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EHMAC - A NEW SIMPLE TOOL FOR ROBUST
LINEAR MULTIVARIABLE CONTROL

KrzyszTor J. LATAWIEC*, Ryszarp ROJEK*

A combination of long range predictive control-originated EHPC and internal
model control-structured MAC is shown to produce a new, simple but effec-
tive Extended Horizon Model Algorithmic Control (EHMAC). The EHMAC
strategy can be used to robustly control open-loop stable non-minimum phase
(possibly non-square) MIMO systems under very large model-plant mismatches.
Robust EHMAC design is made straightforward by means of a separate selection
of a single prediction horizon and an IMC filter parameter, which can be easily
auto-tuned.
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1. Introduction

Long-range or model-based predictive control (Bitmead et al., 1990; Clarke and Moh-
tadi, 1989; Coelho and Amaral, 1993; Garcia et al., 1989; De Keyser et al., 1989;
Soeterboek, 1992) has drawn considerable interest from both the academic and indu-
strial millieu, bringing the two much closer to each other. There are many recognized
advantages of long-range predictive control (LRPC), most of them contributing to
well-documented robustness. The most general (and complex), unified and generali-
zed predictive controls, UPC and GPC, respectively, can robustly stabilize complex
plants, including open-loop unstable non-minimum phase (NMP) ones, in which they
can approach, to some extent, LQR/LQG schemes. However, for the majority of
process control tasks, involving (possibly NMP) open-loop stable systems, it may be
not necessary to employ rather complex UPC, GPC or LQR/LQG algorithms, which
in addition may require sophisticated tuning to meet control quality specifications for
a specific plant. The control job in many standard cases can be eflectively done by
much simpler, and yet powerful, predictive control algorithms like EHPC (Latawiec,
1998a; Latawiec and Van Cauwenberghe, 1995; Ydstie et al., 1985), MAC or DMC
(Garcia and Morari, 1982; Garcia et al., 1989). The numerical simplicity of a control
algorithm can be essential in the adaptive control environment as well as for ‘fast’
dynamic systems where ‘short’ sampling periods should be selected.

* Department of Electrical Engineering and Automatic Control, Technical University of Opole,
ul. Sosnkowskiego 31, 45-233 Opole, Poland, e-mail: lata@po.opole.pl



576 K.J. Latawiec and R. Rojek

Extended Horizon Predictive Control (EHPC) is known to be able to stabilize
open-loop stable NMP systems, with a single tuning parameter involved, namely the
control prediction horizon. On the other hand, the industrially recognized Model Al-
gorithmic Control (MAC), utilizing the advantages of Internal Model Control (IMC),
has been initially designed to control minimum phase systems only (Garcia and Mo-
rari, 1982; Rouhani and Mehra, 1982). Some modifications to MAC, intending to
cope with NMP systems as well, required a fairly sophisticated GPC-like numerical
machinery (Garcia et al., 1989) or quite awkward procedures (Mehra and Rouhani,
1980), thus suppressing the original simplicity of the method.

Here we present a new, simple, linear multivariable control strategy which is an
effective combination of EHPC and MAQC, called Extended Horizon M odel
Algorithmic Control (cf. Latawiec 1996; 1997 for SISO systems). EHMAC is designed
to robustly control open-loop stable NMP systems without resorting to multistep,
GPC-like control criteria or elegant, but computationally involving, IMC-structured
H.-control schemes (Murad et al., 1997).

