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LEAST-SQUARES ESTIMATION FOR A LONG-HORIZON
PERFORMANCE INDEX

KrzyszTor B. JANISZOWSKI *

Estimation of a parametric, discrete-time model for a SISO dynamic plant, de-
rived for minimisation of a performance index determined as a sum of squared
prediction errors within some time horizon is considered. A formula for a Long-
Horizon Least-Squares (LHLS) off-line solution as well as a theorem for an LHLS
recursive on-line scheme are derived. The LHLS scheme reveals some features of
Least-Squares (LS) estimation and Instrumental-Variable (IV) estimation. An
algorithm for the on-line LHLS scheme is presented and compared with LS and
IV estimation schemes for a linear, second-order system. The fast convergence
of the derived LHLS on-line scheme is demonstrated in the case of detecting
changes in parameters of a non-stationary system.

Keywords: identification, least-squares estimation, prediction, recursive
scheme

1. Introduction

Recent developments in LSI chips have broadened applications of advanced methods
in industrial control systems. Intelligent measurement systems are equipped with
various procedures for self-testing and automatic diagnosis. PID controllers po-
ssess many additional options including self-tuning and adaptation schemes. The
control methods of 'upper shelf’, called now the advanced control, are usually ba-
sed on predictive schemes, where parametric models of plants or disturbances are
used. The main idea of the predictive approach is based on the evaluation of control
effects within some interval in the future on which these effects are expected. The
discrete-time models used for these problems may be of different nature. Linear,
discrete-time difference equations constitute local approximations to the investigated
process dynamics. Models parameterised by fuzzy sets of different impacts offer better
approximations. Artificial neural nets are supposed to be most general representa-
tions of system dynamics. All these representations share one common feature: the
corresponding determination rules are derived for prediction of the model output §(-)
for a single step (one or a multiple of a sampling interval A) ahead with respect to
the actual time ¢,

Q=1gt+pA)l, p>1 (1)
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The index of the model quality @ is defined by some measure ||-||, e.g. an estimated
value of the squared prediction error ||§(t + pA)|| = [§(t + pA) — y(t + pA)]* for
the measured output y(-). In predictive control, weighted effects of control over a
prediction horizon H usually estimate the system quality

H
Qo= aillyat+id)llc >0, i=1,... H. (2)

i=1

In much the same way as in (1), the measure ||-||, of the controller quality can
be defined as the difference between a desired output y4(-) and y(-) in the form
llya(t + pA)|| = [ya(t + pA) — y(t + pA)]%. The weighting coefficients «; are equal
for ¢ = 1,...,H or they can be decreasing. A discrete-time model (1) does not
fully match the predictive control problem (2) which corresponds to some interval
[t + A, t + HA] in the future. We wish to investigate the problem whether it is
possible to derive a model for an index more general than (1), e.g. based on some
time interval in the future and corresponding to the structure defined by (2). This
index will be defined as

H
Qr=Ya[ut+p8) ~ gt +p8)] >0 (3

p=1

The positive coefficients o, weigh the prediction errors for different p’s. All the
predicted values of the output §(t + pA) are calculated with the same model M.
This index of the model estimation quality will better fit to the application in the
sense of the predictive controller index @Q¢. However, in spite of the fact that Q¢
and @ have similar forms, they are completely different. The controller index Q¢
usually contains optimally-tuned output values of the controller u(-) and is referred to
as the desired trajectory yq(-). The estimation index @y is defined by the differences
between the measured and predicted process output values. Both the indices produce
averaging effects on the prediction errors over some time interval [t + A, ¢t + HA].

An immediate question is whether the discrete-time models determined with
evaluation (1) of the one-step prediction error (Box and Jenkins, 1970; Draper and
Smith, 1981; Eykhoff, 1974; Ljung, 1987; Séderstrom and Stoica, 1994) do not co-
ver this problem and what differences are expected. The answer is not easy. In
the case of well-conditioned identification tasks, stationary linear plants with well-
prepared experiments (sufficient plant excitations, not excessive disturbances with
proper statistic distribution) are usually investigated. A proper estimation scheme is
used and a proper model structure is known, etc. There is some justified hope (Ljung,
1987; S6derstrom and Stoica, 1994) for determining a model that will correspond to a
real representation of the system under investigation. This model will be the best and
there will be no real need for another. In practical applications, the above-mentioned
conditions are not common, and therefore the problem of estimating a model fitted
to the index other than (3) should rather be investigated.

