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ZEROS IN DISCRETE-TIME MIMO LTI SYSTEMS
AND THE OUTPUT-ZEROING PROBLEM

JErRZY TOKARZEWSKI*

A geometric interpretation of invariant zeros of MIMO LTI discrete-time systems
is provided. The zeros are treated as the triples: complex number, state zero
direction, input zero direction. Such a treatment is strictly connected with the
output zeroing problem and in that spirit the zeros can be easily interpreted even
in the degenerate case (i.e. when each complex number constitutes an invariant
zero). Simply, in the degenerate case, to each complex number we can assign
an appropriate real initial condition and an appropriate real input sequence
which produce a non-trivial solution to the state equation and a zero system
response. Clearly, when zeros are treated merely as complex numbers, such
an interpretation is impossible. The proposed definition of invariant zeros is
compared with other commonly known definitions. It is shown that each Smith
zero of the system matrix is also an invariant zero in the sense of the definition
adopted in the paper. On the other hand, simple numerical examples show that
the considered definition of invariant zeros and the Davison-Wang definition are
not comparable. The output-zeroing problem for systems decouplable by state
feedback is also described.

Keywords: linear multivariable systems, discrete-time systems, invariant zeros,
Davison-Wang definition, output-zeroing problem

1. Introduction

The determination of zeros has received considerable attention in recent years (Amin
and Hassan, 1988; El-Ghezawi et al., 1982; Emami-Naeini and Van Dooren, 1982;
Hewer and Martin, 1984; Latawiec, 1998; Latawiec et al., 1999; MacFarlane and Kar-
canias, 1976; Misra et al., 1994; Owens, 1977; Sannuti and Saberi, 1987; Tokarzewski,
1996; 1998; Wolovich, 1973). The zeros are defined in many (not necessarily equ-
ivalent) ways (for a survey of these definitions see MacFarlane and Karcanias, 1976;
Schrader and Sain, 1989) so that the term ‘zero’ has become ambiguous. There are
three main groups of definitions:

(a) those originating from Rosenbrock’s approach (Amin and Hassan, 1988; Emami-
Naeini and Van Dooren, 1982; MacFarlane and Karcanias, 1976; Misra et al.,
1994; Sannuti and Saberi, 1987; Wolovich, 1973, Rosenbrock, 1970) and related
to the Smith or Smith-McMillan form, '
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(b) those connected with the concept of state-zero and input-zero directions intro-
duced in (MacFarlane and Karcanias, 1976) cf. (El-Ghezawi et al., 1982; Owens,
1977; Sannuti and Saberi, 1987; Tokarzewski, 1996; 1998; Tokarzewski et al., "
1999), and

(c) those employing the notions of inverse systems (Latawiec, 1998; Latawiec et al.,
1999).

Although many authors before 1970 alluded to the concept of zeros of multi-input
multi-output (MIMO) systems, Rosenbrock (1970) is credited with the first definition
of zeros of MIMO systems (multi-variable zeros). Rosenbrock’s first multi-variable
zeros, termed the decoupling zeros, were related to the notions of controllability and
observability. The most common definition of invariant zeros (Rosenbrock, Wolovich,
MacFarlane-Karcanias) employs the Smith canonical form of the system (Rosenbrock)
matrix and determines the zeros as the roots of the diagonal (invariant) polynomials
of the Smith form. In the sequel, these zeros will be called the Smith invariant
zeros. They may be defined equivalently as the points of the complex plane where the
rank of the system matrix falls below its normal rank (recall that the term ‘normal
rank’ means ‘rank’ in the field of rational functions). The zeros of a proper transfer
matrix are defined (Wolovich, 1973; Emami-Naeini and Van Dooren, 1982; Misra et
al., 1994) from its arbitrary minimal (i.e. reachable and observable) standard state-
space realization as the points where the system matrix (formed from matrices of a
minimal realization) loses its normal rank. In the sequel, these zeros will be called
the Smith zeros of a transfer matrix. When the transfer matrix has full normal rank,
the above definition is equivalent to the Desoer-Schulman one (Chen, 1984, Appendix
H, Theorem H-6, p.631).

Smith invariant zeros, decoupling zeros and Smith zeros of a transfer matrix are
involved in several problems of control theory, such as zeroing the output, tracking the
reference output, disturbance decoupling, non-interacting control or output regulation
(Isidori, 1995, Chapters 3, 4, 5 and 8).

A different definition of zeros, also based on the system matrix rank test, was
given by Davison and Wang (Hewer and Martin, 1984; MacFarlane and Karcanias,
1976; Schrader and Sain, 1989).

All the above definitions of multi-variable zeros, although deceivingly simple,
consider zeros merely as complex numbers and for this reason create some difficulties
in their dynamical interpretation. In order to overcome these difficulties, MacFarlane
and Karcanias (1976) introduced the notions of state-zero and input-zero directions
and formulated the so-called output-zeroing problem. Unfortunately, in (MacFarlane
and Karcanias, 1976) the Smith invariant zeros were not directly related to the output-
zeroing problem.