The remainder of this paper is organized as follows. The general, closed-loop
EHPC strategy is outlined in Section 2. The basics of IMC, including MAC, are given
in Section 3, with new steady-state control accuracy results presented in a general
form. In Section 4, the open-loop control design methodology for multivariable EHPC
feedback systems is delineated and two feedback structures of the EHPC systems
are recalled, namely the ‘classical’ and ‘predictive’ ones. In Section 5, the robust
EHMAC strategy is readily derived from the classical control structure of open-loop-
designed feedback EHPC, which is shown to be closely related to the IMC structure.
Specifically, a two-stage EHMAC design procedure is presented, the first stage coming
from EHPC and aiming at stabilization of an NMP model of a plant, and the other
consisting in selecting an IMC filter as in MAC, thus providing the control robustness
even for extremely large deviations of plant models from the actual plant. Tuning
procedures for the EHMA controller’s parameters are also recalled. The results of
simulation, examples of Section 6, clearly demonstrate the value of the new control
strategy, which is resumed in the conclusions of Section 7.

2. Extended-Horizon Predictive Control

Consider a linear time-invariant discrete-time n.-input n,-output system governed
by the ARX model

A(g ) y(t) =q7¢B(¢7") ult) +e(t), (1)

where y(t) € R™, u(t) € R™ and e(t) € R™ are the output, input and zero-
mean white noise, respectively, in discrete time t; A € R™*™[z], B € R™ X" ;]
are the left-coprime polynomial matrices of order n and m < n, respectively; ¢—!
is the backward shift operator and d is the time delay. We will not distinguish
between A(z7!) and A(z) = 2" A(z™!), nor between B(z~!) and B(z), the more so
as A~1(=")B(z"") = A~} (2)B(z).



EHMAC - a new simple tool for robust linear multivariable control 577

We refrain from using the ARMAX model as it is well-known that the polynomial
matrix of disturbance parameters is in practice unlikely to be effectively estimated
(and it is sometimes used as a control design, ‘observer’ polynomial matrix instead).

Theorem 1. Let an LTI discrete-time system be described by the ARX model (1)
with A € R™>™[z] and B € R™*™[z] left coprime. Then the EHPCI law u(t),
minimizing E{|ly(t + k) — yret||*} under the assumption u(t) = u(t +1) = --- =
u(t + k — d) and the model equation constraint, is of the form

u(t) = (6] [umer ~ H (g™ )y(®) 476" (0 u(t)], )

where k is the prediction horizon with k > d, C# is (any) generalized inverse of C,
and the appropriate polynomial matrices F and H of orders k —1 and n — 1,
respectively, are determined given A and k from the polynomial matriz identity

Iny ZEA‘FZ—']C_H_ (3) )
with
G(¢™) =E(¢)B(¢™Y) = G'(g7Y) + @ (¢7Y)gH? W
and

G'(¢7") = g0+ 9147 + - + groag™HH, -
5
G” (q‘l) — gil _+_gé/q——1 + ,.,+g7/7/1+d—1q—m—d+2_

Proof. Pursuing the k-step output predictor, we have
y(t+ k) = Hy(t) + Gg*~%u(t) + Fe(t + k) = §(t + k) + Fe(t + k),

where F and H satisfy the polynomial matrix identity (3), and G, split into two
parts (separating the present and future controls from the past ones), is defined by (4)
and (5). Now, minimizing the control performance criterion under the aforementioned
assumption on future inputs leads to the solution

weer = H(q7")y(t) + [G'(1) + 476" (¢7") |t
and the result follows. |
For EHPC1 we will write

k—d
G =61 =) g (6)

i=0

Theorem 2. Let an LTI discrete-time system be described by the ARX model (1), with
A€ RwX™[z] and B € R™*™[z] left coprime. Then the EHPC2 law minimizing,
with respect to u(t),u(t +1),...,u(t +k — d), the (input ‘energy’) control effort

k—d 5
S [lut + ) (7)

=0
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subject to E{y(t+k)—yrer} = 0 and the model equation constraint, is of the form (2),
with

k—d
G'1)=Gy1)=gf_,> gt ®)

=0

Proof. Arguments similar to those in the proof of Theorem 1 apply to this case, the
only difference being the employment of constrained minimization. |

Notice that for £ = d EHPC specializes to minimum variance control (MVC).