Some practical observations can support this way of model estimation. The
predictive control schemes usually represent different behaviours rather than other
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strategies of advanced control, e.g. state-space controllers with observers. The state-
space control schemes are tuned to the performance index (2), but with prediction
horizon H = 1. They have superb dynamics and very fast transients in step responses,
but require powerful controller outputs with large instantaneous variations. In the
predictive approach, the controller looks forward, anticipates future reactions of the
plant for a horizon H > 1 and does not need violent actions as is the case in state-
space control. The reactions of the predictive-control system are smooth and demand
less controller effort than in state-space control. A usual way of introducing more
refined control in industrial applications is the predictive control approach. Rare
applications of state-space control are limited to the cases when the plant is well-
known and there is a demand for a very fast reaction of the system. This observation
has suggested the idea of the proposed approach to fit the estimated model of the
plant to the task of predicting plant reactions for some interval in the future, not only
for one time instant.

The derivation of a least-squares estimation scheme for a discrete-time model
with the LH criterion (3) is presented in the next section. The recursive scheme for a
least-squares-like estimation algorithm is presented in Section 3. Section 4 contains
simulation examples and comparisons with the results for simple LS and instrumental-
variable (IV) schemes.

2. Long-Horizon Least-Squares (LHLS) Estimation

Let us consider a linear difference equation of order n representing a dynamic SISO
plant with a sampling interval A:

y(t) = Z aiy(t —iA) + > Biu(t —iA — dA) + n(t). (4)

i=1 =0

The delay of the output signal y(¢) in reacting to changes in the input u(t) is equal
to dA. The impact of non-observable disturbances is represented by an additive
zero-mean random signal 7(¢). In the sequel, the discrete-time argument ¢ = kA is
replaced by k and any time shift pA by p. The following relation constitutes the
one-step prediction model based on the estimates &; and £; which form the vector
of model coefficients 6:

g (k) = i diy(k — 1) + 3 frulk — i — d) = wi (k)8
i=1 i=0
where
wy (k) = [y(k“l)’y(k_2)’ v ay(k'—n)au(k_d)a u(k_l_d); X -au(k'_n_d)] ) (5)

0= [aba‘la---a&naﬁﬂaﬁla"'aﬂﬂ]T-

The vector of model inputs w; (k) is determined for one-step prediction. The next
relations define the predictions §,(k) of the output signal for p steps ahead, composed
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of the values of the measured output y(k — iA), predicted output gp—i(k), 7 =
1,...,p— 1, and input signal u(:):

p—1 n n
Gpk) = > Guflpmi(k —0) + Y Guy(k — i) + Y fuu(k — i — d) = wpy(k)8,
i=1 i=p =0

where
wp(k) = I:gp—-l(k - 1)’ ’gl(k ‘—p+ 1)7y(k -—p),y(k il 2 1)’ 7y(k - n)a

u(k—d),u(k—1—d),...,u(k—n—d)], p=1,...,H, (6)

A oA ~ A A A 1T
0= [a17a2)~"aannBOJﬁl)"'aﬂn] .

The components of the input vectors wy(k), corresponding to the future values of the
output signal (with respect to the time instant k — p) are unknown and replaced by
their estimates. The values of the input signal u(k + ) are known. The components
of the input vectors (5) and (6) are of a different nature (measurements or estimates),
but the model coeflicients are the same.

Now let us introduce the following vector notation for the input-output data:
wp(1) y(1)
Wp(M) = : , Y(M) = : : ()
wp (M) y(M)
The vector of the output predictions for p steps and the corresponding vector of the
model error values determined by (6) are respectively given by
Vo(M) = Wp(M)8, &,(M) =Y (M) = ¥,(M). ®)

The LS estimation of the coefficients in (4) consists in minimisation of the performance
index (1) where the measure || -|| is the sum of the squared errors in ¢, (M), i.e.