Another definition of invariant zeros, employing the system matrix and state-zero
and input-zero directions, was introduced in (Tokarzewski, 1996; 1998) and applied
to their algebraic characterization and calculation. However, also in (Tokarzewski,
1996; 1998) the question of interpreting zeros in the context of the output-zeroing
problem, especially in the degenerate case, as well as the question of relating zeros
with other definitions were not discussed. In this paper, we try to bridge this gap.
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To this end, we employ throughout the paper the formulation of the output-zeroing
problem given by Isidori (1995). In Section 2, the results of (Tokarzewski et al., 1999)
are interpreted in the context of this problem formulation. In Section 3, we describe
the problem in detail for the class of all decouplable systems.

Consider a discrete-time system with m inputs and r outputs
z(k + 1) = Az(k) + Bu(k),

(1)
y(k) = Cz(k) + Du(k),

where k =0,1,2,... and A € R*™**, B e R*™*™ C e R*", D€ R*™, z(k) € R",
y(k) e R", u(k) € R™. We assume that B # 0 and if D = 0, then also C # 0.

Definition 1. (Tokarzewski, 1996; 1998)

(i) A number A € C is an invariant zero if and only if there exist vectors 0 # 2% €
C" (state-zero direction) and g € C™ (input-zero direction) such that the triple
(A, 2%, g) satisfies

M-A -B|[z0] 0
9 | 0
where
2I-A —-B
P =
(2) c D

is the system (Rosenbrock) matrix.

The system is called degenerate if it has an infinite number of invariant zeros.

(ii) The transmission zeros are defined as the invariant zeros of a reachable and
observable subsystem of (1).

(iil) A number A € C is an output decoupling (0.d.) zero if and only if there exists
a vector 0 # z® € C* such that

(M -A)z® =0, Cz°=0, (3)
or equivalently, if and only if A is an unobservable eigenvalue (mode) of A.

(iv) A number X € C is an input decoupling (i.d.) zero if and only if there exists a
vector 0 # w® € C* such that

@®)*AI-A4) =0, (@°)*B=0, (4)
or equivalently, if and only if ‘X is an unreachable eigenvalue (mode) of A.

(v) A number X € C is an input-output decoupling (i.0.d.) zero if and only if X is
an unreachable and unobservable eigenvalue (mode) of A.
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From Definition 1(i) it is easily seen that invariant zeros are invariant under simi-
larity transformations of the state space and under constant state feedback (if D = 0,
then also under constant output feedback). They do not change after introducing a
nonsingular pre- or postcompensator. The number of Smith invariant zeros is always
finite, while the number of invariant zeros may be infinite (see Examples 1 and 2).
In the sense of Definition 1 each transmission zero of the system is its invariant zero.
In the sense of Definition 1 each o.d. zero of (1) is also its invariant zero, which is
not the case when the Smith invariant zeros are considered. When the system (1)
is transformed to its Kalman canonical form, then individual kinds of decoupling
zeros are displayed by appropriate block matrices on the diagonal of the A-matrix
(Tokarzewski, 1996; 1998).

2. Invariant Zeros and the Output-Zeroing Problem

The output-zeroing problem can be formulated as follows (Isidori, 1995, p.163): Find
all pairs (z°,uo(k)), consisting of an initial state z° € R® and a real-valued input
vector sequence ug(k), k = 0,1,2,..., such that the corresponding output y(k) of (1)
is identically zero for all ¥ = 0,1,2,.... Any non-trivial pair of this kind (i.e. such
that z° # 0 or the input sequence wug(k) is not identically zero) will be called the
output-zeroing input.

In each output-zeroing input (z°,ug(k)), uo(k) should be understood simply

as an open-loop real-valued control signal which, when applied to (1) exactly at the
initial state z° € R, yields y(k) =0 forall k=0,1,2,.... If in an output-zeroing
input (2% uo(k)) the input sequence ug(k) is not identically zero, then we say that
the transmission of the signal uo(k) (applied to (1) at the initial state z° € R™) has
been blocked by the system. Thus the transmission blocking property of a system is
a particular case of the output-zeroing property.

Of course, the set of all output-zeroing inputs complemented with the trivial
pair (20 = 0, ug(k) = 0) forms a linear space over R. In fact, if (z9,u}(k)) and
(z3,u3(k)) are output-zeroing and give respectively solutions to the state equation
z$(k) and z}(k), then from the linearity of (1) and from the uniqueness of solutions
it follows that each pair of the form (az} + Bz3, aud(k) + Bu(k)), with arbitrarily
fixed o, € R, is output-zeroing and yields the solution az}(k) + Bz3(k). It is also
easy to observe that if (z°,uo(k)) is an output-zeroing input and zy(k) denotes the
correspoding solution, then the input sequence uo(k) applied to (1) at an arbitrary
initial condition (state) x(0) € R™ gives the solution to the state equation (1) of the
form A*(z(0) — z°) + zo(k) and the system response y(k) = C A*(z(0) — z0).

The above discussion shows in particular that if (1) is asymptotically stable, then
the input signal au§(k)+pBud(k) applied to the system at an arbitrary initial condition
produces an asymptotically vanishing system response, i.e. y(k) =+ 0 as k = oco. In
this way, in an asymptotically stable system (1), the set of all output-zeroing inputs
enables us to generate a class of input sequences which are asymptotically attenuated
by the system.
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Unfortunately, the same symbol (z°) is used to denote the state-zero direction in
the definition of invariant zeros (Definition 1(i)) and to denote the initial state in the
definition of output-zeroing inputs.

