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VARIABLE- AND FIXED-STRUCTURE AUGMENTED
INTERACTING MULTIPLE-MODEL ALGORITHMS FOR
MANOEUVRING SHIP TRACKING BASED ON
NEW SHIP MODELS'

EMIiL SEMERDJIEV*, LubmiLa MTHAYLOVA*

Real-world tracking applications are related to a number of difficulties caused
by the presence of different kinds of uncertainty, e.g. unknown or incompletely
known system models and statistics of random processes or abrupt changes in
the system modes of functioning. These problems are especially complicated
in the marine navigation practice, where the commonly-used simple models of
rectilinear or curvilinear target motions are not adequate for highly non-linear
dynamics of the manoeuvring ship motion. A solution to these problems is to
derive more suitable descriptions of real ship dynamics and to design adaptive
estimation algorithms. After an analysis of basic hydrodynamic models, new
ship models are derived in the paper. They are implemented in two versions
of the Interacting Multiple Model (IMM) algorithm which has become very
popular recently. The first one is a standard IMM version based on fixed model
structures (FS’s). They represent various modes of ship motion, distinguished
by their rates of turns. The same rate of turn is additionally adjusted in the
proposed new augmented versions of the IMM (AIMM) algorithm by using FS’s
and variable structures (VS’s) of adaptive models estimating the current change
in the system control parameters. Monte Carlo simulation experiments indicate
that the VS AIMM algorithm outperforms the FS AIMM and FS IMM ones
with respect to both accuracy and adaptability.

Keywords: Interacting Multiple Model (IMM) algorithm, model uncertainty,
state and parameter estimation

1. Introduction

Tracking manoeuvring targets is a problem of great practical and theoretical interest.
Real applications are related to a number of difficulties caused by the presence of
different kinds of uncertainty due to the unknown or incompletely known system
models and statistics of random processes, as well as because of their abrupt changes
(Bar-Shalom, 1992; Bar-Shalom and i, 1993; 1995; Best and Norton, 1997; Lerro
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and Bar-Shalom, 1993). These problems are especially complicated in the marine
navigation practice, where the common models of rectilinear or curvilinear target
motions are not adequate for the highly non-linear dynamics of a manoeuvring ship
motion. A solution is to derive more suitable descriptions of the real ship dynamics
and to design adaptive estimation algorithms. Such a solution is proposed in the
paper. New ship models are derived in Section 2 after a brief analysis of the basic
hydrodynamic models (Ermolaev, 1981; Ogawa and Kayama, 1977; Pershitz, 1973;
Sobolev, 1976). These models are implemented in new versions of the Interacting
Multiple Model (IMM) filter, one of the most cost-effective among the multiple model
algorithms used for estimation of hybrid systems, i.e. systems with both continuous
and discrete uncertainties (Bar-Shalom, 1992; Blom and Bar-Shalom, 1988; Li, 1996;
Mazor et al., 1998). A brief summary of the basic features of the Bayesian estimation
algorithms and especially of the IMM filter is given in Section 3. Section 4 presents
the proposed new IMM algorithms. They are based on an appropriate state vector
augmentation, which includes the difference between the unknown control parameters
and their values fixed in the IMM algorithm. Because of this model augmentation
the resulting IMM algorithm is called here augmented (AIMM). Two versions of the
AIMM algorithm are developed and evaluated. The first is a standard IMM version
using a fixed set of models and is called the fized-structure (FS) algorithm (Li, 1999).
The models represent various modes of ship motion distinguished by their control
parameter, i.e. the ship’s rate of turn. The same rate of turn is additionally adjusted
in the proposed new augmented versions of the IMM (AIMM) filter, respectively with
fixed structure and variable structure (VS) (a variable set of models, with adaptive
estimation of the current change of the system control parameters). The FS and VS
AIMM algorithms are given in Section 4 and the results of a comparative performance
evaluation of the algorithms are discussed in Section 5. Finally, conclusions and
recommendations are summarized in Section 6.