Remark 1. Scaling the control law (2) by the factor [G'(1)]# affects an EHP con-
troller gain in a quite similar way as the introduction of a control weight in the
generalized minimum variance controller. Thus, selection of some k > d, with the
prediction horizon % being a single design/tuning parameter, enables us to stabilize
a control system with an open-loop stable NMP plant (Latawiec, 1998a; Latawiec
and Van Cauwenberghe, 1995; Ydstie et al., 1985). Moreover, some open-loop unsta-
ble NMP plants can also be closed-loop stabilized under EHPC (Latawiec and Van
Cauwenberghe, 1995).

3. Internal Model Control

We will further assume that a plant is open-loop stable, even though some open-
loop unstable systems, in particular those with integrator(s), can also be tractable
(Latawiec nad Van Cauwenberghe, 1995). The IMC idea (Garcia and Morari, 1982;
Garcia et al., 1989), originally related to the celebrated Smith predictor concept
(Brosilow, 1979), has been recognized as a valuable tool for advanced process control
(Datta and Ochoa, 1998; De Nicolao et al., 1996; Latawiec, 1997; 1998a; Lopez et al.,
1996; Murad et al. 1997; Pinchon et al., 1996; Yamada et al., 1996).

The basic IMC structure, for which the control robustness can be easily desi-
gned (Garcia and Morari, 1982; Morari and Zafiriou, 1989), is shown in Fig. 1. The
structure can empower the control system to act effectively open-loop when there
is no difference between a plant and its model, but to tighten the closed-loop in
accordance with the model-plant mismatch. It turns out that any conventional fe-
edback controller can be restructured to yield IMC. Furthermore, any IMC can be
put into the classical feedback form of Fig. 2 by defining the conventional controller
Gr € R™*™(2) as G, = {[(GG,)™* — GGR)G}®, where AR denotes (any) right in-
verse of A, G. € R™ *™(z) is the internal model controller, and G € R™ *™(z) and
G € R™ %™ (z) stand for the plant and model representations, respectively. (Notice
that for square systems we have G, = (G711 —G)~1). The IMC filter F € R™ *™s (z)
will be introduced later on. The convenient ‘G .-parametrization’ of the controller has
been used for a long time, mostly under the heading of IMC. Zames (1981) introduced
some fundamental concepts of Hy,-control utilizing the G -parametrization. These
concepts, originally based on external models, have been widely used in a more gene-
ral, robust control environment as an alternative to the state space approach, with a
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Fig. 1. Basic IMC structure.

u y Yret

G,

Fig. 2. Classical structure.

sort of compromise solutions being also available from combined schemes (Murad et
al., 1997).

Thus, the main advantage of IMC is that the controller G.(z) is much easier
to design than G,(z) and, in the case of a possible model-plant mismatch, the IMC
structure enables us to include the control robustness as a design objective in a very
explicit manner.

Another favourable feature of IMC is that neither an integration action nor an
incremental model formulation need be introduced, as the IMC structure can inheren-
tly provide steady-state error-free servo and regulatory controls in the case of stepwise
forcing signals. This well-known SISO and square MIMO feature is now generalized.

3.1. Generalization of Results on Steady-State Control Accuracy

Theorem 3. Let an open-loop stable linear plant and its (open-loop stable linear)
model be governed by the right-invertible transfer-function matrices G € R X"« (z)
and G € Rnv*nu (), respectively, and let a linear open-loop stable IM controller
G, € R™*™(2) be Go(z) = [E(2), where [ (2) is the minimum-norm right inverse
of some I’ € R™ *™(z). Then, for stepwise changes in the reference/disturbance,
steady-state error-free servo and regulatory controls are provided if

rfmea) =1 )

The proofs of the above theorem and the forthcoming corollary were given by
Latawiec (1998a) and Latawiec et al. (1998).