According to Definition 1(i), a state-zero direction z° must be a non-zero vector

(real of complex). Otherwise, this definition becomes senseless (for every system (1)
each complex number may serve as an invariant zero). In other words, in the equation

-1

(see (2)) the solutions of the form [9] are not taken into account in the process of
defining invariant zeros.

P

According to the formulation of the output-zeroing problem, the initial state z°
must be a real vector (but not necessarily non-zero, cf. Example 2). If in a triple
(\, 2°, g) satisfying (2) a state-zero direction z° is a complex vector, then in the
process of asignining to the invariant zero A output-zeroing inputs we consider two
initial states Rex® and Imz° (and, of course, at least one of these initial states must
be a non-zero vector).

As we show below, Definition 1(i) clearly relates invariant zeros (even in the
degenerate case) to the output-zeroing problem. In order to discuss the output-
zeroing inputs corresponding to invariant zeros, it is convenient to treat (1) as a .
complex system, i.e. the one admitting complex inputs, solutions and outputs which
are denoted respectively by 4, £ and .

Lemma 1. (Tokarzewski et al., 1999) If A € C is an invariant zero of (1) (i.e. a
triple X\, z° #0, g satisfies (2)), then the input

.. ] g for k=0, :
u(k)—{gz\k for kE=1,2,..., (5)

applied to (1) at the initial condition z(0) = z°
equation in (1) of the form

z0 for k=0
~ k — 3
&(k) { X for k=1,2,... (6)

yields the solution to the state

and the system response (k) =0, k=0,1,2,....
Proof. The simple proof by inspection is omitted here. ]
The above lemma enables us to give a desired dynamical interpretation of inva-

riant zeros in the context of the output-zeroing problem.

Remark 1. If a triple A = 0 + jw, 2° = Rea® +j Im2°, g satisfies (2), then (2) is
also satisfied for the triple A = ¢ — jw, z° = Rez® —j Imz°, §. Moreover, these
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triples generate two real initial conditions and two real input signals which produce
identically zero system responses. More precisely, the real-valued input sequence

1 1.,
u(k,Rez?) = 5g/\’c + EW

= i)\|'c (Regcosky —Imgsinky), k=0,1,2,... (7)

(where the notation A = |A\|e’¥ has been used) and the real initial state Rez?® yield
the solution to the state equation of (1) of the form

z(k,Rez’) = %xo,\k + %g—;(’:\k

Il

IAI¥ Rez? coskp — Imasinky), k=0,1,2,... (8)
and the system response
y(k) = Cz(k,Re2°) + Du(k,Rez®) =0, k=0,1,2,....

This means that the pair (Rez®, u(k,Rex®)), with u(k,Rez®) given by (7), is an
output-zeroing input corresponding to the triples considered. Similarly, the pair
(Im z°, u(k, Im z°)), with the real input

1 ., 1_-,
u(k,Imz°) = —jig)\'”+j—2—§)\’“

= |)\|’C (Regsinkyp +Imgcosky), k=0,1,2,..., (9)

and the real initial state Im z°, is an output-zeroing input which produces the solution
to the state equation of (1) of the form

1 1 5+
z(k,Imz°) = ——jizo)\’“ +j§§:[))\’“

|/\|]c (Rez’sinkyp +Imz°cosky), k=0,1,2,..., (10)

Il

and the system response

y(k) = Cz(k,Im2°) + Du(k,Imz°) =0 for k=0,1,2,... .

The following result (together with Examples 1 and 2) shows that the adopted
definition of invariant zeros (Definition 1(i)) constitutes an extension of the notion of
Smith invariant zeros. Recall that a number A € C is a Smith invariant zero of (1) if
and only if rank P(A) < normal rank P(z).

Lemma 2. (Tokarzewski et al., 1999) If A € C is a Smith invariant zero of (1), then
A is also an invariant zero of (1) according to Definition 1(3).

Proof. For the proof it suffices to show that if rank P(A) < normal rank P(z), then
the equation
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possesses a solution [mgo] in which z° # 0. Suppose that a number A € C is a Smith

invariant zero of (1), i.e.
rank P(A) < normal rank P(z) < n + min{m,r}.

This means that the system P(A)[$] = [3] of n + r linear equations with n +m
unknowns has at least one non-zero solution. We shall discuss separately two cases.

In the first case, let the matrix [72] be monic (i.e. of full column rank) and
let a vector [J], g # 0, be a non-zero solution to the considered system of linear

equations. Then we have

pp

D
and consequently, g = 0. This contradiction proves that in any non-zero solution

[x;] of the considered system of equations we must have z° #£ 0, i.e. )\ satisfies

Definition 1(i).