QLs = €] (M)e1 (M). 9)

In the case of estimation for multi-step prediction, as in (3), 6 is has to minimise
the index

H
QLu = Zapeg(M)ep(M), ap > 0. (10)

p=1

The problem is similar to the minimisation of (9), since  has to minimise the qu-
adratic form (10). With the notation (7)—(8), the performance index Qrm can be
rewritten in the form

H
QLH = Z ape, (M)ep(M)

p=1

- i ay (Y(M) - W,,(M)G)T(Y(M) — Wy(M)9). (11)

p=1
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The minimum of Qrx entails the condition 0Qpu /86 = 0, which amounts to

Za,, MTY (M) = {Za,, YTW,(M)| 6

If Ei_-l oW, (M)TW, (M), is invertible, the above relation yields the LHLS estimate

(12)

._1H

ZaPWp(M)TY(M). (13)

p=1

H
brirs S [Z apWy (M) Wy (M)

Theorem 1. The estimate (13) of the discrete-time model (4) minimises the long-
horizon performance index (3).

Proof. The relation 0Qrr/06 = 0 is a necessary and sufficient condition for a global
minimum of the convex form (11). The definition (7) of W, ( ) and weight coeffi-

cients a5 in (10) induce the non-singularity of the matrix Zp_l apWo(M)TW, (M),
for a sufficiently exciting input signal u(-). ]

For the one-step prediction model and «; = 1, (13) reduces to the simple LS
estimate (Ljung, 1987; S6derstrom and Stoica, 1994; Strejc, 1981)

062 [Wl(M)TWI (M)] W (M)TY (M), (14)

The pseudo-inversion formula for a single matrix W1 (M)TW;(M) in (14) is known
(Isermann, 1982) and an on-line LS estimation algorithm can be introduced. The
LHLS estimate (13) consists of many terms corresponding to different values of p
and, consequently, the matrix inverted in (13) is more complex than for LS estima-
tion (14). This difference can produce some difficulties while deriving the on-line
LHLS estimation scheme.

Theorem 2. Consider a symmetric matriz Q of the form
Q:a1Q1+a2Q2+"‘+anQna ai>0 7:=17'-'7n7 (15)

where the matrices Q1,Qz,...,Qn € R™*™ are symmetric and perturbed by AQ; =
afqi, ¢; € R™, i = 1,...,n, respectively. If the inverse of @ is known, then the
inverse of the modified matriz Q' = Q + uAQ1 + - -+ + anAQ, can be calculated by
successive application of the matriz inversion rule

[A+BCD|™ = A4' — A'B[DA™'B+C~!] " DA™, (16)
where A € R™*™ B e R™*P, C € RPXP, D € RP*™,
Proof. Define P € R™*™ as the inverse of the positive definite, square matrix Q and

consider the change in @; by the product (a}ﬂlJl)( /2 q?) for the column vector
ai/ %q1,q1 € R™. The formula (16) can be used for inversion of the matrix

QW = (nQ1 +a1g7q1) + -+ anQn = Q + g’y
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after setting A=P~ !, C=1€R,-B= aiﬂql eR™, D= ai/zqi‘r € R™. We get

—1 B _1
(@] = [@+adfa] ™ = P Pai’q [ai*qT Pai’qy + 1] ai/’aTP

a1 Pgi(Pq)” T _ p(1)
= P— =P -—yKVT = pl), 17
a1gf Pg1 + 1 T (a7
where
a1 V, = Pq,.

= argf Pg +1’

The next modification of Q(), introduced by the term (aé/ 2qz)(oz;/ ?¢T) corre-
sponding to the variation in @, results in a transformation similar to (17), where
P®) is used in place of P, ay substituted for oy, and g; replaced by g». The other
steps follow by simple induction. [ |

The above theorem shows that for n increments of matrices @;, i = 1,...,n
the calculation corresponding to (17) should be repeated n times. It is not possible
to shorten this approach by one-step modification of the matrix @ in form AQ =
a1 AQ1 + -+ + anAQ,. The modification AQ cannot be represented as a product
qq” for some vector ¢ € R™ in a general case.