Remark 2. The minimum-norm right inverse, denoted by the subscript ‘0’, is used
in eqn. (9) and later on for the uniqueness purpose only. In general, any right inverse
can be employed.
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Remark 3. The introduction of the I'(z) polynomial matrix aims at preparation to
the synthesis of IMC-structured, inverse model- related MAC and EHMAC strategies.

Remark 4. It is essential that the condition on the G.(z) controller to be sta-
ble (i.e. stabilizing) can be immediately translated to the minimum phase beha-
viour requirement for ['(z), calling for the need to have a general definition of mini-
mum /nonminimum phase systems, preceded by a sound definition of ‘ control zeros’ for
possibly nonsquare MIMO systems, both the new contributions having been offered
by Latawiec (1998a) and Latawiec et al. (1999).

Corollary 1. Let an open-loop stable linear plant and its (open-loop stable linear)
model be governed by full normal rank transfer-function matrices G € R > (2)
and G € R *nu (z), respectively, with ny = n,, and let a linear open-loop stable IM
controller G, € R™ *™ (2) be G.(2) = "' (2). Then, for stepwise changes in the re-
ference/disturbance, steady-state error-free servo and regulatory controls are provided
by any L['(z) if this transfer-function matriz is prescaled by the factor @(1)£—1(1)’

Remark 5. The conditions involved in Theorem 3 and Corollary 1 are only sufficient.

Remark 6. It is essential that, for stable square MIMO (including SISO) systems, the
very specific structure of IMC enables any stable controller to produce y = y.ef in the
steady state in response to stepwise changes in the reference/disturbance, provided
that the controller’s gain is scaled accordingly. Note that the scaling factor involves
the (available) gain of a plant model and is independent of the actual gain of the
plant.

Remark 7. In the case of a non-full normal rank or left-invertible systems the
condition (9) of Theorem 3 cannot be obtained, nor Corollary 1 can ever hold true.
This means that the steady-state error-free control cannot be reached in such a case.

Latawiec et al. (1998) discussed some implications of the above control accuracy
results in multivariable predictive control strategies like MAC, EHMAC and GPC. In
particular, the basic GPC scheme, involving the common incremental model formu-
lation, was recalled. The GPC scheme was implemented in the IMC structure under
a constant reference (Pinchon et al., 1996). It was shown by Latawiec et al. (1998)
that such a combination of IMC and incremental-formulated GPC is not necessary
in a specific application, as suitable scaling of the GP controller would be sufficient.
Consequently, a simplified GPC scheme, involving neither the incremental model for-
mulation, nor a number of prediction horizons, nor the control weighting constant,
can be effectively used in the IMC structure. But this ‘simplified GPC’ used in the
IMC structure will bring us to our effective EHMAC.

3.2. Model Algorithmic Control

Recall the ARX model of a plant and write

() = 247 () B () = 203 g = 2-9G(2), (10)

=0
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where the matrix components §; of the impulse response model are obtained by
the ‘long division’ A~'B. For simplicity, the hats over the parameter estimates will
further be omitted.

The basic concept of Model Algorithmic Control, pertaining to the IMC structure
and related to the Smith predictor, is characterized by the following three crosscoupled
features:

1. ['(z) = G(z), which means that MAC is an inverse-model control, with the
condition (9) always fulfilled,

2. open-loop stable robustifying filter F' € R™ *™(z), with F(1) = I, is necessa-
rily used to attenuate the (typical) oversensitivity of the inverse-model control
(see Fig. 1), and

3. MAC is asymptotically stable for minimum phase systems only.

It is well-known that the main drawback to MAC, in addition to the minimum
phase system limitation, is that it is generally very sensitive to a poorly estimated or
a time-varying delay.