In the other case, assume that [77] is not monic and its rank is equal to
m’ < m. Without loss of generality, we can assume that the first m’' columns of that
matrix are linearly independent and the matrix composed of these columns is denoted

by [”D@' ] It is clear that

zI-A -B

Plz) =
() c D

is of the same normal rank as P(z), and for any fixed z € C we have rank P'(z) =
rank P(z) (where rank is taken in the field of complex numbers). This enables us to
write

rank P'(A) = rank P()) < normal rank P(z) = normal rank P'(z) < n + min{m’, r).
This means, by virtue of the first part of the proof, that the system

o= [0

of n + r linear equations with n + m' unknowns has a solution [Z?} such that
2% #0, ¢’ € C™, i.e. we have

o-[] |

Now, adding m — m' zero rows to the vector g’ € C™, i.e. taking g = [% ], where
0 € C™ ™, we obtain

o)y ]-[e];

i.e. A satisfles Definition 1(i). |

P'(X)

P'(X)
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Thus, although the Smith invariant zeros are defined merely as complex numbers,
Lemma 2 enables us to assign to each such a zero a non-zero state-zero direction (z°)
and an input-zero direction (g), and consequently, to assign a physical (geometric)
interpretation described in Remark 1.

Corollary 1. Let the system matriz P(z) in (1) have full column normal rank. Then
a complex number A\ is an invariant zero of (1) if and only if A is a Smith invariant
zero of the system.

Proof. In view of Lemma 2 it is sufficient to show that each invariant zero of (1) is
also a Smith invariant zero of the system. However, from Definition 1(i) it follows
that if A satisfies (2), then columns of P()\) are linearly dependent over C. Thus we
can write

rank P()\) < normal rank P(z) = n + m,

which means that A is a Smith invariant zero of system (1). |

When the system (1) is minimal (reachable and observable), we can formulate
the following characterization of invariant zeros (the complete proof of Lemma 3 can
be found in (Tokarzewski et al., 1999, p.1102)).

Lemma 3. (Tokarzewski et al., 1999) A number A € C is an invariant zero of a
minimal system (1) if and only if there exist 0 # 2° € C* and 0 # g € C™ such that
the input sequence of the form (5) applied to (1) at the initial condition z(0) = z
yields the system response §(k) =0, k=0,1,2,....

Proof. If A € C is an invariant zero, i.e. a triple A, z° # 0, g satisfies (2), then, as
we know from Lemma 1, the input sequence of the form (5) applied to the system at
z(0) = z° yields the identically zero output sequence. It remains to show that g # 0.
However, supposing g = 0 in the considered triple we would obtain (A — 4)z° =0
and Cz® = 0 which would contradict the observability assumption. Thus we must
have g # 0.

In order to prove the converse implication, we should show that if a triple A, z° #
0, g # 0 is such that the input (5) applied to (1) at the initial condition z° yields
g(k) =0, k£ = 0,1,2,..., then this triple satisfies (2). The idea of the proof is
as follows. We first show that for each k& = 0,1,2,... the equality CA*((AI —
A)z® — Bg) = 0 holds. Then, by virtue of the observability assumption, we will have
(A — A)z° — Bg = 0. The second equality in (2) will follow immediately from the
assumption §(0) = 0. ]

Definition 2. (Tokarzewski et al, 1999) A number A € C is a zero of a proper
transfer matrix G(z) iff A is an invariant zero of any given minimal realization of

G(z).

Making use of Lemma 2 it is not difficult to relate Definition 2 to other commonly
known definitions of zeros of a transfer matrix. To this end, we take into account the
Desoer-Schulman definition and the definition of Smith zeros of G(z) employed by
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(Emami-Naeini and Van Dooren, 1982) (see also Misra et al,, 1994, p.1923). Recall
that the latter is based on a minimal state-space realization of G(z) and defines the
Smith zeros of G(z) as the points where the rank of the system matrix drops below
its normal rank. On the other hand, the definition of the zeros attributed to Desoer
and Schulman concerns merely transfer matrices with full normal rank and exploits
the matrix coprime fraction description G(z) = D' (2)N;(2). Then a number X € C
is said to be a Desoer-Schulman zero of an r x m G(z) if and only if rank NV;(z) at
z = X falls below its normal rank, i.e. rank N;(A\) < min{m,r}. The Desoer-Schulman
zero of G(z) can also be defined by using dynamic equations. Namely (Chen, 1984,
Theorem H-6), if S(A, B,C,D) denotes an irreducible n-dimensional realization of
G(z), then X € C is a Desoer-Schulman zero of G(z) if and only if

M—-A -B

rank P()\) = rank [
C D

< normal rank P(z) = n + min{m,r}.

Now we can formulate the desired result.

Corollary 2. (Tokarzewski et al., 1999) Consider an r x m transfer matriz G(z)

and its n-dimensional state-space irreducible realization S(A,B,C,D). Then:

(a) If X € C is a Smith zero of G(z), then X is also a zero of G(z) in the sense
of Definition 2 (i.e. there exist 0 # 2° € C* and 0 # g € C™ such that
the triple X, z°, g satisfies (2), where P(z) is determined by the matrices of
S(A,B,C,D)).

(b) If G(z) has full normal rank and X € C is its Desoer-Schulman zero, then X is

also a zero of G(z) in the sense of Definition 2 (i.e. A is an invariant zero of
S(A, B,C,D) in the sense of Definition 1(i)).

Proof. (a) The proof follows immediately from Lemma 2 when applied to a minimal
system S(A,B,C,D).