2. Model Identification

In this section, some results of the research study described in (Semerdjiev and Bogda-
nova, 1995; Semerdjiev et al., 1998; Semerdjiev and Mihaylova, 1998) are summarized.
It should be noted that the high complexity of the hydrodynamic processes caused by
the ship motion in deep and confined water and the wide variety of ship forms and
sizes lead to various deterministic ship models. These models can be divided into two
groups: precise models for particular ship forms and sizes (Sobolev’s model (1976),
the cubic model of Abkowitz (1964), the quadratic model of Norrbin (1981) and the
MMG model (Ogawa and Kayama (1977)) and models of a greater generality but cha-
racterized by a lower accuracy (Pershitz, 1973; Nomoto, 1960). Here, the widely-used
continuous-time (CT) Pershitz model is chosen as our basic model to assure a good
trade-off between the model complexity and accuracy:

%‘? = KyVysin (4 - 8), (1)
v = KyVycos(y — 8), | (2)

d¢
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% = Kyw, (3)
%% == (Yi{)z (g318 + 5310) — Yg?‘swz (4)
% = "%(Q21ﬁ+h15|ﬁ|+3215)—7"21% (5)
V = VyKy, (6)
Ky = %% = % = (1+19°12V5%) 7 <1,

where Vi is the uniform (rectilinear) ship velocity. The state vector of the model un-
der consideration is z = [X,Y,9,w, 8, V]'. It includes the ship coordinates, heading,
rate of turn, drift angle and velocity ¢ being the control rudder angle deviation. The
constant hydrodynamic coeflicients g1, 721, S21, h1, ¢31, 731 and sz depend on
the ship geometry, first of all on the ship length L (Voitkounski, 1985). Equations
(3) and (6) illustrate the main feature of the dynamics, i.e. the non-linear dependence
between the ship’s rate of turn and velocity. This is the main difference between the
above model and the other well-known simple models (Bar-Shalom, 1992; Best and
Norton, 1997; Lerro and Bar-Shalom, 1993).

Very often (Pershitz, 1973; Voitkunski, 1985) the CT model (1)—(6) is simplified
by substituting the factor

Bo = —q + /g% + 4hir315|9]
g =

2h17”31

which is computed off-line, for the factor |3|, where ¢ = 21731 — g31721 and s =
791831 — T31821. The system of two first-order differential equations consisting of
eqn. (4) and the modified equation (5) is further transformed into two independent
second-order differential equations, omitting the negligible second derivatives:

dw L2 L
W= o+ qu— = ,
pdt Vg +quU + 8310 = 0, (4"
dg L _ ,
2p~—dt ——-VU +qB + 8210 =0, (5"

where p = 0.5(¢3; +r31), ¢* = ¢3;731 —@31721, ¢3; = @21 +h1fBo. The final CT model
(1)—(3), (4') and (6) is obtained by setting £ = 0.

The corresponding discrete-time (DT) model is as follows:
Xit1 = Xi + TVisin gy, (7)
Yit1 = Yi + TV cos by, : (8)
Y1 = Pp + TV [Q + 0.5T7Vi (e — Q) eT7], (9)



594 E. Semerdjiev and L. Mihaylova

Qk+1 = leTVkT + QU (1 b eTVkT) , (10)
Vi = VuKy = Vg (1+1.9021%) 7", (11)
where k£ =1,2,.... Here T is the sampling interval and
—0.5p +/0.25p% —g* | w [s316 + sign (6)gs180] [rad
T = m™], Qu=0=~ — .
L VU 1"31L m

The agreement between the results obtained using the CT model (1)-(6) and
those from the derived DT model (7)—(11) is demonstrated in (Semerdjiev et al.,
1998). That is why the DT model (7)—(11) is used for generation of the true data in
the simulations to be presented in the sequel.

The final DT model, suitable for implementation in a Kalman filter, is obta-
ined based on the following assumptions (Semerdjiev et al., 1998; Semerdjiev and
Mihaylova, 1998):

e The observed ship manoceuvres with a constant rate of turn:
Qk+l = Qk, ie. 7=0.

e The domain of unknown control parameters €;, can be ‘covered’ with a set of
three control parameters corresponding to three basic kinds of ship motions: a
uniform motion (Qr7), as well as left and right turns (Q; and Qg, respectively):

Q= [QU» QRvﬂL]I = [07U> _U]’ s

where U denotes a given constant rate of turn. The vector £ accounts for all
the ship manoeuvres and system noise in the band [~U,U]. A particular choice
of U is made based on the marine practice and some important international
navigation restrictions (Voitkounski, 1985).

* The attempt to introduce a vector of possible ship lengths has been recognised in
(Semerdjiev et al., 1998) as unsuccessful because of the small differences between
the resulting models. The uncertainty concerning the ship geometry has been
overcome by introducing a common constant average ship length [ = const
(Semerdjiev et al., 1998).

