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KINEMATIC APPROXIMATION OF
ROBOTIC MANIPULATORS

IeNnacy DULEBA*

A kinematic approximation of the nominal, reference kinematics of a manipu-
lator is addressed. The approximation task leads to a minimax optimization
problem. Some modifications facilitating the implementation of the algorithm
in search spaces of high dimensionalities are presented. A sub-gradient mesh
algorithm of solving the minimax task is given in detail. The approximation
of the CYBOTECH manipulator with a ULB robot is provided based on the
use of the Chebyshev metric. As an alternative, some measures of proximity of
manipulators are also introduced.
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1. Introduction

An engineer constructing a manipulator often faces the problem of an optimal design.
To fulfil many (usually opposite) requirements is a difficult task. Practical experience
and/or theoretical versatility may help to sketch an optimal construction of a manipu-
lator. An approximation problem arises when the design of a real robot is required as
close as possible to the optimal manipulator. In this paper, we concentrate on a kine-
matic design, when kinematic parameters of manipulators are optimized. A kinematic
approximation task is to find, among a parameterized family of robots, a kinematics
that is as close as possible to a given nominal one. The evaluation of a manipulator’s
kinematics can be based on harmonic maps (Park and Brockett, 1994), volumes of
their workspace (Yang and Lee, 1984), singularity avoidance (Spong and Vidyasagar,
1989), and some other dexterity measures derived from the singular values of the
Jacobian matrix of the manipulator, (Klein and Blaho, 1987).

In this paper, we evaluate kinematics according to the Chebyshev kinematic me-
tric introduced in (Tchon and Duleba, 1994). This metric joins mathematical clarity
with Euclidean intuitions of a distance. The metric measures the distance between a
pair of robots with similar kinematic structures by the maximization of the distance
between the points in their workspaces corresponding to the same configurations of
robots. The resulting minimax optimization task is solved with the use of a slightly
modified mesh algorithm.
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The results of this paper are important for the kinematic design of robot mani-
pulators. The problem can be met in CAD/CAM systems and in situations when a
manipulator should be replaced by a new one. Also some useful algorithmic tools are
discussed, which can be easily used in are ready to use for other applications where
the minimax problem appears.

This paper is organized as follows. In Section 2, the Chebyshev kinematic appro-
ximation task is defined. In this section, necessary formulae are provided to compute
the exponential coordinates. The coordinates are used in the Chebyshev metric to
equip the workspace of a manipulator with a measure of proximity of points. Sec-
tion 3 discusses a mesh method applied to solve the kinematic approximation task.
In Section 4, some results of computer simulations are presented for the approxima-
tion of the CYBOTECH robot with a ULB one. Both the robots have six degrees
of freedom to fully utilize exponential coordinates which express joint positional and
rotational characteristics of the workspace. Section 5 enumerates a few disadvantages
of the Chebyshev kinematic metric and introduces the Hausdorff kinematic metric
and measures that can be applied in the kinematic approximation task. Section 6
concludes the paper.

2. Chebyshev Kinematic Metric and Exponential Coordinates

The kinematics of a rigid manipulator with n degrees of freedom are described by
the formula, (Paul, 1981; Spong and Vidyasagar, 1989):

f:Q— X CSE(3),

where @ is a joint (configuration) space, and the workspace X is a subset of the
special Euclidean group SE(3) (Paul, 1981). Usually, the joint space () is a compact
subset of R™.

Let a pair of kinematics fi, f» sharing the same joint space ¢ be given. For
any configuration ¢ € @ a distance between

[ R T ]
fl(Q) = - 0 1 |
and
- _
=] B

is denoted by d(fi(q), fo(q)), where Ri, Ry € SO(3), Ty, T» € R3. The Chebyshev
kinematic metric maximizes the distance between the points in SE(3) corresponding
to the same configurations of manipulators over their joint space:

p(fi, fo) = magd(fl(q),fz(q))- (1)

q€

In order to apply (1), the distance d in SE(3) should be defined. For this purpose,
we use the exponential coordinates described in (Tchori and Duleba, 1993; 1994).
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The special Euclidean group SE(3) is both a differentiable manifold and an algebraic
group with matrix multiplication, being an example of a Lie group. At the identity of
the group, I4, a vector space called the Lie algebra se(3) is well defined. The space
collects the vectors tangent to the curves lying in SE(3) and passing through the
identity element. On each Lie algebra the exponential mapping into the corresponding
Lie group

exp : se(3) — SE(3) (2)
is defined according to the formula
exp(A) =T+ A+ A*/2+ - : (3)
Let
R T