When a non-stationary behaviour of the identified plant is expected, the factor 1
in the denominator of the definition of v can be replaced by a forgetting factor p
lying within the interval (0.9,1.0].

3. Recursive LHLS-Estimation Algorithm

Theorem 2 provides a basis for the recursive LHLS scheme. For that purpose, consider
a model of the form (4). It is represented by a difference equation of order n with
discrete time delay d. In the case of a prediction horizon H > 1 the calculations
have to be shifted H steps back with respect to the current discrete time instant
k. The input values up to time moment k are considered as known, but the values
of the output are considered as measured up to time k — H and all the consecutive
values of the output are replaced by the corresponding estimates.

The steps of the estimation in the LHLS sense are as follows:

1. At a discrete-time instant k& determine the values

exk—H+1) = ylk—H+1)—gk—H+1)=y(k— H+1)
—’LU1(]€—H+1)0k,
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wilk— H+1) [y(k—H),...,y(k—H—n),u(k—H—d+1),...,

u(k—H-d=n+1),

ex(k—H+2) = ylk— H+2) —j(k— H+2)
= ylk—H+2)—wy(k— H+ 2)8,

wo(k— H+2) = [g(k—H—i-1),y(k—H)...,y(k—H—n+1),...,

u(k—-H—d—n+2)],

g(k—H+1) = w (k)b (18)

en(k) = y(k) — §(k) = y(k) — wa (k)bs,

wa(k) = [3(k= 1,5k =2)..., 50k - n),u(k - d),...,
u(k—d—n)], k> H,

G(k—1) = wy-1(k — 1)6y,

where the estimated values of the output §(k — H + 1),9(k — H + 2),... are
sequentially substituted for the measured values of the output y(k—H +1),y(k—
H+2),... in the relations for the model inputs wa(k—H +2),ws(k— H+3),....

2. Determine the LHLS estimates of the model by successive recalculation of the
coefficients of 65 ;:

P°(k+1) = PH(k),

Vi =P Yk + Dwi(k)T, i=1,...,H,

(87

N Y (),

(19)

Pik+1) = Pk +1) - ViV,
pi = v P'(k + Lyw; (k)7
i1 = 97;11 + piei(k),

where PH (k) is the last modification of the matrix P determined for the
discrete-time instant k—1. The forgetting factor p can be defined as in Section 2.
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The initial conditions for this scheme are classical (Ljung, 1987; Séderstrom and
Stoica, 1994):

PY(0) = diag ()) € R™*™, X ¢€[10°,107], 6 =0, 6, R™. (20)

Investigation of the convergence properties of (18)—(20) is rather complex. As
regards the model input vectors w;(k), 7 = 1,...,n — 1 in (18), one can observe
the components y(k — i) which contribute to the output disturbances. These terms
may introduce a bias in estimates as is observed in the usual LS estimation. On the
other hand, these terms are subsequently replaced by estimated terms with index i
increasing within ¢ = 2,...,H. In the case of the prediction index ¢ > n, these
vectors consist only of the estimated output values, as is the case in the instrumental-
variable estimation. Hence the algorithm (19) can reveal some features inherent to LS
estimation (robust convergence) and appropriate to IV estimates (very fast, unbiased
estimates). The final evaluation of the quality of the introduced algorithm and conc-
lusions can be formulated after some tests of a statistic character. Some results of
these tests will be presented in the next section.

The above scheme has also been used for the SISO model of the form (4), but it
can be used for other representations such as AR, FIR or MISO models.

4. Tests of LHLS-Estimation

Tests of LHLS estimation were performed for identification of a second-order, SISO
linear stationary system described by the difference equation

y(k) = a1y(k — 1) + asy(k — 2) + bu(k — 1) + bou(k — 2) + Ae(k),  (21)

where a; = 1.5, ay = —0.7, by = 1.0, by = -0.5, k = 1,...,500, y(I) = uw(l) =
e(l) =0, I <2. The signals y(k) and u(k) are the measured output and input of the
system, respectively, and (k) represents a non-observable disturbance. The exciting
signals u(k) and e(k) were simulated by random generators. The influence of the
disturbance e(k), expressed by the factor A, was varying in the interval [0.05, 1.0].

