
where w = (wo,...,wn—1) is given by
k—1 [k—s~-2
wk:'Uk_FkZ [ H (‘I’—DFk_p_l)} Duy, kEO'(J)V—l
s=0 p=0 :

Thus

range Hy C range Hp.

Conversely, the control system (1) is the perturbation of (19) by {DF}} keoN-1:
Consequently, the reverse inclusion is established. ]
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The above theorem shows that the system (1) preserves the controllability pro-
perties when it is subject to a feedback perturbation. It is a simple matter to deduce
the following result.

Corollary 1. We have

range Hp = range Hg.

Proof. We have already seen that eqn. (17) is the perturbed system of eqn. (1) by
{——DR‘lD*KHlB]—}jEUév_L Hence the result is proved by applying Theorem 2 for

Fi=R'D*K;11B;, i € o1, [

It is now obvious that the system (1) is exactly controllable (resp. approximately
controllable) if and only if so is the system (17).

3. Relationship between the Problem (P) and a Problem
of Exact Controllability

Corollary 1, when combined with Proposition 2, enables us to establish a relationship
between the problem (P) and a minimum-energy control problem.
3.1. Statement of a Minimum-Energy Control Problem
Define the set of admissible controls
g ={vel(o) " U): 2} =d}, (21)

where 2}, is the final state corresponding to the control v and satisfying the per-
turbed equation (17). Consider the control problem (E) stated as follows: Find

vg = (v¥,...,v%_,) € ©g minimizing the criterion
N-1
W(v) =Y ((R+ D*Kiz1D)vi,u;). (22)
i=0

Proposition 4. The problem (E) possesses a unique solution if and only if

N-1 :
d— (H Bn_j_1 | zo €Erange Hg = Vp. (23)
J=0
Moreover,
[N-1
d-—d®Vg e Vp <= d - H BN_j_1 | z0 € Vp. (24)

Jj=0
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Proof. Arguments similar to those used in Proposition 1 lead to the first part of our
assertion. For the second part, note that d— ®Vzy € Vp <= Ju € lz(créV ~1,U) such
that

d=®Ngy+ Hp(u) = 2% = 2%,
where v and v are related by (12). Therefore

N-1
d—‘I’N.’IIoEVp<:>Z}]V= HBN—j—l LEO+HE(U):d
=0
N-1
< d- H By_j_1 | o €range Hg = Vp.
=0

This completes the proof. |

We can now formulate our main result in this section.

Theorem 3. If d — &Nz, € Vp, then the optimal control for the problem (P) is
given by

uf =vf —R'D*K; 11 BizZ, ieol 7t (25)
where vg = (vP,... ,vﬁ_l) is the optimal control for the problem (F) and zg is the
corresponding optimal response. Moreover, the optimal cost is given by

J(up) = W(vg) + (Kozo, To) - (26)

Proof. Since d — " zo € Vp, the last proposition assures the existence of a unique
vg. Furthermore, for an arbitrary control v € )5 consider the control given by (12)
and apply the identity (14) for 4 =0 and h = zg, which yields

N-1
(Kozo, 7o) = Y _ (zj,(Q + B}K;11DR™*D*K;11B;) ;)
Jj=0
N—-1 N-1
-2 Z (D*Kj+1Bj.’Ej,U] Z 9+1D’U],.D’U_7)
=0 J=i
This implies
N-1
(Koo, zo) = Z (Qz;, ;)
j=0
N-1
+ Z (R(RHID*KJ'_FlBj:Ej),R—ID*Kj+1szj>
=0

N-1 N-1
-2 ) (R(R'D*K;41B;z;),0;) =Y (D*Kj41Dvj, v5).

j=0 j=0
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Using (12), the last equality becomes

N-1

(Koo, To) = Z (Qzj, ;)

§=0

+ Z { i):u5)) + (R(u; _vj)7vj>}

Jj=

N-—-1
- Z <D*Kj+1D'Uj, Uj>.
3=0

Hence

Z

-1

(Kozo, o) =

g

{(Qfﬁj,wﬁ + (Ruj,uj)}

.

Il
> ©
|

((R+ D*Kj41D)vj,v5),

' M

7=0
which means
(Koo, To) = J(u) = W(v), Vwvexs.
Since this equality holds true for v = vg, the optimal solution to (E), we obtain
J(u) = J(up) = W(v) - W(vg) 2 0,

which completes the proof. ]

4. Solution to the Problem (P)

The aim of this section is to give an explicit solution to the problem (P). As a
consequence of Theorem 3, it suffices to solve the exact controllability problem (E)
to find the control up.