SE(3)2 s = with cosa = —;—(TrR— 1),

0
where Tr is the trace operator. For 0 < a < , the map
exp~!: SE(3) — se(3) (R%),

setsin IR® the inverse of the exponential coordinates (r,t) according to the expression

(5 1])-100) “

where
_ 1 2sina — a(l+cosa), .,
b= (I3 2[T] + 2a?sin o ] ) T, ()
and
a T
= - < .
[r] 2sina(R R*) for 0<a<mw (6)

The rotation components of the exponential coordinates R® 3 r = (rq,72,73)7
are uniquely derived from the skew-symmetric matrix

0 —T3 T2
[7‘] = T3 0 —T1
—T3 T1 0

The inverse of the exponential coordinates can be extended to cover also the elements
of SE(3) resulting in @ =« (Duleba, 2000), i.e.

R;+1
2

Iri] = a for a=n and i=1,2,3. (7)
Equation (7) defines only the amplitudes of r coordinates. The signs of the compo-
nents are easy to determine from the entries of the matrix R lying outside the main
diagonal (Duleba, 2000).
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It is worth noticing that the rotational components of the exponential coordinates
arerelated to the well-known axis-angle representation (7, @) of the special orthogonal
group SO(3) (Spong and Vidyasagar, 1989) by the formula

r=af. (|r]l=«a)

The square of the distance between the points

Ry T
, S22 =
0 1

Ry T,

51 0 1

in SE(3), with the rotation and position coordinates weighted with the same coeffi-
cient, is equal to (Tchon and Dulgba, 1994)

d2(51, 52) = (’l‘, 7') + (t; t) = (’I‘,’I‘) + (076> + 7((7': 7')(9’9) - (’I', 9)2) (8)

To derive eqn. (8), eqns. (4)—(6) were in use. In eqn. (8), (-,-) denotes the inner
product in R® and

a

=g — (B R~ RR), 6=R"(T;-T),
. i o N2 (9)
— —_ = a2 2 - .
cosa =3 (Tr (Ry"Re) - 1), v=a <(sin %> 1)

A computationally simpler form of (8) is given by the expression (Tchor and Duleba,
1993):
2 2 2 6-1,_ s
d (81,82)':& +(5“T2—-T1” —W(T’,H) . (10)

where

o 2
0= 2 r= @ 7
- . o b} - . .
sin 5 2sina

The metric based on the exponential coordinates is not a unique metric structure
on SE(3). Two other well-established metrics were reported in (Park, 1995). Slightly
reformulated in order to use definitions (9), they are given by the formulae

d*(s1,82) = ca® +e||Tp — TP (11)
and
d*(s1,82) =ca’ +e||Ry RE Ty — T2, (12)

where ¢ and e are positive constants. Expressions (11) and (12) are sums of two
distances, the first one measures the proximity in the special orthogonal group S0(3),
while the other is the position proximity. The algorithm of kinematic approximation
developed in Section 3 also works for metrics (11) and (12).

It is well-known from the classical analysis that any non-negative function has
its optima at the same points as the function squared. For computational reasons, we



Kinematic approximation of robotic manipulators 609

prefer optimization of the square of the distance to avoid computationally expensive
operations, i.e.

P2 (f1, f2) = ma‘Xdz(fl( ), f2(0)) = *(f1(a"), f2(q))- (13)

Equations (10) and (13) constitute the basis for the computation of the Chebyshev
distance between two kinematics f; and fs such that fi(g) = s1 and fa(g) = ss.
The definition (13) can be extended naturally to cover a distance between a given
nominal kinematics fpom and a family of kinematics f € F:

2 — s 2
4 (fnom,]:) = ;%lgl:p (fnum7f)-

Usually, the family is parameterized with kinematic (geometric) parameters like trans-
lational shifts and axis misalignment angles. For this case, the Chebyshev kinematic
approximation task is defined as follows:

The Chebyshev kinematic approximation task: For the nominal kinematics
faom, with a joint space Q and a family of kinematics F = {f(p) | p € P} (where
P is a compact and convex set of the geometrical parameters of the family) with the
same joint spaces, find a parameter p* € P such that

P2 (fnoma f(p*)) = mlnp (fnomv flp )) = i}leigmaxdz (fnom(Q)a f(p, Q))

7€Q

= m ax F' 14

min max F'(p, g). (14)

Equation (14) introduces a standard minimax task with the performance index

F(p,q) to be optimized. In Section 3, a mesh method is presented for solving the
Chebyshev kinematic approximation task.