Initial trials with the proposed scheme revealed relatively fast convergence of the
estimates for the model coefficients. This property can be very interesting in the case
of tracking model changes and therefore, in this study this aspect was the main focus
of interest.

The estimation quality could be compared using statistically determined (ave-
raged values estimated in L simulation runs) final values of the estimated model
coefficients with appropriate standard coefficient deviations. However, this informa-
tion would have not represented the quality of the estimation convergence. For a
better expression of the convergence speed and accuracy of estimation, an overall
index of the absolute errors for each coefficient was introduced:

500
bi= 3 Z 5 2
=50

Bip (k) — (22)
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where the upper value of discrete time k& = 500 means that each simulation run
contained 500 steps, but the quality of estimation was evaluated from step k = 50,
for avoiding excessive errors that sometimes appeared in initial estimation steps.

The results of recursive LHLS estimation (19) of the coefficients ay, a2, by, by
in (21) were compared with the results determined by a simple recursive LS scheme
with the same algorithm (19), but for H = 1, and the results obtained from the
instrumental variable (IV) algorithm. In the case of the IV estimation scheme, the first
50 steps were calculated with the LS algorithm and then, in the vector of instruments,
the output values were replaced by the corresponding estimates.

The LHLS estimate (18)—(19) was calculated for H = 2,4,6 with the weighting
coefficients
_ 1
T 14014

The coefficients a; were determined as slightly decreasing within the prediction
interval. In the case of equal weights, failures in the convergence were sometimes
observed. This small decrease introduced by (23) was sufficient to yield very good
convergence features.

The noise impact was determined by factor A = 0.05, 0.1, 0.2, 0.5 and 1.0. For
a more precise evaluation of noise, the following index was calculated:

i=1,...,H. (23)

(&7}

500 500 5
Ye(k)? — AE y(k)
=1

L
> = — )
p=1 kZ_ZI y(k)?

N/S =

| =

In the above expression, y(k) denotes the value of the simulated output for the
simulation performed with the noise amplification factor A = 0 and y.(k) denotes
the value for the same random sequence of the excitation signals u and ¢, but with

A#0.

The mean results based on L = 20 simulation runs for a variable impact A of
the white noise disturbance e are presented in Table 1. In the case of the LHLS
algorithm the results calculated for a short prediction horizon H = 2 are presented.
The results of this estimation procedure determined for larger numbers of steps H = 4
and H = 6 yielded errors pf in (22) approximately 15 and 30% greater than for
H =2, respectively.

The direct inspection of the results shown in Table 1 confirms the obvious conc-
lusion that an increase in the noise impact yields deterioration of the estimates. How-
ever, there is no straight relation between the magnitudes of noise and errors. The
increment in the noise by the factor of 10 (in magnitude) is not followed by the
corresponding magnitude of the errors. In the case of the LS estimates, the errors
increased by only 40-50%. This influence is more visible in LHLS estimates. The
errors were increased by 5 to 6 times. The results for IV estimation and a low ma-
gnitude of disturbances were reasonable, but for A > 0.5 this method failed. Poor
estimations of the IV algorithm resulted from the bad quality of the initial values
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Table 1. Estimates of model coefficients with white noise disturbances.

‘Noise impact A Method ay as b by
and N/S ratio (@) =15) | (ad=-07)| 9 =1.0)| (B = -0.5)

LS 1.468 —0.681 0.980 —0.482

(0.085) (0.052) (0.055) (0.054)

A=01 v 1.536 —0.733 0.983 —0.550

N/S =0.11 (0.077) (0.057) (0.054) (0.070)

LHLS 1.500 —0.700 1.002 —0.499

(0.010) (0.008) (0.005) (0.012)

LS 1.467 —0.681 0.982 —0.481

(0.087) (0.052) (0.055) (0.052)