4.1. Minimum-Energy Control Problem

Note that the problem (E) is an exact controllability one with a time-varying dyna-
mic and energy criterion. This motivates us to devote the present subsection to an
independent analysis of the exact controllability problem with time-varying operators.
The HUM approach is adopted here and the results obtained in (Karrakchou et al.,
1995) are generalized to this case.

Consider the difference equation
ZTit1 = Pz + Dy, i€ Jév 1,
(27)
o € X,
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where {®;: X — X; i€ o)} and {D;: U — X; i € of' ™'} are linear
and bounded. The control problem is to find v* = (vg,...,un-1) € & = {v €
(0)71,U): 2% = d} minimizing the energy criterion

N—-1

P(v) = Z (Rivi, vi), (28)

i=0

where = = (2;);¢,y is the solution to the difference equation (27), and R;: U — U,

i € oy are self-adjoint and non-negative with (R;u,u) > & llull®,8 > 0. It is well-

known that the controllability operator H: 12(o)~',U) — X for the system (27)
is given by

N—-1 /N—j-2 )
H(’U) = Z ( H (I)N—k—l> Dj’()j,
j=0 k=0

and its adjoint H*: X — 2(o) 1, U) is

By = ((HY)g s (HY)y_,):
where
(), =05 | 1 #]v dead ™.
k=j+1
Define the scalar product
(z,¥)x <HR-’E HR'.U)p(UéV—l,U)' (29)
on the space X, where Hp is the control-energy operator given by
Hp=HR/

Assume that the system (27) is approximately controllable. Then the semi-norm
[| - llxg, obtained from the scalar product (29) and given by

1/2

lollxs = Zﬂﬂ-%*( I @) b

k=j+1

defines a norm on X. Therefore X is identified with a dense subspace of X g, where
XEg is the completion of X for the norm || - ||x,-

Let Ag: X — X Dbe the bounded self-adjoint operator defined by
AR (z) = HrH}z, (30)

so Ag has an extension to an isomorphism, also denoted by Apg, defined from Xg
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to its dual X};. Moreover, the following inclusion takes place:

Lemma 2. We have
range H ¢ X,
i.e. the elements of range H are linear continuous forms on Xg.

Proof. See the Appendix. ]
Now all the necessary tools are available to state the following main result:
Pr0p051t10n 5. Suppose that the control system (27) is approzimately controllable.

If d— (H AN Loy _j—1)%0 € X, then the optimal control of the problem (27)- (28) is
given by

w=ryo; | ] o dead, @1
k=j+1

where g s the solution to the algebraic equation

Arg=d— | J] @v-j-1 | 20. (32)
The minimum energy is
P() = llgllk,- | (33)

Proof. Observe that the control given by (31) can be rewritten as
v* = RLH*(g). (34)

Therefore

dn_j_1 |zo+ H(R'H*(g))

HH

Nej—1 |zo + HR™Y2R™V2H*(g)
Bn_j1

3y N—j—1 m0+AR

(o)
(Ler)
(s
(L)
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Since g is the solution to (32), it follows that z% = d. On the other hand, we
have

x”N‘ =z¥%, VoveX
Consequently, we have
Hv-v*)=0, Vvexd
which implies
(Hw—-v*),g) =0, Vve3z
Hence from (34) it follows that

N-1
=0
=(R(w-v*),v*) =0, YveXd
This yields
(Rv,v) — (Rv*,v*) = (R (v — v*),v —v*) >0,

which completes the proof. ]

4.2. Optimal Control for the Problem (P)

Based on Proposition 5, an explicit solution to the problem (P) can be derived.

Theorem 4. Suppose that (1) is approzimately controllable and d — ®Nzy € Vp.
Then the optimal control for the problem (P) is given by

N-1
uf = (R+ D*K;;, D)™ ' D* ( II B;;) g—RID*K;11B;2E, ieall, (35)
k=141

where g 1is the solution to the equation

N-1
Ar(g) =d— | [] Bn-i-1 |z, (36)
=0
with Ag = HER_IHQ Moreover, the optimal cost is
J(up) = gk, + (Koo, o). (37)

Proof. From Corollary 1, it is clear that if (1) is approximately controllable, so is the
system (17). Since d — ®Nz, € Vp, from Proposition 4 we deduce that

N-1
d- H BN—j—l Ty € Vp,

=0
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which, by Lemma, 2, implies

N-1
d— H BN—j—l Tg € X’E'
Jj=0

Hence the problem (E) satisfies the hypothe51s of Proposition 5 for &; = B;, D = D,
and Rj =R+D*K; 1D, j€ 0’0 , and consequently vg can be expressed by

= (R+D*K;nD)"'D* | [] Bi]o (38)

k=j+1

where ¢ is the solution to the equation

(HeR™'H}) (g H Bn_j_1 | o.
j=0
By substitution in (25) (cf. Theorem 1), the expression (35) is obtained. |

5. Application

For illustration, consider the production control problem described in (Faradzhev et
al., 1986):

Tiy1 = T; +olu; —x;), 1€ crév L
(39)
Ig € ]R,
where z; is the production volume and wu; is the production control, i € O’N La

signifies the coefficient adjusting the production volume to the control, 0 < o < 1.