3. Mesh Method of Solving the Minimax Task

In order to solve the Chebyshev approximation task, we will apply the mesh method
set forth in (Demyanov and Malozemtsev, 1972). This method belongs to the class of
(sub-)gradient techniques. It relies on finding, in each iteration, a function taking a
(near-)maximal value of the performance index F(p,q) with respect to the configura-
tion variables. Then the function is minimized along the direction of its anti-gradient
with respect to kinematic parameters. In what follows, only the indispensable ingre-
dients of the required mesh method will be presented.

Let F(p,q) be the optimized function, p € P', ¢ € @, and P’ be an open
superset of the set P. It is assumed that F(p,q) is continuous on P’ x () along with
its partial derivative 0F (p,q)/0p. Our aim is to minimize the function

am=@%me (15)

on a convex and compact set of kinematic parameters P C P’. For a compact P C P’
and for some pp € P, the set

0) = {p € P, ¢(p) < é(po)} (16)
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is bounded and ¢(p) attains its minimum value on P, i.e. there exists a p* € P such
that ¢(p*) = minyep ¢(p).

The approximation task given by eqn. (14), equivalently introduced by (15), is
continuous both in the parameter and joint coordinates. The idea of the mesh method
is to discretize the joint space keeping the space of parameters continuous. The
continuous-discrete task is easier to solve than its continuous-continuous counterpart.
Below, Theorem 1 validating the discretization of the joint space will be presented
after the introduction of two convenient notations: the symbol [i : j] will denote the
set of integers from ¢ to j, |v|| = max; v; being the /., norm.

The joint space @ is covered by an everywhere dense mesh composed of N
points

GNz{inQ, ie[l:N]},
i.e. for any real number €> 0 there exists an indexl Ny such thgt for N > Ny and
Vg e Q: miniernllg—¢'ll = llg - Gnll < e Let f'(p) = F(p,q¢*) i €[1:N] and

¢n(p) = max fi(p) = max F(p,q). (17)

1€[1:N] q€G N

We assume that for NV large enough there exists at least one stationary point py € P
of the function ¢n(p)

. df'(pn) >
f ———, 2 — =0,
N
where
R(p)={i, i€ [L:N] A fi(p) = én(p)}- (18)
The following result guarantees the solvability of the continuous-discrete minimax

task:

Theorem 1. (Demyanov and Malozemtsev, 1972) Any limit point of the sequence
{p~}, indexed with finer and finer meshes, is a stationary point of the function é(p)
on the set P.

Before presenting an algorithm implementing the mesh method, we need to in-
troduce a couple of concepts used in its description:

e the neighborhood of a point p: P(p) ={z€ P, |]z—p|| <1},

e two sets of indices, labelling the functions which, for a current p, attain (near)
maximal values of ¢n(p); the first set is introduced by (18) while the other is
given by

Re(p) = {i, i € [1: N] A ¢n(p) — fi(p) <€},

e auxiliary functions corresponding to these sets of indices:

¥(#) = min_ max <‘9f”'(‘”),z‘p>, Ye(®) = min max <afi(p),z—p>.

2€P(p) i€ER(p) Jdp z€P(p) i€R(p) dp
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It can be checked that p* € P is a stationary point of ¢n(p) on P if ¢(p*) = 0.
For a fixed p, the function ¥.(p) is a non-increasing piecewise-constant function of ¢
(Demyanov and Malozemtsev, 1972). An algorithm of the mesh method, which finds
a saddle point of the function F(p,q), is described by the following steps:

Step 1. Set parameters ey > 0, pp > 0 and an initial point py € P.

Step 2. Let the k-th point py € M(po) (cf. (16)) be determined. If 1 (px) = O,
then py is a stationary point of ¢n(p) in P, so the algorithm is stopped and
a local minimum is found. Additionally, when the functions fi(p) are convex,
the minimum is global.

When v(py) < 0, a sequence of real, positive numbers €(v) = €/2", v =
0,1,... is checked as long as, for the first time, the following inequality holds:

e(pr) < —%e(v). (19)

This may happen even for v = 0. The index v determined by eqn. (19) is
denoted by v;. When the index is finite, the left-hand side of (19) is negative
while the right-hand side tends to zero.

Step 3. Compute 2z € P(pg) satisfying

8f(px) >

VYery)(Pr) = _ max <T,Zk—Pk

1€Rc(u,)(P)
Step 4. Minimize the function ¢(p) along the line joining 2z, and pg,
p=pila) =pr+alzx —pr), 0<a<l
pr(a) C P as a €[0,1]. We find ai € [0,1] such that

¢(pr(cx)) = min ¢ (pi(a)). (20)

a€f0,1]
Then P(p) 3 pr+1 = pr{ax) and ¢(pr+1) < ¢(pr)-
Step 5. Go to Step 2.