(b) In this case we have the relation
rank P(\) < normal rank P(z) = n + min{m, r}

and the remaining part of the proof follows from Lemma 2. |

Now, consider an r x m transfer matrix G(z) with its n-dimensional state-
space irreducible realization S(A,B,C,D) and assume additionally that G(z) has
full column normal rank. Then, as we shall see below, each zero of G(z) in the sense
of Definition 2 is also a Desoer-Schulman zero of G(z). In the proof we make use of
the following relation (Chen, 1984, Appendix H, p.630):

2l -A -B

o p |=nt normal rank G(z),

normal rank P(z) = normal rank [

which is valid without any assumption concerning the rank of G(z). Now, if G(z)
has full column normal rank, then m <r and normal rank P(z) = n + m, i.e. P(z)
has full column normal rank.
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From the above discussion and Corollary 1 we obtain immediately the following
result.

Corollary 3. (Tokarzewski et al., 1999) If G(z) has full column normal rank, then
A is a zero of G(z) in the sense of Definition 2 if and only if A is a Desoer-Schulman
zero of G(z).

As we will show in Section 4 (Examples 1 and 2) the above result fails when
G(z) is not of full column normal rank. For square transfer matrices of full normal
rank we can establish the following characterization of their zeros.

Corollary 4. (Tokarzewski et al., 1999) If G(z) is square and of full normal rank,
then the following statements are equivalent:

o )& C isazero of G(z) in the sense of Definition 2,

e )\ c C is a Desoer-Schulman zero of G(z),

» det P(\) =0.

From the above discussion it follows that each zero of a transfer matrix defi-

ned as the point where the system matrix loses its normal rank admits a physical
interpretation described in Remark 1.

3. Output-Zeroing Problem in Decouplable Systems

Consider a square, m-input m-output system

z(k + 1) = Az(k) + Bu(k),

(11)
y(k) = Cz(k), '
k=0,1,2,...,in which
C1
C= .
Cm
and ¢z, s =1,...,m stand for the consecutive rows of C. Denote by S.(A, B,c;),
s =1,...,m the subsystems of (11) with m inputs and one output. The first non-
zero Markov parameters of Sg(A, B, cs) are denoted by ¢, A¥* B, i.e. we have
csB=--=c,A” '1B=0, c,A”B#0 (12)
for some integer 0 < v, < n — 1. Define a square m x m matrix
cA"'B
L= : (13)

cm AV B
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whose rows are formed from the first non-zero Markov parameters of subsequent
subsystems S;(A,B,cs), s = 1,...,m. We say that system (11) has vector relative
degree v+1=col[v; + 1,va +1,...,vp, + 1] if and only if L is non-singular. In the
remainder of this section it is assumed that (11) has vector relative degree v + 1.

Remark 2. As is well-known (Chen, 1984, p.372), non-singularity of L is a necessary
and sufficient condition for (11) to be decoupled by a constant state fedback and a non-
singular precompensator. Recall that a multivariable system is said to be decoupled
if its transfer matrix is diagonal and non-singular.

Set
i An
M = (14)
CnAY™
Then
L=MB. (15)
Define an n x n matrix
K :=1-BL'M. (16)

Lemma 4. The matriz K has the following properties:
(i) K*=K,

S:={z:Kz=z}=KerM, dimX¥ =n-m,
(1) Q:={z:Kz=0}=ImB, dim=m,
R*(C") =X,

(iii) KB=0, MK=0,

csAb for 0<I<uy,
(iv) ¢ (KA = , s=1,...,m.
0 for l>vs+1

Proof. The proof of (i) follows from (16) and (15) by direct calculation. Similarly,
relations (iii) follow directly from (15) and (16). In (ii) it is sufficient to show that
Y =KerM, Q =ImB. Since L is non-singular, from (15) it follows that M is epic
and B is monic. From (16) and the fact that B is monic we obtain

K=z BL 'Mz=0e Mz=0czecKer M

which proves that ¥ = Ker M. Because M is epic, we have dimKerM = n — m.
Now, let z € ImB. Since KB = 0, we have Kz = 0, i.e. z € Q. Conversely, if
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z €, then Kz =0= B(L 'Mz) =z = z € Im B. Consequently, Q = Im B. The
relation dimIm B = m appears.

For the proof of (iv), we verify first that for each s = 1,...,m and for any real
m x n matrix F' the conditions
csB=---=c;A"*"'B=0
imply

cs(A+ BF) = ¢,Ab for 1=0,1,...,v,

and

¢s(A+ BF) = c;A"(A+ BF)™" for 1>, +1.
Consequently,

cs(A+BF)'B =c,A'B=0 for 1=0,1,...,v5—1
and

¢s(A+ BF)" B = c, A" B # 0.
In particular, for F = —L~1MA, we get
Co(A + BF)"*! = ¢, 4% (A + BF) = ¢, A% KA = 0,

where c; A" KA =0 follows from MK =0 (iii) (since ¢;A% is the s-th row of M,
we have c;A¥* K = 0). Thus we have obtained cs(KA)***! = 0 and consequently,
cs(KA)' =0 for each [ > vy + 1. Finally, for F = ~L 'MA the equalities c;(A4 +
BF)! = ¢;Al, 1=0,1,...,v, take the form c,(KA)! = ¢, AL ]

The following lemma characterizes the invariant zeros of (11). We denote by p(-)
the spectrum of a matrix.