4. Open-Loop Design of Feedback EHPC Systems

We assume that a plant is asymptotically stable. To suit the open-loop design formu-
lation, we introduce the alternative (to (1)), convolution description of an n,-input
ny-output plant

y(t) = gig tu(t — d) +v(t), (11)

=0

where v(t) = A=*(g71)e(t) is the correlated zero-mean noise vector and the impulse
response {g¢, ¢ =0,1,...} corresponds to the right-invertible transfer-function ma-
trix G € R™ ™ (z).

Since the plant is asymptotically stable, we can approximate (11) by assuming
a finite process memory, g; =0 Vi > N — 1. We will go on with a Finite Impulse
Response (FIR) built up of N matrix components g;, i = 0,...,N — 1, with the
plant transfer-function matrix z~¢A~!(27!)B(2~!) approximated by

Gz ) =2 g+ @z + - +gnv1z7 V) = 274G (7). (12)
The general linear open-loop control law is
L(g1)u(t) = yrer, (13)

where ' € R *™(z), with T(¢™") =y + mg™  + - + Y, 07 ™.

Combining the process model equation (12) with (13), we obtain the familiar,
open-loop control system equation

y(t) = ¢ 4G (g7 )T T (a ) Yrets (14)

where T'¢t is the minimum-norm right inverse of T'.
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Now, assuming an open-loop stable plant, the control system described by (14) is
stable iff the controller I'¥(¢™1) is stable. This implies the well-known fact that the
control system with the inverse-model controller I'(g™1) = G(g~!) is stable for stably
(generalized-)invertible or minimum-phase systems only. We can also see from (14)
that, when the control system is stable, the error-free servo behaviour (for a constant
reference) can be obtained if T'(1) = G(1).

Consider the EHP control objective under the constraint

N-1
y(t) = > giq ult — d) + o(t). (15)
=0
It is well-known that the long-range output predictor for all the EHPC versions is of
the same form, i.e.
N-1 .
Gt + k) =TOu®) + > gg ult+k—d), (16)
i=k—d+1
with k > d as before and I'(0) = .
The EHPC open-loop control law is now of the form (13) with

N-1
T(g™")=TO)+ Y gg T, (17)
i=k—d+1

where T'(0) = G'(1) as in (6) or (8). Note that for £ = d we obtain an MVC.

The key step in our design is the demand on the closed-loop control system,
represented by the equation y(t) = G (g1 )yret, to have the transfer-function matrix
Ga(271) identical to that of the open-loop control system, i.e.

Ga(z1) = G(z“l)I‘é—%(z_l). (18)

In this way, the design specifications for the feedback control system could be
expressed in terms of the I' polynomial matrix of the open-loop controller, which
contains the components of the FIR of the plant.

The so-called ‘classical’ and ‘predictive’ control structures of the closed-loop SISO
system for which the open-loop EHPC design technique can be employed, were exa-
mined by Latawiec (1995). The ‘predictive’ control structure gives rise to the solution
to the control problem as presented in Section 2. Here we focus our interest on the
alternative, classical (MIMO) structure depicted in Fig. 2.

Pursuing the equivalence of the closed-loop control system of Fig. 2 and the
EHPC open-loop one, we equate (I + GG,) " 'GG, = GT¥§ according to (18). Hence
we obtain

G, =TF (I - GP{?) - (19)

An interesting specific result is obtained for square MIMO systems G, = (T —
G)71, so that the feedback control law is

(T = G)u(t) = yret — y(1)- (20)
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5. Robust EHMAC

Since we arrive at effectively open-loop control in the feedback control system (from
the viewpoint of tracking the reference), this implies the aforementioned equivalence
relation to IMC. In fact, sensitivity and complementary sensitivity functions can
be easily shown to be precisely the same as for IMC. This means that the control
structure of Fig. 2, with the controller as in (19), is equivalent to IMC.