Tterating Steps 2-5, we obtain sequences {px}, {e(v)}, {2} and {ax}, where
pr € M(po), zx € P(pr), k=0,1,..., and

B(po) > d(p1) > -+ > d(px) > --- .

If the sequence {py} is finite, then its last element is a stationary point of the function
¢n(p) in P. When it is infinite, it can be proved (Demyanov and Malozemtsev, 1972)
that the sequence ¢ converges and ¢(py) — ¢d(p*).
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In any iteration of the algorithm, e(), zr and a4 should be found. The value
of ay is easy to obtain by the optimization of a univariate function ®(a) = ¢(px(ax))
over the interval [0,1] 3 a. A much more difficult problem is to find e(v;) and z’s,
as they result from solving the task

of'(p) > ,
max V2 - — min 21

i€R.(p) < Op P zeP(p) 21)
for a fixed p. Let Coe(p) be the convex hull spanned by vectors df*(p)/dp, i € R.(p).
Then the optimization task (21) can be rewritten as

max (v,z—p) — min . 22

v€Co.(p) ( p> 2€P(p) ( )
In the general case, the task given by (22) is far from being trivial. Fortunately,
for most robotic problems the set P is a cuboid pM" < p; < pr i=1,...,m,
where p™® and p®* are constants. For this particular case, eqn. (22) formulates a
linear-programming task. To see this, we set

P:{ZGR’”,z;“ingzigz:-“ax,izl,...,m}, (23)
and consider an extended search space composed of vectors w = (215 2m,u)T,
where u is a free auxiliary variable. Let w* = (2§,...,2%,u*) denote a vector
minimizing the linear form

L(w)=u
subject to

of'(p) :
< B y2=p) <u, 1€ Rp),

Zmln < zz < zmax

2 —_ —_— "1 bl

-1<z-p<1.

Then z* = (zf,...,2},) is a solution to the task introduced by eqn. (15). When
the set of kinematic parameters P is not an m-dimensional cuboid, a more general
minimax solver should be applied (Pin et al., 1994).

In the next section, the mesh algorithm will be slightly modified and applied to
the approximation of the CYBOTECH robot with a member of the ULB family of
robots.

4. Chebyshev Approximation of the CYBOTECH Robot
with a ULB Robot

4.1. Modified Mesh Method

A specific form of the set of parameters (23) encountered in robotic problems facilitates
solving the approximation task. On the other hand, the task is difficult to solve in the
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case of multi-dimensional joint and parameter spaces. A uniform mesh covering the
n-dimensional space with K trial points for each dimension consists of K™ points.
For robots fully employing both the positions and orientations of their tools, the joint
space should be at least six-dimensional. To make the Chebyshev approximation task
computationally tractable, we should reduce the number of mesh points. Therefore,
instead of considering the global mesh Gy, we form a set of local meshes G%¢ by
truncating the global mesh on a subset S C @ of the joint space, i.e.

GR°(S) = GNls- (24)

For any local reduced mesh, a solution to the approximation task is to be found. Let
(p*,q*) be the point of minimum of the function ¢(p) given by (15) and assume
that ¢* is not a boundary point of the current mesh G%°(S). Then the solution to
the Chebyshev approximation task is found. Otherwise, when ¢* is located on the
boundary, also a reduced mesh G'3°(S = S’) defined by centring the mesh, for the
next iteration, around ¢* € S’ C Q. The approximation problem is solved by applying
a two stage iterative produce. At its first step the approximation task is solved with
the current local mesh as the domain of search. Then, when an optimal point has
been found, the local mesh is centered around that point and the mesh is read for the
next iteration. Obviously, a stationary solution will be found as an upper-bounded
and increasing sequence of current best solutions defined by the iteration process.

Besides the reduction in the number of mesh points also an altered distance
between the points will be allowed to shorten the time of solving the approximation
task. A mesh with a rough grid is applied first. Then, when a stationary point for
this particular grid is found, the discretization is made finer and a solution is sought
alter initialization at the point of the recent optimum. The process can be repeated
several times. To measure a computational complexity of the Chebyshev kinematic
approximation, we use the formula

cmplx = iter x K™, (25)

where ‘iter’ is the number of evaluations of f*(p), ¢ € [1: N], K denotes the number
of points discretizing a single coordinate of the joint space (we assume that all joint
coordinates are discretized with the same number of points) and n stands for the
number of degrees of freedom. The measure of the computational complexity intro-
duced by (25) is valid when the auxiliary computations necessary when computing
the values of fi(p), i € [1: N] are negligible.