Consequently, the final version of the sought ship model takes the following form:

Xigs1 = Xig + TV, g1 sin v i, (12)
Yikt1 =Yir + TV, gy cOs i g, (13)
Yiks1 = Yig + TVi k418, (14)

Vik+1 = Kv,iVu . (15)
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The new state vector is xix = [Xik, Yik,¥ik, Vui)s Kvi = (1+1.90971%)~1 and
Q=[Qu, 0, Q) =[0,U,-U), i=1,2,3. :

Another version of our model, based on the augmented state vector zf, =
(Xi ks Yk, ¥ik, Vuk, AQ; x]', is suggested in (Semerdjiev and Mihaylova, 1998):

Xik+1 = Xip +TV; g1 sinedig, (16)
Yiryr =Yip + TV, pa1 coss i, (17
Yikr1 = Yik + TVipgr (i + AQy 1), (18)
Vik+1 = Kv;Vur, (19)
A g1 = AQyg, (20)

where ¢ = 1,2, 3. This model takes into account possible differences Af}; ; between
the unknown true ship rate of turn ; and its values §2; fixed in the IMM algori-
thm. The influence of A on the velocity is not taken into account because of its
insignificance.

It should also be noted that the above models can be used to cover simultaneous
heading and velocity manoeuvres. For that purpose, it is only necessary to introduce
velocity noise in the rectilinear motion model.

3. Standard IMM Algorithm

It is known (Bar-Shalom and Li, 1993; 1995) that in order to estimate the sys-
tem state within the framework of the Bayesian approach, the computational and
storage requirements increase exponentially with time, which makes the estimator
hard to implement in real time. To circumvent this problem, suboptimal estimators
with certain hypotheses management, such as pruning and merging, have been used,
leading to algorithms such as generalized pseudo-Bayesian (GPB) algorithms of first
order (GPB1), of second order (GPB2) and, in general, of order r (GPBr). It was
shown in (Li, 1996; Bar-Shalom and Li, 1993; 1995) that the IMM algorithm is one
of the most cost-effective schemes for estimation of hybrid systems. It yields the
performance of GPB2 with the lower requirements of GPB1.

The IMM algorithm is recursive (Blom and Bar-Shalom, 1988; Bar-Shalom and
Li, 1993; 1995; Li, 1996). Each cycle of the algorithm consists of four major steps:
interaction (mixing), filtering, mode update and combination. In each cycle, the initial
condition of the filter designed for a certain mode is obtained by interacting (mixing)
the state estimates of all filters at the previous time moment under the assumption
that this particular mode is in effect at the current time instant. This is followed by
the filtering (prediction and update) step, performed in parallel for each mode. Then
the combination (a weighted sum) of the updated state estimates from all filters yields
the state estimate.

The standard IMM filter is used here to develop its versions to be suitable for
ship tracking taking into account particular features of the ship models.
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4. Augmented IMM Algorithms for Tracking Manoeuvring
Ships

4.1. Fixed-Structure Augmented IMM Algorithm for Ship Tracking

In a general state-space form, the ship model and the measurement equation can be
written down as follows:

zr = f (xk—l,ﬂk_1) +9 (Qk_1) Vk—1, (21)
2k = hg (Th) + wy, (22)

where the state vector z; € R* is estimated based on the measurement vector
zx € R* in the presence of an unknown true control parameter ., € R*2. The
mutually independent additive system and measurement noise vectors v € R*™ and
wy, € R™ are white and Gaussian, i.e. vx ~ N(0,Qy), wi ~ N(0, Ri). Functions f,
g and h are known and remain unchanged during the estimation procedure.

To estimate the difference AS); 1. between the current true control parameter )
and its value ; fixed in the i-th IMM model, the system state model is augmented
by the equation

AQi,k = AQi,k—l, (23)
where

AQiy = Qp — Q. (24)

The state and system noise vectors of the i-th augmented model (; = T, N ) can be
written down in the form

! !
a ' ! e +n a __ ' ! 1, 1
Tl = [ T AQ } eR v = [ Vik Vo, ] eR 2,

In general, the new augmented model is non-linear:
:E?,k = fa (xf,k_l, Q, + AQi,k—-l) + ga (Qi + AQi,k._l) ’I)Zk__l, (25)
zr = h® (.’Ezk, Q; + AQ,;,]C) + wy. (26)

The functions f¢(-), ¢°(-) and A®(-) are known and remain unchanged during
the estimation procedure. The equations of the corresponding Extended Kalman
Filter (EKF) are derived by linearization of models (25) and (26). The functions
fo(Tik-1,0 +AQ; 1) and ¢° (Ti k-1, + AQ; 4—1) are expanded in the Tay-
lor series up to first order around the filtered estimate TF_q Jk—1 and the func-
tion h®(z;x,Q; + AQ; ) is expanded up to first order around the predicted estimate
231 /k—1 (Bar-Shalom and Li, 1993). Accordingly, the i-th EKF equations take the
form

