
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.4, 753–772 753

SHARP REGULARITY OF THE SECOND TIME

DERIVATIVE wtttttt OF SOLUTIONS TO KIRCHHOFF

EQUATIONS WITH CLAMPED BOUNDARY

CONDITIONS∗

Irena LASIECKA∗, Roberto TRIGGIANI∗

We consider mixed problems for Kirchhoff elastic and thermoelastic sys-
tems, subject to boundary control in the clamped Boundary Conditions B.C.
(“clamped control”). If w denotes elastic displacement and θ temperature,
we establish optimal regularity of {w, wt, wtt} in the elastic case, and of
{w, wt, wtt, θ} in the thermoelastic case. Our results complement those present-
ed in (Lagnese and Lions, 1988), where sharp (optimal) trace regularity results
are obtained for the corresponding boundary homogeneous cases. The passage
from the boundary homogeneous cases to the corresponding mixed problems
involves a duality argument. However, in the present case of clamped B.C., and
only in this case, the duality argument in question is both delicate and technical.
In this respect, the clamped B.C. are ‘exceptional’ within the set of canonical
B.C. (hinged, clamped, free B.C.). Indeed, it produces new phenomena which
are accounted for by introducing new, untraditional factor (quotient) spaces.
These are critical in describing both interior regularity and exact controllability
of mixed elastic and thermoelastic Kirchhoff problems with clamped controls.

Keywords: Kirchhoff elastic and thermoelastic plate equations, clamped

boundary conditions

1. Introduction, Motivation, Statement of Main Results
on Regularity of Kirchhoff Systems with Clamped
Boundary Controls

The main goal of this note is to provide sharp, in fact optimal, regularity results on the
second time derivative wtt of mixed problems involving Kirchhoff elastic and thermoe-
lastic systems, with control acting in the clamped Boundary Conditions (B.C.). Some
sharp trace regularity results for the corresponding homogeneous Kirchhoff elastic and
thermoelastic systems are already available in the literature (Lagnese and Lions, 1988,
p.123, p.157, p.158). However, the passage—by duality or transposition—from the lat-
ter homogeneous problem in (Lagnese and Lions, 1988) to the former mixed problem
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given here is both delicate and technical. In this respect, the clamped B.C. are ‘excep-
tional’ within the set of canonical B.C. (hinged, clamped, free B.C.). As we shall see,
this passage will require: first, the introduction of untraditional, new function spaces
(called L̃2(Ω) and H̃−1(Ω) in this paper: see (19) and (57) below); next, the study
of their properties (in particular, their key characterizations as appropriate factor, or
quotient, spaces, given in Proposition 3 and Proposition 4, respectively, along with
the identity in (60)); finally, some untraditional and non-standard dualities, dictated
by the intrinsic underlying spaces. Key regularity results of the present paper follow.

1.1. The Elastic and Thermoelastic Mixed Problems

Elastic Kirchhoff equation. Let Ω be an open bounded domain in � n with smooth
boundary Γ. Consider the following Kirchhoff elastic mixed problem with clamped
boundary control in the unknown w(t, x):



























wtt − γ∆wtt +∆2w = 0 in (0, T ]× Ω ≡ Q, (1a)

w(0, · ) = w0, wt(0, · ) = w1 in Ω, (1b)

w|Σ ≡ 0,
∂w

∂ν

∣

∣

∣

∣

Σ

≡ u in (0, T ]× Γ ≡ Σ. (1b)

In (1a), γ is a positive constant to be kept fixed throughout this paper: γ > 0.
When n = 2, problem (1) describes the evolution of the displacement w of the elastic
Kirchhoff plate model, which accounts for rotational inertia. In it, the constant γ is
proportional to the square of the thickness of the plate (Lagnese, 1989; Lagnese and
Lions, 1988).