In order to determine a3, from (20), fi(p) should be evaluated many times (e.g.
using the golden section search algorithm (Vasilev, 1988)). To reduce the computa-
tional cost of computing ay, we propose to obtain its value based on the formula

1 — : (]
max [ (pe(ox)) = min max | f*(p(a)) @)
instead of (20). A significant difference between (20) and (26) is that the set of
functions indexed with ¢ has the power N for (20) and |R(px)| € N when (26) is
applied. Consequently, computing «j according to (26) is less involved. One serious
drawback in using (26) instead of (20) is that the former formula may sometimes
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violate the condition ¢(px+1) < ¢(px) required for convergence of the mesh algorithm.
However, the advantages of the modified way of setting the value of oy in reduction of
the computational complexity are so sound that we apply (26) to compute ay. After
computing ag, we check whether the condition ¢(pr+1) < ¢(pr) is satisfied. If this
is the case, the computational process progresses. Otherwise, only for one iteration,
formula (26) is substituted with (20), and the condition ¢(pr+1) < ¢(pr) must hold.

Our modifications of the basic mesh method to solve the minimax problem resul-
ting from the Chebyshev kinematic approximation task are the following. One global
dense mesh composed of an extremely large number of points is replaced by iteratively
defined local meshes with reasonable numbers of points. The local meshes can also
have varied distances between the neighbouring points so as to cover the whole search
space. The computational complexity of determining the value of aj was reduced by
using formula (26) instead of (20). The last modification is introduced to extend the
domain piz; of searching for «y to the interval pZ;, where Z, is a point at which
the line initialized at py and passing through z; meets the boundary of the set P.

The delineated kinematic approximation algorithm can be used not only to design
amanipulator close (in the Chebyshev sense) to a nominal manipulator (to be replaced
with the new design) but also to compare sub-manipulators, e.g. 3 DOF grippers to
check whether they can do the same manipulations in SO(3). The square of the
distance in SO(3) is given by the term (r,r) = a? in (8). The comparisons may be
restricted to any compact subset of their configuration spaces.

The modified mesh method of solving the Chebyshev approximation task will be
applied to approximate the CYBOTECH manipulator with a member of the ULB-
family of robots.

4.2. Simulation Results

To fully utilize both the position and orientation coordinates, we chose a ULB robot
with six degrees of freedom bearing the 6R kinematic structure, and a CYBOTECH
manipulator with 7 degrees of freedom and 7R kinematic structure. Since the Che-
byshev kinematic metric can be used only for the same kinematic structures, the last
degree of freedom of the CYBOTECH robot was left immobile. The kinematics of
these robots given in the standard Denavit-Hartenberg notation are provided in Ta-
ble 1. The data for the ULB robot were taken from (Renders et al., 1991) while for
the CYBOTECH robot from (Litvin et al., 1987). The robot to be approximated is
the CYBOTECH with kinematics fi = foom. Its approximation is sought within the
family of ULB robots with kinematics f»(p). The configuration space is 7% and the
space of parameters (az,ds,ds)” = (p1,p2,p3)T = p € P C R®. The mesh algori-
thm requires frequent evaluations of 0F(p,q)/dp. Using (10) and (14), after simple
computations we arrive at

BF(p, q) BHTQ — T1” 6—1 - 2/ . TBTQ .
—2 =2(T5 - T - 0 = .
Opi 2\ Op; 2 17112 OB o/’ " h2.3
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Table 1. Denavit-Hartenberg parameters of the CYBOTECH and ULB
manipulators. The asterisk denotes the variables of motion.

i  CYBOTECH ULB

a; [cm] i d; [cm)] | a;[°] l 8; || ailcm] l d; [em] | a;[°] | 8;
1 0 0 90 | * 0 0 —90 | *
2 |l a3 =76.2 0 0 | *|la=35 0 0o | *
3 || a3 =76.2 0 —90 | * 0 0 90 | *
4 0 0 —90 | * 0 dy=35| =90 | *
5 0 ds =152.4 | —90 | * 0 0 90 | *
6 0 0 90 | * 0 ds=10| 0 | *
7 0 0 0 |0 — — —_ | =

The steps of the mesh algorithm implemented for simulations are the following:
Step 1. Read in the initial data:

o the space of kinematic parameters pin | pmax | =1,2,3,

@ the initial point of search py € P,

e the number of mesh changes I,

e the initial mesh size Agq,

e the number of points discretizing each joint coordinate K, and

the initial translation of the mesh window 7.

Set 7 = 0 (the iteration counter). The initial mesh is given as
G = {002,084, 45, 90)")

g =Tn/2+jAg, j=0,...,K—1, i:2,...,6},

We set g1 = 0 as both the robots have the same first rotation axis zp and
p(f', ") should not depend on the choice of the first joint coordinate. For
simplicity, we set the most trivial value of q;.

Step 2. r +— 7+ 1 (i.e. substitute r + 1 for r).