A=0.2 v 1.525 —0.725 0.983 —0.543

N/S = 0.28 (0.070) ().049) (0.054) (0.059)

’ LHLS 1.498 —0.700 1.003 —0.496

(0.019) (0.016) (0.010) (0.023)

LS 1.452 —0.675 0.993 —0.471

(0.106) (0.061) (0.053) (0.065)

A=0.5 v 3.472 —1.224 1.431 —2.868

N/S =0.79 0.114 0.064 0.060 0.081

LHLS 1.484 —0.695 1.014 —0.472

(0.050) (0.042) (0.036) (0.062)

LS 1.449 —0.672 1.008 —0.473

, (0.109) (0.069) (0.063) (0.080)
A=1.0 v — — — —
N/S =1.62 — — — —

LHLS 1.487 —0.693 0.995 -0.491

(0.058) (0.050) (0.074) (0.097)

for the instruments, sufficiently precise after only 50 steps of the LS algorithm. In
the case of repetitive calculation, performed in all off-line schemes, this method is
more efficient. It can be observed that the LHLS estimation algorithm for low and
intermediate noise levels A = 0.1 + 0.5 is visible better than for other schemes. For
A =0.1 the errors pf are less than 1%. This means that after the initial 50 steps of
the estimation the mean error in each coefficient was about 1% of the nominal value.
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The other methods produce visibly worse results. In the case of A = 1.0 the results
of LHLS are comparable with the LS algorithm.

The white-noise distortions usually constitute an effect of measurement distur-
bance. In the case of modern equipment this influence is rather low with respect
to the magnitude of the measured signal. Hence the observed good efficiency of the
LHLS estimation at a low level of white noise distortions is more important than in
the case of large noise magnitudes.

Table 2 shows the results determined for estimation tests organised as in the case
of white noise, but with the noise simulated in the form of the correlated signal

e(k) = 0.9e(k — 1) + 0.1n(k). (25)

The signal n(k) was a random sequence. The comparison of the estimation efficiency
for all methods is presented in Table 2.

In the presence of coloured noise, the LHLS estimation confirmed its superiority,
mainly for low magnitudes of disturbances. In this case a longer horizon H = 6 was
more suitable. The LS and IV for all the magnitudes of disturbances provided very
similar results. The errors in the estimated coefficients a1, as, b; were less for the IV
than for the LS-method, but the IV yielded significant errors in the estimation of the
ba coefficient. It can be noted that the IV method failed at a proper evaluation of the
sign of the gain for the input » when X = 0.1. The same effect can be observed for
the LS estimates but for A = 1.0. This problem did not appear for LHLS estimates.
The better estimates for the LHLS algorithm can be explained by the fact that in each
step of the recursive LHLS algorithm the calculation of the estimates is repeated many
times (six for H = 6) and hence there is a possibility of a significant improvement in
the convergence rate and accuracy.

After the inspection of the estimates one can observe the influence of the number
H of predictions instants on the convergence speed and accuracy. In the case of
a white noise distortion a lower number of prediction instants H = 2 was more
suitable, because the accuracy of the estimates for H = 4,6 was not sufficient to
compensate for the errors in the model output created by white noise distortions. For
the correlated noise the output errors can be modelled to some extent by a proper
estimation of the model coefficients and thus the increased number H = 6 was
justified. The influence of the number H on the convergence speed is shown in Fig. 1.
The estimates of the coefficient a; determined from simulated data with correlated
noise disturbance for factor A = 0.2 are reported. Figure 1 presents the transients
of the estimates of a; calculated for H = 2,4,...,14 and the LS estimation. The
LHLS-6 or LHLS-8 estimation procedures started with delays of 4 and 6 time instants
in comparison with the LS estimation, respectively, but the desired level was reached
at 12-14 instants before the LS estimation.

The advantage of the very fast convergence of the estimates can be very useful
in identification of non-stationary systems or detection of abrupt changes in model

parameters. This effect was investigated by estimation of the coefficient b; simulated
in a non-stationary way:

bi(k) = 1—sin(0.015k), k=1,...,500. (26)
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Table 2. Estimates of the model coefficients for coloured noise disturbances.