Now, we can immediately recognize (20) as the common IMC control law if we
realize that, referring to the IMC structure, G is the transfer-function matrix of the
plant model denoted by G, so that §i(t) = G(g~")u(t) is the model output or the plant
output predictor. (Note that we can now identify G(-) with G(-)). Then we have
(g7 )u(t) = yret —y(t) +§(t) which, when supplemented with the (open-loop stable)
IMC filter F' € R™ *™s(z), finally gives the Extended Horizon Model Algorithmic
Control law

L(g)u(t) = F(g7) [yrer — y(t) + ()] (21)
with the output predictor §(¢) computed either from the ARX or FIR plant models.

Theorem 4. Let an open-loop stable linear plant and its (open-loop stable linear)
model be governed by full-normal rank transfer-function matrices G € R %" (z)
and G € R X (z), respectively, with n, = n,, and let the (linear open-loop stable)
EHMAC law be given by (21), where the filter F' is open-loop stable. Then the feedback
EHMAC system is asymptotically stable iff all the roots of the characteristic equation

det{[r+F(G-6)]}=0 (22)
lie inside the unit circle.

Proof. The closed-loop control system equation can be easily shown to have the form
(in terms of the Z-transfer function) ¥ = G[I' + F(G — G)]71FY;er. By standard
stability arguments, the result follows. ]

Now, for a given model-plant mismatch, a filter F' can be selected so that (22)
has all its roots inside the unit circle. Typically, the filter is of the form F(z7!) =
[(I — az7)~1(I — @)]", where the filter order r is usually taken as 1 or 2, and
the filter parameter matrix o is most often selected as a = diag|aa,..., ap,], with
a; € (0,1) Vi =1,...,n,, or, which is exploited in EHMAC, with a; = ay =+ =
an, = a. In practice, the transfer-function matrix G of an actual plant is usually
unknown, so that the selection of a filter F' for the closed-loop stability is made on
the basis of some measure of the model-plant mismatch (Latawiec, 1998a).

The EHMAC strategy, combining the advantages of EHPC and MAC, is thus
composed of the following separate stages:

1. determination of the polynomial matrix T' as in EHPC, i.e. selection of an
appropriate horizon % so that possibly an NMP model of the plant could be
stabilized,

2. selection of the IMC filter parameter(s) to make the control system robust with
respect to a possible model-plant mismatch.
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Remark 8. It is interesting that the polynomial matrix ' can be interpreted as
the ‘best’ (in the sense of the EHPC criterion) minimum-phase approximation to the
NMP model factor G , the approximation having repeatedly been sought after by (not
only) IMC designers (Garcia and Morari, 1982; Garcia et al., 1989).

Remark 9. Note that, inherently, EHMAC based on EHPC1 always satisfies the
conditions of Theorem 3 due to the specific form of ' asin (17) and (6). Also observe

that in case the error-free control conditions are satisfied, the IMC filter should, as
usual, be such that F(1) = 1.

Remark 10. It is interesting that the EHMAC law (21) can be used as a sort of
‘suboptimal’ one for nonsquare systems as well. In such cases, the last remark is still
valid whenever T' is right-invertible.

Remark 11. The above one-degree-of freedom scheme can be readily extended to
the two-degree-of-freedom one.

Remark 12. EHMAC can produce the whole spectrum of quality controls, from a
high accuracy-oriented MVC (G = G, k =d, F(z) = I) to a robustness-oriented
control (G # G, k > d, F(z) # I). The latter case is of special practical interest, in
particular for large model-plant mismatches.

5.1. Robustness to Parametric Uncertainties

The expected IMC-originated robustness of EHMAC against disturbances and
ertreme parametric uncertainties, including over/underestimation of a plant gain as
well as of orders n and m, has been verified by Latawiec (1995; 1996; 1997; 1998a) and
Latawiec and Van Cauwenberghe (1995). Another distinguishing feature of EHMAC,
which is not inherited from MAC, is indicated in the forthcoming subsection.