Step 3. For the local mesh G’IE}C, find a solution to the minimax problem

(r)* (r)* : (r)x (%) — mi 2
(p »q ) ie. F(p ' q ) Igggqrélggcd(p,q),

with the use of the mesh algorithm and modifications presented in Subsec-
tion 4.1.
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Step 4. When ¢("* lies on the boundary of the mesh G¢, centre G'S¢ around
(r)x 4 )
g\ e

G = {(0»q2,Q3,Q4,Q5,QS)T, g = ¢ + (i — LK/2])Aq,

j:Q“wK—Li=z“wQ. (27)

(here |a] denotes the greatest integer which is less than or equal to @) and go
to Step 2. Otherwise, continue with Step 5.

Step 5. Check the stopping condition: if the mesh changed its size [ times, then stop
the computations. Otherwise, make the size of the mesh twice finer Aq +—
Agq/2, and centre G'%¢ around ¢{")* in accordance with (27).

Step 6. Go to Step 2.

The above algorithm covers only a family of tasks characterized by uniform me-
shes (each coordinate evenly partitioned using the same number of points and the
shift of the mesh window described by a constant value of T') covering sub-spaces of
the joint space. We selected this family of tasks because it can be coded with only a
few numbers. Computer simulations have to show the influence of some parameters
of the minimax task on the resulting solution p*.

In the very first simulations, we varied the value of K, determining the number
of points of the local mesh GI¢(|G19¢| = K™1), the size of the mesh Ag and the
number of changes in the grid . The remaining data were fixed as follows: the initial
point po = [35,35,10]7 (nominal parameters of the ULB robot); space of parameters:
P = [32,38] x [32,38] x [7,13]; lengths of the mesh discretization: Agq = 10°,20°, 30°;
number of mesh changes: [ =3 + Ag/10; initial mesh window: T =0,1,2,3. In the
simulations only formula (26) was used (with no switches to formula (20)). Conse-
quently, cycles in computations are possible. This means that, for some k, it may
happen that ¢(pr+1) > @(pr) and the values of ¢ oscillate (usually between two
values).

In most tables presenting the results of simulations we provide the following data:
the optimal value of ¢(p*), the optimal point in the space of kinematic parameters
p* and the configuration ¢* (without coordinate ¢ = 0) where the optimum was
located. When oscillations appear, the data of points of the circulation are shown.

At first, the influence of the number of points discretizing each single coordinate
of the joint space on the quality of the solution was tested. The results are presented in
Tables 2-4. The optimal point in the space of kinematic parameters does not depend
on the number of points discretizing each joint coordinate (cf. Tables 2-4). The
number of points in a local mesh strongly influences the complexity of the minimax
task. Accordingly, it is reasonable to use local meshes with only three points for each
joint coordinate. When a cycle in computations appears (cf. Table 2 for T = 3 and
Agq = 10°), it is advised to change the initial point of search, rather than to use
the computationally involved formula (20) to obtain oj. When there are no cycles,



Kinematic approximation of robotic manipulators 617
Table 2. Results for three points discretizing each joint coordinate.
[T] Ag = 10° | Ag =20° | Ag = 30° ]
303805 302055 309487
0 (32,32,7) (32,32,7) (32,32,7)
(—75,27,—85, 20, 25) (105, 35, —85, 15, 25) (105, 30, —-90,0,7)
104701 302055 309487
1 (32,32,7) (32,32,7) (32,32,7)
(80,145,107, 35,17) (105, 35, —85,15, 25) - (105, 30,-90, 0, —7)
267403 267293 276741
2 (32,32,13) (32,32,13) (32,32,13)
(=72, 32,-70, 145, —150) (105,35, —70,145, —150) | (105, 30, —90, 165, —172)
160100 161546 309487
(38,38,13) (38,32,13) (32,32,7)
3| (-170, —20, —80, ~90,—90) |(—150,—20, —90, —80, —100) (—75,30,—-90,0,7)
161546 160100 —
(38,32,13) (38,38,13) —
(—150, —20, —90, —80, —100) | (—170, —20, —80, —90, —90) —
Table 3. Results for five points discretizing each joint coordinate.
] Ag = 10° | Ag =20° [ Ag = 30° |
310905 303020 309688
0 (32,32,7) (32,32,7) (32,32,7)
(106,28,—-91,1, 5) (107,32, —87,15, 25) (105, 30, —86, 4, —4)
303020 309410 276954
1 (32,32,7) (32,32,7) (32,32,13)
(107,32, —87,15,25) (105,30, —87,15,7) (—75,30,—86,165, —172)
165368 154184 165587
(38,32,13) (38,32,13) (32,38,7)
2| (-110,-60,-100,130,—-70) | (—100,—60, 80,180, —60) |(180, —60, —90, —120, 180)
162358 162799 164810
(32,38,13) (32,38,7) (38,32,13)
(—140, -60, ~100, —140, —120)|(—140, —60, —80, —120, —80){ (—90, —60, —90, 180, —60)
303020 309410 309688
3 (32,32,7) (32,32,7) (32,32,7)
(-107,-32, —92, —15, —25) (=75,30,-92,-15,-7) (—75,30,—93,—4,4)