Lemma 5. A number A € C is an invariant zero of (11) if and only if A € p(K A)
and there exists an associated eigenvector Ty such that zo € Ker C.
In the proof of Lemma 5 we will employ the following result.

Lemma 6. If A € C is an invariant zero of (11), i.e. a triple A, mo # 0, g
satisfies (2), then

Ty € ﬂ (ﬂ KercsAl) CKerM =%, (17)
s=1 =0
g=—L""MAz,. (18)

Proof. For any subsystem S;(A,B,cs), s =1,...,m we have, by virtue of (2),

{ Azg — Azy = Bg,

csxg = 0.

(i)



Zeros in discrete-time MIMO LTI systems and the output-zeroing problem 549

Premultiplying successively the first equality of (i) by cs,...,c;A”* ™!, we obtain, in
view of (12),

csxo = 0,
(it)

cs AV xg = 0,

v,
ie. 2o € [} Kerc,Al.
=0

Premultiplying the first equality of (i) by csA*, we get
(iii) — ¢ AV gy = ¢, AY By.

Because (ii) and (iii) are valid for each s = 1,...,m, by virtue of (14) and
Lemma 4(ii), we infer that (17) holds and (iii) can be written in the following compact
form:

(iv) — MAzy = Lg.
Finally, from (iv) one gets (18). [ |

Proof of Lemma 5. Suppose first that Az # 0,g satisfy (2). Because, as we know
from (17), mo € KerM = ¥ (which means, via Lemma 4(ii), that Kzq = z,),
premultiplying the first equality of (2) by K and taking into account that KB =0
(see Lemma 4(ii)}, we can write (2) in the form

(V) )\LEO - KA.’EQ = 0,
C.’.E() =0.

Thus A € p(KA) and zp is an associated eigenvector which belongs to KerC.
Moreover, via Lemma 6, g = —L~'M Azxy. Conversely, if (v) is fulfilled for a pair
A € C, zo # 0, then setting g = ~L 1M Azo and taking into account (16) we can
write the first equality of (v) in the form Azg— Az = Bg. This means that the triple
A, o #0, g = —L7* M Az, satisfies (2), i.e. A is an invariant zero of (11). B

Remark 3. As follows from the above proof, Lemma 5 can be formulated in a
somewhat more detailed form. Namely, a triple A, zo # 0, ¢ satisfies (2) if and only
if A is an eigenvalue of K A, z, is an associated eigenvector which lies in Ker C' and
g=—L"1MAz,.

Lemma 7. Let P(z) denote the system motriz for (11). Then we have
det(z] — KA) = det(L™*)zmH 1+ +vm) det P(2). (19)

Proof. For the proof we take into account the closed-loop system S(KA,BL~*,C)
obtained from (11) by introducing the state-feedback matrix —L~*M A and the pre-
compensator L~!. The transfer matrix of the closed-loop system is

Gua(z) =C(2I — KA)™'BL™%. (20)
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Using Lemma 4 (iv), one can check that G (z) is diagonal and has the form

Sk 0 e 0
0 .
Gcl(z): . . (21)

To this end, it is sufficient to expand G (z) in (20) in power series around z = oo
and to note that, by virtue of (12) and Lemma 4(iv), for the s-th row of (20) we can
write

o0 v,
(KA | ~cA' __,  ¢sA“B__,
ey ppBLT =Y SEBLT =S 2 (22)
1=0 1=0

Now, employing (22) and (13), we get (21). The system matrix of the closed-loop

system can be expressed as

2I -KA —-BL™!
C 0

I 0

Py(z) =
() ~L'MA L

C 0

_[zI~—A -B

] . (23)

The left-hand side of (23) and (21) enable us to write
det P(2z) = det(z] — KA)det G(z) = 27 Mz~ 1+ +vm) det (2] — K A), (24)
whereas the right-hand side of (23) yields
det P,y(z) = det(L™') det P(z). (25)
Now (19) follows easily from (24) and (25). =

From (19) it follows that det P(z) # 0, i.e. det P(z) is not identically zero. This
implies, by virtue of Corollary 1, that a complex number is an invariant zero (in the
sense of Definition 1(i)) of (11) if and only if it is a Smith invariant zero of (11) (i.e.
if and only if it is a root of det P(z)). This fact and Lemma 7 mean that the number
of invariant zeros of (11) is equal to n—m — (v1 ++ - -+ v4,). In particular, the system
has no invariant zeros if and only if n = m+ (v; + - + v;,) and this is possible if
and only if det P(z) = const # 0.

In what follows we will need the following characterization of the invariant zeros
of (11).

Lemma 8. A number XA € C is an invariant zero of (11) if and only if X is an o.d.
zero of S(KA,BL™1,C).

Proof. The claim follows immediately from Definition 1(iii) and Lemma 5. [
Lemma 9. In the system (11), let
up(k) = —-L*MA(KA*z°, 2e¢R*, k=0,1,... (26)
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denote an input vector sequence. Then:

(a) the corresponding solution to the state equation of (11) which passes at k = 0
through an arbitrary point z(0) € R™® has the form

z(k,z(0)) = A*(z(0) — z°) + (KA)*2°, k=0,1,2,... (27)
and the system response is equal to

y(k) = CA*(z(0) - z°) + C(K A)F2?, (28)
where the s-th row, s =1,...,m in the term C(KA)*z® has the form

cs A2 for 0<k <y,

0 for k>vs+ 1.

rthermore, if x° € S, where
b) Furth if z° € S, wh

S = ﬁ (ﬁ KercsAl) CcCR?

s=1 \I=0

and z(0) = z°, then for each k=0,1,2,... we have z(k,z(0)) = (KA)*z® € S
and y(k) =0.