Thermoelastic Kirchhoff equations. With Ω, Γ and γ > 0 as above, consider
now the corresponding thermoelastic mixed problem with clamped boundary control
in the unknown {w(t, x), θ(t, x)}:











































wtt − γ∆wtt +∆2w +∆θ = 0 in (0, T ]× Ω ≡ Q, (2a)

θt −∆θ −∆wt = 0 in Q, (2b)

w(0, · ) = w0, wt(0, · ) = w1, θ(0, · ) = θ0 in Ω, (2c)

w|Σ ≡ 0;
∂w

∂ν

∣

∣

∣

∣

Σ

≡ u; θ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ. (2d)

Again, when n = 2, problem (2) describes the evolution of the displacement
w and of the temperature θ (with respect to the stress-free temperature) of the
thermoelastic Kirchhoff plate model, which accounts for rotational inertia (Lagnese,
1989; Lagnese and Lions, 1988).
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1.2. Statement of Main Results: Optimal Interior Regularity

The following results provide optimal regularity properties for the mixed problems (1)
and (2). They justify the introduction of the spaces L̃2(Ω) and H̃−1(Ω) in Sec-
tions 2.2–2.4, and Section 3, respectively.

Theorem 1. Consider the Kirchhoff elastic problem (1) with {w0, w1} = 0 subject
to the hypothesis that

u ∈ L2
(

0, T ;L2(Γ)
)

≡ L2(Σ). (3)

Then, continuously,


















w ∈ C
(

[0, T ];H10 (Ω)
)

, (4)

wt ∈ C
(

[0, T ]; L̃2(Ω)
)

, (5)

wtt ∈ L2
(

0, T ; H̃−1(Ω)
)

. (6)

Conclusions (4)–(5) of Theorem 1 are proved in Section 4.4 of (Lasiecka and
Triggiani, 2000b). A complementary subjectivity result is given in Theorem 1.3.1 of
(Lasiecka and Triggiani, 2000b). In this note we focus on proving (6) for wtt.

Theorem 2. Consider the Kirchhoff thermoelastic problem (2) with {w0, w1, θ0} = 0,
subject to the same hypothesis (3) on u. Then, the map

u ∈ L2
(

0, T ;L2(Γ)
)

⇒



























{w,wt} ∈ C
(

[0, T ];H10(Ω)× L̃2(Ω)
)

, (7)

[wtt − 1γ θ] ∈ L2
(

0, T ; H̃−1(Ω)
)

, (8)

θ ∈ Lp
(

0, T ;H−1(Ω)
)

∩ C
(

[0, T ];H−1−ε(Ω)
)

,

1 < p <∞; ∀ ε > 0, (9)

is continuous. However, in addition, we have that
{

θ ∈ C
(

[0, T ];L2(Ω)
)

, and wtt ∈ L2
(

0, T ; H̃−1(Ω)
)

, but not

continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.
(10)

Again, conclusions (7)–(8) of Theorem 2 are proved in Section 5 of (Lasiecka and
Triggiani, 2000b). In this note, we focus on proving (9) and (10) for wtt and θ.

The present note—as well as (Lasiecka and Triggiani, 2000a; 2000b)—is stimu-
lated by the original dual results given in (Lagnese and Lions, 1988), which deal with
the trace regularity of appropriate (dual) problems. However, in the case of clamped
B.C., the duality argument is delicate and leads to the new (factor) spaces L̃2(Ω),
H̃−1(Ω), defined in the subsequent sections. Additional information is reported at the
end of Section 1 of both (Lasiecka and Triggiani, 2000a; 2000b). A “clamped control”
as in (1c) or (2d) was labeled “eminently reasonable” by an expert in theoretical
mechanics.
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Theorems 1 and 2 are the main results of this note regarding the (optimal) inte-
rior regularity of elastic and thermoelastic mixed problems, with clamped boundary
controls. To achieve them, we need to introduce and study the properties of two un-
traditional or new spaces L̃2(Ω) and H̃−1(Ω) below, which, by consequence, have
a natural invariance property built in with respect to the dynamics. These spaces
occur also in describing the regularity of, say, the Kirchhoff elastic problem under
irregular right-hand side. This is carried out in Section 4.1 of (Lasiecka and Triggiani,
2000b), which complements results presented in (Triggiani, 1993, Prop. 3.4), which
were motivated by point control problems. We finally note that the regularity results
of Theorems 1 and 2 are critical in the study of the corresponding exact controllability
for elastic Kirchhoff equations, or simultaneous exact/approximate controllability of
thermoelastic Kirchhoff equations, under the action of clamped boundary controls,
see (Eller et al., 2001a; 2001b; Triggiani, 2000).