formulae (20) and (26) give the same optimal values. The results collected in Tables 2-
4 validate the claim that some joint coordinates of the optimal configuration ¢* tend
to a constant value (¢g%), while the others, e.g. (¢3), can take more than one optimal
75°). Since the trigonometric functions are periodic,
more than just one optimal point can be expected in the joint space.

value (here g5 = 105° or ¢}
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Table 4. Results for seven points discretizing each joint coordinate.

[T] Ag =10° [ Aq =20° [ Ag =30° |
311134 304010 310600
0 (32,32,7) (32,32,7) (32,32,7)
(106, 30, =91, 2, 5) (107,32, —90,22,25) (105, 30, —94, 2, 6)
311139 276524 276954
1 (32,32,7) (32,32,13) (32,32,13)
(106,30, 91, —2,—4) | (—74,30,—92,—160,166) | (105,30, —94, —165, —172)
276164 170206 310600
(32,32,13) (32,38,13) (32,38,7)
2 | (106,30, —93,157,166) | (—140, 60, —80,—60,—60) | ~(—75,30, —86, 2, —6)
- 160333 —
— (38,32,7) —
(—80, —60, —80, —60, —140) S
311134 310905 310600
3 (32,32,7) (32,32,7) (32,32,7)
(=75,40, —89,-2,—4) |  (=74,29, -89, -1, -5) (=75,30,—94,2,6)

Table 5. Computational complexity of the minimax approximation task
when using eqns. (20) and (26) to determine c.

o iter iter
K | IGK] eqn. (26) | eqn. (20)
3 243 42 106
5 3125 32 80
7 | 16807 24 40

To examine the influence of the initial point pg on the optimal set of parameters
p*, we chose the task defined by the data Ag =10°, T'= 0, K = 5. For the initial
points in the parameter space (37,37,12)T, (33,33,12)T, (33,33,8)T, (33,37,8)7,
(37,33,8)T, the optimal set of parameters is p* = (32,32,7)T. The results do not
depend on the initial point in the space of kinematic parameters because, due to the
low initial resolution of the mesh, the penetration abilities of the algorithm in the
joint space are high.

The aim of the next test was to evaluate the computational complexity when the
parameter a optimized in each iteration of the mesh algorithm is computed according
to either formula (20) or (26). As can be seen from Table 5, formula (26) speeds us
computations significantly. As has been mentioned before, the results obtained with
both the formulae are in most cases the same. The computational complexity is
mainly influenced by the number of points discretizing each joint coordinate, K,
cf. Table 5. The most computationally demanding task with K = 7 required a few
minutes on a PC.
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The next test checked the influence of varied ranges p'™ and p™®*, i =1,2,3 of
the set of kinematic parameters on the optimal point in this set. The simulations were
initialized at the point po = [32,32,10)7 with Ag = 10° and T = 0. The results
shown in Table 6 indicate that the optimal set of kinematic parameters is always
located on the boundary of the space of kinematic parameters. This observation also

confirms the results from Tables 2—4 and 6.

Table 6. Ranges of feasible kinematic parameters.

ppin |l 32 32 25 25 32 32 32 25
pPx | 38 45 38 38 38 38 38 38
pim |l 32 32 25 32 25 32 32 32
pPax |l 38 45 38 45 38 38 38 38
pin 7 7 5 7 7 5 7 7
pracll 13 20 13 13 13 13 20 13
p* | 32,32,732,32,7|25,25,5125,32,7 | 32,25,7 | 32,32,5 | 32,32,7 | 25,32,7
p |l 303805 | 303805 | 281996 | 296552 | 292200 | 300501 | 303805 | 296552

Tt should be mentioned that the basic algorithm of solving the minimax task (De-
myanov and Malozemtsev, 1972), cannot be applied in the kinematic approximation
task due to a burst-of-computation phenomenon. The phenomenon arises when a sin-
gle dense mesh in the joint space is applied to preserve the reliability of the solution.
When the modifications presented in this paper are applied, locally optimal solutions
are found with a reasonable amount of computations.