Proof. The proof of (27) follows by direct verification that z(k,z(0)) of (27) and
uo(k) of (26) satisfy z(k + 1) = Az(k) + Bu(k) at the initial condition z(0). For
the proof of (29) it is sufficient to use relation (iv) of Lemma 4. If z° € S, the
sequence (29) becomes zero identically. The point (iv) of Lemma 4 enables us to
show that S is a K A-invariant subspace, i.e. K A(S) C S. This proves (in (b)) that
z(k,z(0)) € S for each k=0,1,2,.... [}

Remark 4. Note that the first component on the right-hand side of (27) constitutes
a solution to the homogeneous equation z(k + 1) = Az(k) at the initial condition
z(0) —z°. The second component, i.e. the sequence (K A)*z°, is a particular solution
to the non-homogeneous equation z(k + 1) = Az(k) 4+ Bug(k) which passes through
the point z° at k =0.

Remark 5. From (28) and (29) it follows that if z(0) = z°, then for all k satisfying
k > maxs=1,. m{vs} +1 we have y(k) = 0, i.e. the system response becomes equal
to zero after a finite number of steps. Due to this property, the input sequence (26)
can be called ‘almost output-zeroing’. If (11) is asymptotically stable, then y(k) — 0
as k — oo at any fixed points z(0) and z° of the state space.

Remark 6. The point (b) in Lemma 9 tells us that any pair (z°,uo(k)), where
z° € S and wo(k) is of the form (26), is an output-zeroing input for (11). We can
also prove the converse implication i.e. that in any output-zeroing input (2%, uo (k)
we must have z° € S and ug(k) of the form (26).
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Lemma 10. Let a pair (z°,uo(k)) be an output-zeroing input for (11). Then z° € S
" and ug(k) is of the form (26). Moreover, the corresponding solution z(k,z°) =
(KA)*z® to the state equation is entirely contained in S.

Proof. Let ys(k) denote the s-th component of the output sequence y(k) (which, by
assumption, equals zero identically). Moreover, let (2°,u0(k)) be an output-zeroing
input and let z(k,2°) denote the corresponding solution to the state equation of (11).
Thus we can write the following equalities:

z(k+1,2°) = Az(k,2°) + Buo(k), k=0,1,2,..., (30)

ys(k +1) csz(k +1,2°)

Il

k
= ¢ A0 + 3 "¢ A Buo(l) =0, k=0,1,2,..., (31)

=0
¥5(0) = ¢,2(0,2°%) = ¢,2° = 0. (32)
From (31), taking into account successively k£ = 0,1,...,v, — 1, as well as employ-
ing (12) and (32), we obtain ¢;z° = --- = ¢, A"z = 0. Since these relations are valid

for every s =1,...,m, we have z° € S. Premultiplying the equalities of (30) succes-
sively by ¢s,¢s4,...,c,4" 7! and taking into account that ys(k) = ¢;z(k,2°) =0,
we get

z(k,2°) € ﬂ Kerc,Al.
=0

This, in turn, implies z(k,z°) € S, i.e. that the solution under consideration is entirely
contained in the subspace S. Premultiplying (30) by c¢sA**, we obtain

cs A x(k,2°) + csAY* Bug(k) =0, s=1,2,...,m.
This yields
ug(k) = =L M Az (k, 2°). (33)
Substituting (33) into (30) and using (16), we write (30) in the form
z(k 4+ 1,2°) = KAz (k, 2°). _ (34)

Substituting the solution to the initial-value problem (34), z(0,z%) = z°, into (33),
one gets the desired form of ug (k). E

Combining Lemmas 9 and 10, we obtain the following characterization of the
output-zeroing problem for decouplable systems.

Theorem 1. A pair (z° uo(k)) is an output-zeroing input for system (11) if and
only if ° € S and uo(k) = —L 'MA(KA)*x®. Moreover, the solution to the
state equation corresponding to the output-zeroing input (z°,uo(k)) is of the form
z(k,z°) = (KA)*z° and is entirely contained in S. '
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Suppose now that the system (11) is minimal. Then S(KA,BL™!,C) is reach-
able, but not necessarily observable. Let Z = Hz denote a change of coordinates
which leads to the decomposition of S(KA4,BL~!,C) into an unobservable and an
observable part:

: [0 6*2], (35)

where

_ Z11
T=| _
Zao

and the subsystem ((K'A)11,B},0) is unobservable and reachable, while the subsys-
tem ((KA)22,BY,C2) is a minimal realization of G¢(z) in (21). The matrix (K A)so
is of order m + (k1 + --- + k,,,) and its spectrum consists of only zero eigenvalues.
These eigenvalues represent the zeros at infinity of (11) (Weller, 1999). The matrix
H can be constructed in the well-known manner (Chen, 1984, p.203) from the obse-
rvability matrix for S(K A, BL™*,C). According to Lemma 8, p((KA)11) represents
all the invariant zeros of (11). Moreover, using Lemma 4(iv), one can observe that
the subspace S is equal to the kernel of the observability matrix for the closed-loop
system, i.e.