2. The space L̃ � (Ω) and its properties

We first recall the operators which play a key role in the definition of the space L̃2(Ω).
Next, we study their relevant properties (Lasiecka and Triggiani, 2000a; 2000b).

2.1. The Operators A, A, Aγγγ. The Operator A
1

2A−1γγγ

Let Ω be an open bounded domain in � n with smooth boundary Γ. We define

Af = ∆2f, D(A) = H4(Ω) ∩H20 (Ω), (11)

Af = −∆f, Aγ = I + γA, D(Aγ) = D(A) = H2(Ω) ∩H10 (Ω), (12)

so that, with equivalent norms, we have the following identifications:

D(A 12 ) = H20 (Ω), D(A
1
4 ) = D(A 12 ) = D(A

1
2
γ ) = H

1
0 (Ω). (13)

The space D(A
1
2
γ ) will always be endowed with the following inner product, unless

specifically noted otherwise:

(f1, f2)
D(A

1
2
γ )
= (A

1
2
γ f1,A

1
2
γ f2)L2(Ω) = (Aγf1, f2)L2(Ω), ∀ f1, f2 ∈ H10 (Ω), (14)

where, at this stage, we denote with the same symbol the L2(Ω)-inner product and
the duality pairing ( · , · )V ′×V , V = H10 (Ω), V ′ = H−1(Ω) with L2(Ω) as a pivot
space (Aubin, 1972, Thm.1.5, p.51), for the last term in (14).

The following closed subspaces of L2(Ω) play a critical role. Consider the null

space N of the operator (1− γ∆) : L2(Ω)→ H−2(Ω) = [D(A 1
2 )]′, and so let

H ≡
{

h ∈ L2(Ω) : (1− γ∆)h = 0 in H−2(Ω)
}

= N
{

(1− γ∆)
}

, (15)

be the space of ‘generalized harmonic functions’ in L2(Ω). H depends on γ, of course.
For instance, for n = 1, we have H = span {e−

√
1/γ x, e

√
1/γ x}.
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Let H⊥ be its orthogonal complement in L2(Ω), and Π = Π∗ be the orthogonal
projection L2(Ω) onto H⊥:







H⊥ =
{

f ∈ L2(Ω) : (f, h)L2(Ω) = 0, ∀ h ∈ H
}

,

L2(Ω) = H⊕H⊥, ΠL2(Ω) = H⊥.
(16)

2.2. Definition of the Space L̃2(Ω). Equivalent Formulations

The definition of the following space arises in duality considerations involving Kirch-
hoff elastic problems with clamped boundary conditions and their corresponding ther-
moelastic versions. This was already explained in the PDE duality analysis, beginning
with (1.3.5) and leading to (1.3.12) of (Lasiecka and Triggiani, 2000b). This is also
explained in Section 4 of (Lasiecka and Triggiani, 2000b): See the critical eqns. (4.1.8)
and (4.4.7) of (Lasiecka and Triggiani, 2000b), in a systematic functional analytic
approach. See also (Lasiecka, 1989). We consider (see (11)–(14)):

(i) the space D(A 1
2 ) ≡ H20 (Ω) as a closed subspace of

D(Aγ) ≡ H2(Ω) ∩H10 (Ω), (17)

(ii) the space D(A
1
2
γ ) as a pivot space, with norm as in (14),

‖f‖2
D(A

1
2
γ )
= (A

1
2
γ f,A

1
2
γ f)L2(Ω), ∀ f ∈ D(A

1
2
γ ) ≡ H10 (Ω). (18)

However, the space D(A 1
2 ) is dense in D(A

1
2
γ ), so the identification result D(A 1

2 ) ⊂
D(A

1
2
γ ) ⊂ [D(A 1

2 )]′ in (Aubin, 1972, p.51) applies with duality with respect to D(A
1
2
γ )

as a pivot space. We then define the (Hilbert) space L̃2(Ω) as follows:

L̃2(Ω) = dual of the space D(A
1
2 ) with respect to the space D(A

1
2
γ )

as a pivot space, endowed with the norm of (18) or (14). (19)

This means the following: let f ∈ D(A 1
2 ) ≡ H20 (Ω) ⊂ D(Aγ), or φ = A

1
2 f ∈ L2(Ω).