5. Alternative Kinematic Measures and Metrics

Besides advantages, the Chebyshev metric used in the kinematic approximation task
possesses some disadvantages. It compares only the kinematics of the manipulators
which belong to the same class described by three conditions: the same number of
degrees of freedom, the same kinematic structure and identical joint spaces. When
the first two conditions are fulfilled, the third can be satisfied by possibly shrinking
the joint space of one of the manipulators. Sometimes the first two conditions are too
strong to be met. For those cases, we propose a Hausdorff kinematic metric.

Let (V C SE(3),d) be a compact space equipped with the distance measure d
in SE(3) introduced in (10). The measure of proximity of a point z € SE(3) and a
compact subset A C SE(3) is equal to

d(z,A) = min d(z,y). (28)

The distances between two compact sets A, B C SE(3) are described by
d(A,B) = Iar:lgicd(x,B), d(B,A) = max d(z, A). (29)
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The Hausdorff metric measuring the distance between sets A and B can be defined
as follows:

h(A, B) = max (d(A, B),d(B, A)). (30)

As a joint space of robotic manipulators is a compact set and kinematics are
continuous functions of configurations, the definition (30) can be applied to robotic
manipulators by setting

A= fi(Q1), B=f(Q2), (31)

Here n; and ny are degrees of freedom of the manipulators, @; and Q, denote their
joint spaces, and fi and f» describe their kinematics, respectively. The Hausdorff
kinematic proximity measure of the manipulators’ kinematics is introduced by

pu(f1, f2) = h(f1(Q1), £2(Q2)). (32)

Somewhat informally, we call py the Hausdorff kinematic metric, although
pr(f1, f2) may vanish even when f; # f. But from the point of view of performing
robotic tasks in a workspace, the two kinematics are kinematically equivalent. Equ-
ation (32) characterizes both the kinematic equations and joint spaces by measuring
the distance between some points in SE(3). As opposed to the Chebyshev kinematic
metric, the Hausdorff kinematic metric, can be defined for any pair of robots with no
restrictions on their joint spaces.

Additionally, the following measures of the distance between two kinematics can
be defined:

ainf)=[ e (| min d0i). Ale)) da,

q 72E€Q2CR™2
(33)
da(f2, f1) = /qzechR*Lz sign (qleglligmld(f1(Q1),f2((I2))) dgo,
and
m(f1, f2) = max (di (f1, f2), da2(f2, f1)), (34)

where the sign function is defined classically, d(fi(q1), f2(g2)) being the distance
between points f1(q1) and fa(g2) in SE(3). The measure m can be interpreted as
a symmetric difference of two sets of masses f1(Q1) and f»(Q2), respectively. The
density of a mass takes the value of zero on the set f1(Q1)N f2(Q2) while outside this
set it takes a value that depends on the number of configurations realizing a given
point in SE(3).

It seems that the Hausdorff metric shadows somehow the information about
the components maximized, as it evaluates only boundary points of robot workspa-
ces. Expressions (29), (31) or (33) characterize the manipulator’s kinematics better
than (32). All the kinematic measures introduced in this subsection seem to be com-
putationally more involved than the Chebyshev kinematic metric.
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Fig. 1. The global coordinate frame and local coordinate frames of manipulators.

For the Chebyshev and Hausdorff kinematic metrics, as well as for measures
(29), (31) and (33), (34), one more assumption can be avoided. It concerns the
identity of the base coordinate frames Opzoyozo of the robots to be compared. To
wealken this assumption, we introduce an extra zeroth degree of freedom, as depicted in
Fig. 1. In this case, the approximation task requires also to determine the locations
of local coordinate frames of robots s},s%2 € SE(3) in the global coordinate frame
Toyozo. Without loss of generality, we can set either sj = Iy or s = I4, i.e. one of
local coordinate frames coincides with the global coordinate frame.

6. Conclusions

In this paper, a Chebyshev kinematic approximation of robot manipulators has been
proposed. The minimax problem generated by the approximation task is solved with
a modified mesh algorithm. The relevant details of the algorithm together with its
modifications have been given. The modifications are aimed at reducing the compu-
tational complexity of the algorithm. The approximation task has been illustrated
with the approximation of the CYBOTECH robot with a member of the ULB family
of robots. Those robots constitute a good choice for the approximation task as they
possess at least six degrees of freedom and fully utilize motion abilities in the general
workspace (a six-dimensional subset of SE(3)). The Chebyshev approximation task is
computationally involved and can be solved only in an off-line mode. However, there
is no need to solve this task in real time. Some conditions constituting the Chebyshev
kinematic metric have been weakened and, as an alternative, the Hausdorff kinematic
metric as well as a measure of the proximity of manipulators given by (33) and (34)
have been introduced.
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