Eirse = B e + Kipvik, (27)
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Epp = I (f?,k-uk_uﬂi + Aﬁi,k-—l/k—l) , (28)
Yok = zp — B (ﬁ;{k Jee1s Qi+ AD, /k_l) , (29)
Pz'a,k/k—l = ¢if;;‘,k—-lpia,k——1/k«1 (fgi,k—l), + Qf k-1, (30)
Sig = Wk Piseos (hg, ) + Re, (31)
Kiw = Pl (hen) Sids (32)
Pk = Plyjn—1 — KigSik (K2e), (33)

where K7, is the filter gain matrix, Pz.‘fk /k and Q7 are respectively the esti-
mation error and system noise covariance matrices, v;x and S;; denote respec-
tively the filter innovation and its covariance matrix. The system and measure-
ment Jacobians are foih-1 = 8f“(£zk_1/k_1,ﬂi +A9i,k—1/k——1)/8i'ik_1/k_1 and
hg.r = 6h“(if’k/k_1)/6ﬁ§fk/k_l, respectively. Here ¢; > 1 is the EKF fudge factor.
The restrictions Qi+AQi,k_1 /k—1 € [ min, £ max] are imposed to provide a minimal
model separation.

After the expansion of the ship models (12)—(15) and (16)—(20) in a Taylor time-
series, three IMM algorithm versions are derived. The IMM algorithm based on the
model (12)-(15) is further denoted by FS IMM, while the proposed AIMM algorithm
based on the model (16)—(20) is denoted by FS AIMM.

4.2. Variable-Structure Augmented IMM Algorithm for Ship Tracking

The FS AIMM algorithm can be transformed into a new VS AIMM algorithm by
substituting the random vector of control parameters Q;; for the constant vector
of deterministic parameters ;. At the beginning of each EKF (before the state
prediction step) in the IMM algorithm, the last filtered displacement Aﬁi}k_l k=1
corrects the old vector of control parameters ; ;_1:

Qg = Qi p1 + Aﬁi,k-—l/k~1 (o =), (34)
The new control parameters must satisfy the constraints

ik € [Qimin, Yimax] for all 1.
Then the model displacement Aﬁi,k_l/k_l is set to zero, i.e.

AQ 1 /k-1 = 0. (35)

Otherwise, it will be taken into account twice in the EKF equations.

Finally, it should be noted that the VS AIMM algorithm proposed here is general
and depends neither on the system to be implemented, nor on the measurement
models. It is an adaptive VS IMM algorithm using a minimal number of models and
self-adjusting their location in the continuous parameter domain.
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4.3. Implementation of the AIMM Algorithms

As for as the implementation of the AIMM algorithms in sea track-while-scan radars
is concerned, some particular features of these sensors are taken into account by using
the next measurement equation, i.e.

zr = Hxy + wy,

where H is the measurement matrix,

1
0= 0 00 ’
01 00
and wy is white Gaussian measurement noise with covariance matrix Ry. The polar

measurements ‘range-bearing’ z; = [ry, fi]' are transformed, for convenience, to the
Cartesian coordinates:

Xy =rpsin By, Y =1y cosfBi.

The measurement vector takes on the new form z; = [X},Y;]’. Furthermore, the
covariance matrix of the measurement errors becomes (Farina and Studer 1986)

o2sin? B, + r40% cos? B (Jﬁ - r'fcaf,) sin By, cos By
Rix =

3

(af - r%ag) sin Bk cos By o2 cos® B + rrog sin? By,

where o, and og are the range and bearing standard deviations, respectively.

The Jacobi matrix computed based upon the model (12)—(15) has the form

10 TKV,iVU,k/kCOS%Li,k/k TKV,iSiI”zi,k/k

fon = 0 1 —TKvy,Vyumsing TKv,iCOS%Zi,k/k
0 0 1 TKy 0
0 0 0 Kv;

The respective one based on the model (16)—(20) is

(1 0 TKV,iIA/U,k/k cos@,k/k TKV,isintﬁi,k/k 0 1
01 -—TKv,iVU,k/ksinﬁi,k/k TKV,iCOS"Z)i,k/k 0
ae=10 0 1 TKy,; (Qi+As’2i,k/k) TKv,Vu/k
0 0 0 Kv, 0
00 0 0 1 ]
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Hard logic is introduced in all IMM algorithms to avoid an undesirable combina-
tion of the estimates Viyg/k, Vik/x and Vg (Semerdjiev et al., 1998):

Viise = Voupe (i=2,3),
f/Ic/k = VU,k/k if pyr>0.5,

where p; is the probability of the event ‘the i-th model is topical at time %’ and
Vi /i is the overall (final) estimate of the ship velocity.