Then:

g ∈ L̃2(Ω)⇐⇒ (f, g)
D(A

1
2
γ )
= (Aγf, g)L2(Ω) = finite, ∀ f ∈ H20 (Ω),

= (f,Aγg)L2(Ω) = (A−
1
2φ,Aγg)L2(Ω)

= (φ,A−
1
2Aγg)L2(Ω) = finite, ∀ φ ∈ L2(Ω), (20)

where we write in the same way inner products and corresponding duality pairings.
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Proposition 1. (Lasiecka and Triggiani, 2000b)
(i) Definition (20) is equivalent to the following restatement:

g ∈ L̃2(Ω) ⇐⇒ (Aγf, g)L2(Ω) = (F, g)L2(Ω)

=
(

(1− γ∆)f, g
)

L2(Ω)
=
(

f, (1− γ∆)g
)

L2(Ω)
= finite (21)

∀ f ∈ H20 (Ω), or ∀ F ∈ H⊥, where F = Aγf = (1− γ∆)f .
(ii) Definition (20) is equivalent to the following restatement:

g ∈ L̃2(Ω)⇐⇒ A−
1
2Aγg ∈ L2(Ω). (22)

(iii) We have the following set-theoretic and algebraic (but not topological, see
Proposition 3 below for the topological statement, eqn. (25)) inclusion L̃2(Ω) ⊃
L2(Ω).

2.3. Further Description of the Space L̃2(Ω)

Proposition 2. (Lasiecka and Triggiani, 2000b) (a) With reference to (21), we have
that

g ∈ L̃2(Ω)⇐⇒



























g has a component g1 defined by

g1 = Πg = g|H⊥ ∈ H⊥ ⊂ L2(Ω)
which is the orthogonal projection of g

onto H⊥,

(23a)

in which case

(i)

(1− γ∆)g = (1− γ∆)g1 in H−2(Ω), (23b)

(ii)

A−
1
2Aγg = A−

1
2Aγg1 ∈ L2(Ω). (23c)

(b) Let g ∈ L̃2(Ω). Its norm is

‖g‖L̃2(Ω) = sup
F∈H⊥;‖F‖L2(Ω)=1

{|(F, g1)L2(Ω)|} = ‖g1‖L2(Ω). (24a)

In particular,

‖h‖L̃2(Ω) = 0, ∀ h ∈ H; ‖F‖L̃2(Ω) = ‖F‖L2(Ω), ∀ F ∈ H
⊥. (24b)
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2.4. The Space L̃2(Ω) is Isometric to the Factor Space L2(Ω)/H

Proposition 2 suggests that L̃2(Ω) is isometric to the factor (or quotient) space
L2(Ω)/H, hence to H⊥: in L̃2(Ω), all generalized harmonic functions h ∈ H have
zero L̃2(Ω)-norm. This result is correct and is given below.

Proposition 3. (Lasiecka and Triggiani, 2000b) The space L̃2(Ω) as defined in (19)
is isometrically isomorphic (congruent, in the terminology of [Taylor and Lay, 1980,
p.53]) to the factor (or quotient) space L2(Ω)/H, where H is defined by (15). In
symbols:

L̃2(Ω) ∼= L2(Ω)/H ∼= H⊥. (25)

Thus, if J denotes the isometric isomorphism between L̃2(Ω) and L2(Ω)/H, we then
have for g ∈ L̃2(Ω):

‖g‖L̃2(Ω) =
∥

∥[Jg]
∥

∥

L2(Ω)/H
= inf
h∈H
‖Jg − h‖L2(Ω) = ‖g1‖L2(Ω), (26)

for the unique element g1 = Πg ∈ H⊥, g1 ∈ [Jg] (the latter being the coset or
equivalence class of L2(Ω)/H containing the element Jg).

(x, y)L̃2(Ω) =
(

[Jx], [Jy]
)

L2(Ω)/H
= (ξ, η)L2(Ω) = (x1, y1), ∀ ξ ∈ [Jx], η ∈ [Jy], (27)

where x1 = Πx, y1 = Πy.