C
C(KA m ks
Ker ( ] ) =8 = ﬂ (ﬂ KercsAl> ; (36)
. s=1 \Il=0
C(K A1

and dimS=n—-m— (k1 + -+ k).

In the new coordinates the output-zeroing problem for the system S(4,B,C),
where A= HAH™', B=HB, C =CH™}, becomes significantly simpler. At first,
the image of the subspace S in (36) under H (i.e. S = H(S)) takes the form

15_':{.722[1_;11 :EQQZO},
T22

where each vector Z;; € R*~™~(k1++kn) i spanned by the eigenvectors and pseu-
doeigenvectors (or their real and imaginary parts) corresponding to the eigenvalues
of (KA)11 (i-e. to invariant zeros of (11)). Moreover, the general form of the output-
zeroing inputs for S(4, B,C) is

([ Zn } LMAH" [ (KA)hzn D ,
0 0

whereas the so-called zero dynamics (Isidori, 1995, p.164) for this system are described
as

jll(k + 1) = (KA)H.'EH(]G).
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4. Examples

Example 1. (Latawiec, 1998; Tokarzewski et al., 1999) Consider the transfer function
of full row rank

G(z) =

z—2 2z+1
22 22

and its irreducible realization S(A, B,C) with the matrices
0 0 -2 1
: 2L c=[o 1]

1 0
It is easy to check directly via Definition 1(i) that S(A, B,C) is degenerate. This
means, by virtue of Definition 2, that G(z) possesses an infinite number of zeros. On
the other hand, the rank of the system matrix does not fall below its normal ranlk
at any point of the complex plane. This means that G(z) has no Desoer-Schulman
Zeros.

A: y B:

Example 2. (Latawiec, 1998; Tokarzewski et al., 1999) Consider the transfer matrix
z—2 1
(2z-1)8z+1) (22-1)(3z+1) ]
and its minimal state-space realization with the matrices
11 1

G(z) =

L] =0
A= ; o p=|" 1 C:[10}
- 2 0 =

In the sense of Definitions 1(i) and 2, the system is degenerate, i.e. each complex
number is a zero of G(z). In particular, the triples

[0 ] [ _6
A=2+41, 2= -
and
[0 ] [ 6
A=2-j1, 2= , g=
j 1 g _ﬂ]

satisfy (2). For these triples we can find, according to Remark 1, the following output-
zeroing input sequences:

u(k,Rea®) = (VB)* | 0%k
—6sinky
and
u(k,Ima?) = (VB)E | SR
6 coskyp

where ¢ = arctani, k=0,1,2,....
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The input sequence u(k,Rez?) yields the solution to the state equation of the
form

z(k,Rez’) = (V5)k { 0 }

cos ki

provided that u(k,RezC) is applied to the system exactly at the moment when the
initial state of the system is equal to

Rexozlo}.
1

Similarly, the input sequence u(k,Im z%) produces the solution

z(k,Imz%) = (v/5) [ 0 } '

sin ky

provided that this input is applied at the initial state
0
Imz® = .
0

5. Concluding Remarks

The definition of invariant zeros adopted in this paper (Definition 1(i)), based in a
natural way on the notions of state-zero and input-zero directions introduced in (Mac-
Farlane and Karcanias, 1976), is strictly linked with the output-zeroing problem and
for this reason these zeros have a clear dynamical interpretation. In view of Lemma, 2,
each Smith invariant zero can be easily interpreted in the context of the output-zeroing
problem, although, as indicated in Examples 1 and 2, the Smith invariant zeros do
not characterize completely the problem.

Of course, degeneracy is not restricted only to MIMO systems. It may also appear
in SISO systems. However, as is possible to show, a SISO system is degenerate if and
only if its transfer function equals zero identically (i.e. G(z) =0). As an example of
a degenerate system, one can consider the system (1) with the matrices

0 1 0
1
A:oél,B=O,C:[001]
0
0 0 0 |

which, according to Definition 1(i), is degenerate and, on the other hand, it has exactly
one Smith invariant zero X\ = 1/2.

Finally, some remark concerning the Davison-Wang zeros should be made. As
is known (Hewer and Martin, 1984; Schrader and Sain, 1989), the Davison-Wang
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definition determines the zeros of (1) as those points of the complex plane for which
the rank of the system matrix drops below n+ min{m,r}. This definition also admits
an infinite number of zeros (Hewer and Martin, 1984). However, as the following
examples show, Definition 1(i) and the Davison-Wang definition are in general not
comparable. The system of Example 1 is degenerate in the sense of Definition 1(i)
and has no Davison-Wang zeros. On the other hand, a minimal system (1) with the
matrices

10 31 01 00 310
A:[O 2], 32{0010]’ =110}, D={000
01 0 0 0

O O =

has no zeros according to Definition 1(i), while each complex number is its Davison-
Wang zero.

Further research should be focused on questions concerning algebraic criteria, of
degeneracy (non-degeneracy), as well as on zeros in sampled data systems (cf. Weller,
1999).
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