The purpose of this application is to find an optimal control v = (ug, ..., un—1)
allowing the system (39) to reach a desired production volume d with a minimum
cost J such that

{Zm +Zu} (40)

=0

where 7 is a shipment coefficient, 0 <7 < 1.

By applying Theorem 1 for ® = 1—a, D = o and @ = R = r, the corresponding
discrete Riccati equation is given by

(1 - a)zrki+1

, i=N-1,N-2,...,1,0,
r+a2k,~+1 ot

i=

kn =0.

(41)
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Then the perturbed system is described by

zZ; = blzl + av;, i€ Gév_l,
(42)
Z0 = To,
such that b; = 7(1 — @)/(r + o®kiy1), i € o 1.
The corresponding energy control problem (E) is to minimize
N-1
W(’U) = Z (’I‘ + anH_l)’U?, (43) .
=0
over
EE:{’U:(UU,‘..,UN_l)ERN: 2 = d}. (44)
Consequently, the minimum-energy control solution vg is computed as
N—1
@ (HL:z 1 bk) g
= L el (45)
('I‘ +a ki+1)
with g defined by
1 N-1
g9=7 19~ 'I—Io bN—j—1 | o, (46)
where
N-1 N—i—2 2
A=0? > {(r+0Pkip)”! ( I bN_k_l) . (47)
1=0 k=0

The corresponding optimal state is given by

i—1 i—2 fi—j—2
z; = Hbi—j—l Tp+a Z ( H bi_k_l) vf +vE, Y, i€ aév. (48)
j=0

7=0 k=0

Finally, the optimal control and cost production are respectively given by (cf. The-
orem 3)

uf = ’Z)iE — %ki+1b¢zi, 1€ Cfév_l (49)
and
N-1 .
J(up) = kozg + Y (r+ o?kip1) (vF)”. (50)
1=0

For numerical simulation, we set @ = 0.1, r = 0.05, 2o = 0 and d = 10.
Figures 1 and 2 describe respectively the optimal state z = (z¢,21,...,2x-1) and
the optimal control up = (ug,...,un—1) for N = 30.
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Fig. 2. Optimal control for N = 30.

6. Final Remarks

In this paper, we have examined the linear-quadratic optimal-control problem for
discrete distributed-parameter systems with equality final constraints. A close re-
lationship between the original problem and a minimum energy one was combined
with the HUM approach to provide an explicit expression for the optimal control.
The inequality-constrained case and the minimum-time problem are currently under
investigation.
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Appendix

Proof of Lemma 1. It is easy to check that (20) is true for r = 1. Suppose now that
it holds for 7. Then we have

ﬁ (‘I’ - GN—p—l) = [ﬁ (q) - GN_pwl):l (‘I’ - GN—r—l),

p=0 =0
which gives

T

H (‘I’ - GN~;{~1)

p=0

_ {q,r _ka FN-k-1G, [Wﬁv " (a- Gk_,,_l)jl } (@ = Gyores).

=N—r p=0

Hence

r

I (@-Gnopa) = @~ "Grr

p=0
N-1

k —r

k+r—N
eN-k-1gy [ H (@ - Gk—p—l)] ,

p=0

which implies

ﬁ (® = Gnop-1) = 0™ — Z eN-k-1g, [HﬁN(@—Gk_,,_l)}.

p=0 k=N-r—-1 p=0
and (20) is also satisfied for =+ 1. =

Proof of Lemma 2. For y € range H, there exists v € 12(apy ~*,U) such that y =
H(v). Then, for every z € X, we have

N-1

(H(v),z) = Z (vi, (H*(z))i)

=0

N-1

= 3 (RI(u), R F(H*(2)):)

Hence

[(H(v),2) | < |R@)||[ IR,
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which gives
| (H(v),2)| < |R)| llzllx5, VzE€ X,

and by density we obtain

(H@®),2) x5 x,

Therefore z — (H(v), 2)x,, XL is a continuous linear form on Xpg, which, by the
Riesz theorem, implies y = H(v) € Xj. =

< [|R@)| 2]

Xg» Vz € Xg.
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