3. The Space H̃−1(Ω)≡[H
1(Ω) ∩ H⊥⊥⊥]′ and Its Properties

The consideration of this section is critical to establishing the regularity of the second
time derivative wtt of the Kirchhoff elastic or thermoelastic problems with clamped
mechanical boundary conditions: see (6) and (9), respectively, to be proved in Theo-
rem 3 and Theorem 4, respectively.

3.1. The Operator A
3

4A−1γγγ

With reference to the operator A in (11), we recall that the space D(A 3
4 ) is given

by (Giles, 2000)

D(A 34 ) =
{

f ∈ H3(Ω) : f |Γ = 0,
∂f

∂ν

∣

∣

∣

∣

Γ

= 0

}

≡ H3(Ω) ∩H20 (Ω), (28)

with equivalent norms, which complements the identifications in (13).

The counterpart of Lemma 2.1.2 in (Lasiecka and Triggiani, 2000b) for L̃2(Ω) is
given next.
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Lemma 1. With reference to (11), (12), (28), (16), we have:
(a1)















Aγ : continuous D(A
3
4 ) ≡ H3(Ω) ∩H20 (Ω)→

[

H1(Ω) ∩ H⊥
]

;

equivalently,

AγA− 34 : continuous L2(Ω)→
[

H1(Ω) ∩ H⊥
]

.

(29)

(a2) AγA− 34 is injective (one-to-one) on L2(Ω):

AγA−
3
4x = 0, x ∈ L2(Ω)⇒ x = 0. (30)

(a3) For F ∈ L2(Ω), we have

A−1γ F ∈ D(A 3
4 )⇐⇒ A

3
4A−1γ F ∈ L2(Ω)⇐⇒ F ∈

[

H1(Ω) ∩ H⊥
]

. (31)

Thus, by the closed graph theorem, the operator A
3
4A−1γ , as an operator on L2(Ω),

has the following domain:

D
(

A
3
4A−1γ

)

≡
[

H1(Ω) ∩H⊥
]

. (32)

(a4) (improving upon (a1))














Aγ is an isomorphism from D(A 3
4 ) ≡ H3(Ω) ∩H20 (Ω)

onto [H1(Ω) ∩H⊥]; equivalently, (33a)

AγA− 34 is an isomorphism from L2(Ω) onto [H
1(Ω) ∩ H⊥], (33b)

with bounded inverse
(

AγA−
3
4

)−1
= A

3
4A−1γ continuous from

[

H1(Ω) ∩ H⊥
]

onto L2(Ω). (34)

(a5) The elliptic problem






(1− γ∆)ψ = F in Ω, or Aγψ = F,

ψ|Γ = 0 on Γ,
(35)

{

has a unique solution

ψ ∈ H3(Ω) ∩H20 (Ω)
⇐⇒ F ∈

[

H1(Ω) ∩H⊥
]

. (36)

Proof. (a1) Let f ∈ H3(Ω) ∩ H20 (Ω) ≡ D(A
3
4 ) ⊂ D(Aγ) ≡ H2(Ω) ∩ H10 (Ω), so that

F ≡ Aγf = (1 − γ∆)f ∈ H1(Ω), as desired. Moreover, if h ∈ H, see (15), since
f ∈ H20 (Ω) in particular, then Green’s identity yields

(F, h)L2(Ω) =
(

(1− γ∆)f, h
)

L2(Ω)
=
(

f, (1− γ∆)h
)

L2(Ω)
= 0, (37)

and then F ∈ H⊥ as well. Thus, F ∈ [H1(Ω) ∩H⊥].
(a2) This is immediate, since A−

3
4x ∈ D(Aγ) for x ∈ L2(Ω), as noted above in (a1).
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(a3) We first show that the right side of (31) implies the left side. Take at first
F ∈ H1(Ω) so that A−1γ F ∈ D(Aγ) (conservatively), and

ψ ≡ A−1γ F ⇒ Aγψ = F or
{

(1− γ∆)ψ ≡ F in Ω,

ψ|Γ = 0 on Γ.
(38)

Then elliptic theory (Lions and Magenes, 1972) yields ψ ∈ H3(Ω) ∩ H10 (Ω). Next,
we recall Lemma 2.1.2 (a3) of (Lasiecka and Triggiani, 2000a; 2000b) stating that for
F ∈ L2(Ω),

∂ψ

∂ν

∣

∣

∣

∣

Γ

=
∂A−1γ F

∂ν

∣

∣

∣

∣

Γ

= 0⇐⇒ F ∈ H⊥. (39)

Thus, using ⇐ in (39), we see that F ∈ [H1(Ω)∩H⊥] implies by the argument above
that the solution of (38) satisfies ψ ∈ H3(Ω) ∩ H20 (Ω). Thus, ψ ≡ A−1γ F ∈ D(A 3

4 )

by (28), and then A
3
4A−1γ F ∈ L2(Ω), as desired.