5. Performance Evaluation
5.1. Measures of Performance

The performance of the three foregoing IMM algorithms is compared with the use
of Monte Carlo simulations. The mean error (ME) and the root mean-square error
(RMSE) of each state component have been chosen as the measures of performance
(Bar-Shalom and Li, 1993). The ME and the RMSE of both the estimated coordinates
have been combined accordingly. The results of 100 independent runs, each lasting
200 scans (600s, T = 3s) are given in what follows.

The simulation parameters of the true model (7)-(11) are standard (Voitkounski,
1985; Semerdjiev et al., 1998): go1 = 0.331, 79y = —0.629, s9; = —0.104, h; = 3.5,
q31 = —4.64, r3; = 3.88, s33 = —1.019, L = 99m, bmin = 3°, dmax = 30°. The
initial conditions are Xy = Yy = 10000 m, o = 45°, Vy = 30m/s.

It is assumed that initially the ship moves rectilinearly. The true ship trajectory
is presented in Fig. 1. The applied pulse-wise rudder angle control law is

Smax, k€ [51,67],
0, kel[51,67].

d=

The control parameters of FS IMM and FS AIMM algorithms are fixed as follows:
Q = [0,U,-U], where U = 0.0066rad/m (which corresponds to the turn rate of
360°/min). The VS AIMM uses the same control parameters at its initialization. For
the VS AIMM algorithm it is assumed that |Q; min| = 0.0011 and |Q; max| = 0.0066.

The three IMM algorithms use the constant ship length [ = 69m. The EKF’s
fudge factors are also set constant for all IMM: ¢ = 1.03.

In the example considered below, the covariance matrix of the error in the me-
asurement is calculated for ¢, = 100m and g = 0.3°. The initial error covariance
matrices P, the initial mode probability vectors p and the transition probability
matrices Pr are chosen as follows:

FSIMM _ pFSAIMM _ 3: 2 2 2 2
Ps =P, = dlag{ ox Oy 0Oy Oy } )

VS AIMM _ ;: 2
P —dlag{ 0% o} o} 0¥ oiq },
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0.95
pFSTMM _  FSAIMM _ | VSAIMM _ | g 095 | |
0.025
06 0.2 0.2
PrFS IMM: PrFs AIMM = 0.5 0.5 0 ’
05 0 0.5
0.9 0.05 0.05
PI‘VS AIMM — 0.1 0.8 0.1 ,
0.1 01 038

ox =0y =0,, 0y =01° oy =10m, oaq =0.0lrad/m.

It is supposed that there is no system noise in the models, i.e. QR =Q; =0.
The Monte Carlo simulation results are shown in Figs. 2-12.

Generally, the VS AIMM algorithm is characterized by the best accuracy, the lo-
west peak dynamic errors and the shortest response time. These conclusions are con-
firmed by the ME and RMSE plots presented in Figs. 2-4 and Figs. 5-7, respectively.
The average mode probabilities are given in Figs. 8-10. The ship moves uniformly
at the beginning and at the end of the observed period, whereas in the midst of the
time horizon it makes a right turn that is reflected in the mode probabilities. The VS
AIMM algorithm also provides the best and fastest model recognition. From Figs. 11
and 12 it is obvious that the above excellent VS AIMM algorithm performance is due
to the self-adjustment mechanism for appropriately control parameter tuning.

The technique proposed here for multiple-model ship tracking with a variable set
of models can also be used in other applications.

25

VS AIMM

Y, [m]
15F

FS IMM

1 6 1 B iz 1% 13 iwm 14 O 2 40 60 80 100 120 140 160 180 200
X [ml x10° k

Fig. 1. True ship trajectory. Fig. 2. ME of both estimated coordinates, [m].
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Fig. 8. Average mode probabilities of FS IMM.
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6. Conclusions

Some new models which describe adequately the non-linear dynamics of the mano-
euvring ship motion are derived in the paper for the purposes of manoeuvring ship
tracking. A new variable-structure augmented IMM technique is also proposed. The
designed ship models are implemented using a standard IMM algorithm and its two
augmented IMM versions with fixed and variable model structures. The proposed new
AIMM algorithms use augmented state vectors and models to compensate for the dif-
ference between the control parameters fixed in the IMM models and their current
true values. Very good self-adjusting abilities are provided to the designed augmented
IMM algorithms due to the estimated rate of turn. The accomplished extensive Monte
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Carlo simulations show that the VS AIMM algorithm outperforms the FS ATMM and
FS IMM ones with respect to the estimation accuracy and adaptability.
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