5.2. Robustness to Uncertainties in Estimation of the Time Delay

It is important that the EHPC-originated, long-range predictive feature of EHMAC
makes it robust to either a poorly estimated or a time-varying delay d, the outstanding
advantage removing the main inconveniency of MAC. The issue has been carefully
examined by Latawiec and Domek (1998) and Latawiec et al. (2000a; 2000b). Here
we wish to emphasize that the value of EHMAC in this respect can even be more
appreciated for MIMO systems, in particular for multiple-delay cases, i.e. when the
distribution of time delays throughout various entries of G(z) is diversified. In fact,
it is sufficient for such systems to choose the EHMAC prediction horizon k& > dpax,
where dpay is the maximum expected time delay out of all (possibly time-varying)
delays of the entries, in order to skip over the initial, trouble-making, dead-time
intervals and arrive at a robust EHMAC law (Latawiec, 1998a).
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5.3. Tuning in EHMAC

In (the basic version of) EHMAC, there are two controller parameters to be tuned,
namely the prediction horizon and the IMC filter parameter. It is essential that,
owing to the separation of the EHPC and MAC contributors to EHMAC, the tuning
of the two parameters is handled separately. Since the prediction horizon belongs
to the set of integers and the filter parameter is selected from the interval (0,1),
it is relatively easy to arrange for auto-tuning of both the parameters, which is of
great practical importance. Bearing in mind various implementation-oriented issues,
reliable auto-tuning procedures, employing rule based reasoning and fuzzy sets, have
been developed (Latawiec, 1998a).

5.4. Extensions

Efficient adaptive versions of EHMAC are available, both for SISO and MIMO systems
(Latawiec, 1997; 1998a). Also, a computationally effective modification of EHMAC,
based on orthonormal basis functions (OBF) modelling, has recently been developed
(Latawiec et al., 2000a; 2000b). Moreover, OBF-based EHMAC has been designed
to operate under input constraints (Latawiec et al., 2000b). Surprisingly, the con-
straint EHMAC strategy is based on an analytical, rather than typical, quadratic-
programming solution, so it is computationally very effective. Current research is
focused on an industrial application of EHMAC.

6. Simulation Studies

The value of EHMAC is illustrated with simulation experiments below. See also
Latawiec (1995; 1996; 1997), Latawiec and Van Cauwenberghe (1995), Latawiec et
al. (2000a; 2000b) for SISO simulation examples, as well as Latawiec (1998a; 1998b),
Latawiec and Domek (1998) for MIMO simulations. For transparency of simulation
runs, we present the performance of EHMAC in a disturbance-free case only. The
aforementioned references, especially related to adaptive EHMAC, cover a stochastic
case as well. Of course, both MVC and MAC are unstable for the two examples to
follow.

Example 1. In what follows, we consider the following settings:
Plant (2-input 2-output, nonminimum phase):

y(t) —a1y(t — 1) + acy(t — 2) = bou(t — 2) + byu(t — 3) + bau(t — 4)
-1.0 0.2 1.5 0.3 0.2 0.05

bO - ) bl = ) b2 =
-0.1 -08 0.1 0.9 0.1 0.15

1.3 0.2 0.43 0.09
a; = y Qg = 3
0.25 0.9 0.14 0.24

with
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K = A-i)B() = | 7750 66822 )
2.8037 2.8072

Model (minimum phase, lower order):
y(t) ~ a1yt — 1) = bou(t — 3) + byu(t — 4)
with

1.0 0.2 0.7 0.1 0.8 0.2 .
bo = , b= ;01 = , A(1) — singular!
0.3 09 0.3 06 0.3 0.7

In spite of a very large model-plant mismatch, the EHMAC law (21) provides
robust stabilization of the feedback control system under the prediction horizon k =
13 and the IMC filter with » = 1 and « = 0.991. The effective EHMA control of
the above square plant is still not very surprising, even with the poor-quality model.
More impressive is the control performance for a nonsquare plant as in the forthcoming
example, where EHMAC is a suboptimal strategy.