Conversely, we prove that the left side of (31) implies the right side. Let A
3
4ψ ∈

L2(Ω) for ψ ≡ A−1γ F , F ∈ L2(Ω). Then, ψ ∈ H3(Ω) ∩ H20 (Ω) by (28). Next, the
elliptic problem in (38) yields (Lions and Magenes, 1972, p.188) that F ∈ H1(Ω).
Moreover, (39) this time from left to right ⇒ yields F ∈ H⊥. Hence, F ∈ [H1(Ω) ∩
H⊥], as desired.

(a4) Parts (a1) and (a3) yield part (a4).

(a5) Statement (36) is a PDE reformulation of (31).

Remark 1. The above argument in (a3) shows that for F ∈ L2(Ω) we have

F ∈ [H10 (Ω) ∩H⊥]⇐⇒ ψ = A−1γ F ∈ D(A
3
2
γ ),

D(A
3
2
γ ) =

{

f ∈ H3(Ω) : f |Γ = 0, ∆f |Γ = 0
}

.

3.2. The Dual Space [H1(Ω) ∩ H⊥⊥⊥]′ is Isometric to the Factor Space
[H1(Ω)]′/

��

We first recall the space H of ‘generalized harmonic functions’ defined in (15)


















H = N
{

(1− γ∆)
}

=
{

h ∈ L2(Ω) : (1− γ∆)h = 0 in H−2(Ω)
}

,

L2(Ω) = H+H⊥, where (1− γ∆) is viewed as an operator:

L2(Ω)→ H−2(Ω) ≡
[

D(A 12 )
]′
.

(40)
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Next, we introduce a new closed space of ‘generalized harmonic functions’ defined as


























































�
= N
{

(1− γ∆)
}

=
{

h ∈
[

H1(Ω)
]′
: (1− γ∆)h = 0 in

[

D(A 34 )
]′
}

=
{

h ∈
[

H1(Ω)
]′
:
(

(1− γ∆
)

h, φ)L2(Ω)

= 0 ∀ φ ∈ H3(Ω) ∩H20 (Ω) ≡ D(A
3
4 )
}

,

where here (1− γ∆) is viewed as an operator:
[

H1(Ω)
]′ →
[

D(A 34 )
]′
=
[

H3(Ω) ∩H20 (Ω)
]′
.

Moreover,
[

H1(Ω)
]′
=

� ⊕ � ⊥ , π
[

H1(Ω)
]′
=

� ⊥ ,

where π = π∗ is the orthogonal projection of [H1(Ω)]′ onto
� ⊥ .

(41)

We note that H ⊂ �
. In (40) and (41), N denotes ‘null space,’ while [ ]′ is

always duality with respect to L2(Ω) as a pivot space. H is a closed subspace of
L2(Ω), while

�
is a closed subspace of [H1(Ω)]′. Next, we observe that

P ≡
[

H1(Ω) ∩ H⊥
]

≡
{

f ∈ H1(Ω) : f ∈ H⊥
}

is a closed subspace of H1(Ω) ≡ V. (42)

Indeed, let fn ∈ P so that fn ∈ H1(Ω) and (fn, h)L2(Ω) = 0, ∀h ∈ H, and let
fn → f in H1(Ω). Then (f, h)L2(Ω) = 0, ∀h ∈ H and f ∈ P as well. We next
provide an isometric characterization of the dual space P ′, which is the counterpart
of Proposition 2.