Noise impact A Method ai Qo 81 32

and N/S ratio (a2 =1.5) | (a3 =-0.7) | (8 =1.0) | (b3 = —0.5)

LS 1.412 —0.576 0.958 —0.738

(0.302) (0.293) (0.122) (0.282)

A=0.05 v 1.720 —0.741 0.935 —1.057

N/S =0.001 (0.279) (0.229) (0.136) (0.496)

LHLS 1.494 —0.694 1.003 —0.496

(0.017) (0.012) (0.018) (0.032)

LS 1.436 —0.588 0.960 —0.769

(0.284) (0.279) (0.123) (0.296)

A=0.1 v 1.722 —0.745 0.937 —1.058

N/S =0.034 (0.277) (0.228) (0.135) (0.488)

LHLS 1.498 —0.690 1.011 —0.516

(0.035) (0.024) (0.034) (0.067)

LS 1.489 —0.616 0.964 —0.837

(0.265) (0.250) (0.124) (0.330)

A=02 v 1.725 —0.751 0.941 —1.060

N/S =0.192 (0.271) (0.222) (0.135) (0.478)

LHLS 1.529 —0.690 1.022 —0.597

(0.070) (0.042) (0.064) (0.152)

LS 1.592 —0.683 0.979 —0.948

(0.254) (0.208) (0.117) (0.440)

A=0.5 v 1.711 —0.745 0.953 -1.059

N/S =0.614 (0.261) (0.202) (0.124) (0.514)

LHLS 1.598 —0.700 1.027 —0.738

(0.124) (0.105) (0.060) (0.358)

LS 1.656 -0.737 1.002 —1.005

(0.234) (0.178) (0.133) (0.529)

A=1.0 v 1.726 —0.765 0.980 -1.070

N/S =128 (0.238) (0.182) (0.141) (0.569)

LHLS 1.760 —0.824 1.031 —0.886

(0.258) (0.128) (0.104) (0.414)
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Fig. 1. Convergence rate for the LHLS estimates with different prediction horizons H.

The simulation of the system (21) was performed with the white noise disturbance
for A = 0.2. The forgetting factor p (19) should exert an influence on the adaptation
rate of the model (Ljung, 1987; Spriet and Vansteenkiste, 1982), but a more efficient
method was a periodic increase in the main diagonal of the pseudo-inverse matrix P
in the algorithm (19) (Ljung, 1987). This method was used for both the recursive LS
and LHLS-6 algorithms. The corresponding estimates of b; are presented in Fig. 2(a).
A mutual correlation is usually observed at transients of the model estimates. This
correlation is very strong between the coeflicients corresponding to the same input
or between the auto-regressive parts of the model. Then it can be reasonable to
investigate the transients of the other model coeflicient related to the input signal
—bs. In the case of a very prompt identification the estimate of this coefficient has
to be constant. In Fig. 2(b) some transients of the by estimates are presented. The
LHLS estimates are very similar to the proper value of —0.5 when the LS estimate
is visibly drifting towards this value.

5. Conclusions

The presented idea of the LHLS estimation of the model coefficients, based on eva-
luation of the prediction quality for more than one sampling interval ahead, leads to
the derivation of a simple and numerically effective estimation algorithm. The ad-
vantage of the LHLS approach is that the robustness and stability of the estimates
are combined with very fast convergence and reduced sensitivity resulting in a bias
in the estimates that are characteristic for the LS or IV algorithms. The fitting of
the length of the prediction horizon A and the weighting coefficients a; need more
attention in the application of the method, but they raise a possibility for a better
adaptation of the estimation algorithm to the investigated problem.

The most important advantage of the derived algorithm is the observed very fast
rate of convergence that suggests positive results in the estimation of non-stationary
processes. However, the examples presented here do not establish the superiority of
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Fig. 2. Estimation of the b1 coefficient (a), the b2 coefficient (b), and the gain K1 (c).
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our approach in comparison with the other algorithms, but the preliminary tests are
promising. This first presentation of the algorithm has to be followed by further tests
made on real plants and application to industrial control and diagnostic systems.
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