Example 2. Consider now the following data:
Plant (3-input 2-output, nonminimum phase):

y(t) — ary(t — 1) + a2y (t — 2) = bou(t — 2) + byu(t — 3) + bau(t — 4)

with
[ 10 -03 02 15 04 02
bO = ) bl = )
-0.1 -05 —-0.8 0.3 0.7 09
[ 0.2 0.1 0.1 1.3 02
by = , a1 = 3
0.1 0.2 0.15 0.25 0.9

Q9 =

0.14 0.24

0.43 0.09 8.4424 —25.109 6.1526
K
3.6137 —6.947 2.7259

Model (nonminimum phase, lower order):

y(t) —ary(t — 1) = bou(t — 3) + byu(t — 4)

1.0 0.2 0.1 0.8 0.5 0.2
bo = , b= )
0.1 05 0.7 0.2 0.6 0.7

with



EHMAC - a new simple tool for robust linear multivariable control 587

0.6 0.2 5.3333 3.1667 2.3889

ag = , K=A"1)BQ) =
0.1 0.5 1.6667 2.8333 3.2778

Remark 13. This example additionally justifies the need for (not only) EHMAC
to rely on a sound definition of the NMP behaviour for a nonsquare plant model,
inevitably related to our ‘control zeros’ (and not to any other type of multivariable
zeros, in particular transmission ones, see Latawiec, 1998a; Latawiec et al., 1999). In
fact, the stabilization of the NMP model of a plant necessitates a proper choice of
the prediction horizon at the first stage of EHMAC so that the control polynomial
matrix I’ could be stable. Now, with " being the ‘best’ minimum phase approximant
to the NMP factor _G’_, we need to refer EHMAC to the NMP property, just as it is
the case for MVC or MAC.

The plant in Example 2 has no transmission zeros but is nonminimum phase
(control zeros outside the unit circle). Again, the model-plant mismatch is extremely
large. A robust EHMAC can still be obtained for k¥ = 12, » = 1 and a = 0.98].
Of course, with a large value of the filter parameter, which is necessary due to the
large model-plant mismatch, the feedback control system is ‘slow’. The performance
of the EHMA control system can be evaluated from Fig. 3 where the plots of the
input/output variables and the setpoints are shown. (Note: The minimum-norm right
inverse is employed to compute the control vector according to the control law (22).)
Of course, smoother control plots can be obtained through further increasing the IMC
filter parameter (but this would result in making the control system more sluggish).

7. Conclusions

Extended Horizon Model Algorithmic Control may be an attractive alternative to the
more computationally involved GPC/UPC, LQR/LQG or H,, methods for robust
control of open-loop stable NMP systems, especially for ‘fast’ systems where ‘short’
sampling intervals are desirable, as well as in adaptive control applications. The
combination of EHPC and MAC preserves the conceptual simplicity, whilst utilizing
the essential advantages of LRPC on one hand and the IMC structure on the other.
We emphasize two well-known advantages of IMC. First, we introduce the general
control accuracy theorem for IMC, with significant implications for the quality control
of square MIMO systems. Specifically, steady-state error-free control under stepwise
forcing inputs can be obtained by any stabilizing IM controller, provided that its
gain is scaled accordingly. Second, EHMAC is designed at two separate stages, the
first of which is aimed at the stabilization of a closed-loop system incorporating a
(possibly NMP) model of the plant, and the other providing the control robustness to
a possible model-plant mismatch. A very nice feature is that two EHMA controller
parameters, namely the prediction horizon and the IMC filter parameter, can be
separately tuned, thus facilitating the construction of auto-tuning procedures. A
simple EHMAC has been demonstrated in simulations to be robust, even subject to
unreasonably large model-plant mismatches. Moreover, OBF- based (constraint /un-
constrained) EHMAC has been indicated to offéer considerable computational gains.
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Fig. 3. EHMAC performance in Example 2.
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