Proposition 4. The space [H1(Ω) ∩ H⊥]′, dual of the space in (42) with respect to
L2(Ω) as a pivot space, is isometrically isomorphic (congruent, in the terminology of
(Taylor and Lay, 1980, p.53)) to the factor (or quotient) space [H1(Ω)]′/

�
, where

�

is defined by (41). In symbols
[

H1(Ω) ∩ H⊥
]′ ∼=
[

H1(Ω)
]′
/

� ∼= � ⊥ . (43)

For g ∈ [H1(Ω) ∩ H⊥]′,
‖g‖[H1(Ω)∩H⊥]′ =

∥

∥[Jg]
∥

∥[

H1(Ω)
]

′

/ �
= inf
h∈ �
‖Jg − h‖[H1(Ω)]′ = ‖g1‖[H1(Ω)]′ , (44)

where J denotes the isometric isomorphism from [H1(Ω)∩H⊥]′ onto [H1(Ω)]′/ �
for

the unique element g1 = πg ∈
� ⊥ , g1 ∈ [Jg] (the latter being the coset or equivalence

class of [H1(Ω)]′/
�
containing the element Jg).

Proof. Step 1. Let P be defined by (42), and V ≡ H1(Ω) be defined by (42). By
the standard result (Aubin, 1972, Thm.1.6, p.53; Giles, 2000, Thm.6.11, p.118; Taylor
and Lay, 1980, Thm.3.3, p.135), we then have that

P ′ is isometrically isomorphic (congruent) to the factor space V ′/P⊥, where (45)

P⊥ ≡
{

f ∈ V ′ : f(v) = (f, v)V ′×V = 0, ∀ v ∈ P ⊂ V
}

, (46)

P ′ ≡ space of continuous linear functionals on P, (47)

V ′ ≡ space of continuous linear functionals on V, (48)

and ( , )V ′×V denotes the duality pairing on V
′ × V .
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We now take L2(Ω) as a common pivot space. Accordingly, we have the identi-
fication

V ′ = [H1(Ω)]′ = duality of H1(Ω) with respect to L2(Ω) as a pivot space. (49)

We next find the corresponnding isometric identification for P⊥ (which is a
closed subspace of V ′). We note the usual imbedding V ⊂ L2(Ω) ⊂ V ′, and we may
identify the duality pairing ( , )V ′×V with the unique extension of the inner product
of L2(Ω) (Aubin, 1972, Thm.1.5, p.51). Thus, the space P

⊥ in V ′ defined by (46)
can be identified with the subspace of [H1(Ω)]′ defined by

P⊥ =
{

f ∈
[

H1(Ω)
]′
: (f, v)L2(Ω) = 0, ∀ v ∈ P ≡

[

H1(Ω) ∩H1
]

}

, (50)

and denoted by the same symbol. Since, in (50), we have, in particular, that
(h, v)L2(Ω) = 0, ∀h ∈ H ⊂ L2(Ω), we see at once that H ⊂ P⊥.

Step 2. With reference to P⊥ in (50) and
�
in (41), we shall now establish that

P⊥ =
�
. (51)

The proof will be based on Lemma 1(a5): that






ψ runs over all of H3(Ω) ∩H20 (Ω) as F runs over

all of
[

H1(Ω) ∩ H⊥
]

,
(52)

where ψ solves the elliptic problem in (35) with right-hand side F .

Next, for any h ∈ [H1(Ω)]′ and any ψ ∈ H3(Ω) ∩H20 (Ω), we can write
(

(1− γ∆)h, ψ
)

L2(Ω)
=
(

h, (1− γ∆)ψ
)

L2(Ω)
(53)

by Green’s identity. We now prove that
� ⊂ P⊥. (54)

In fact, if h ∈ �
, then, in particular, h ∈ [H1(Ω)]′, and by definition (41), we have

that the left side of (53) vanishes. Then, the right side of (53) vanishes and hence
we have that (h, F )L2(Ω) = 0 for (1 − γ∆)ψ = F , where F ∈ P ≡ [H1(Ω) ∩ H⊥],
see (42). Invoking (52), ultimately Lemma 1(a5), we then see that h ∈ P⊥ by (50).
Thus, (54) is established.

Conversely, we now show that

P⊥ ⊂ �
. (55)

Indeed, let h ∈ P⊥, so that (h, F )L2(Ω) = 0, ∀F ∈ P ≡ [H1(Ω)∩H⊥] by (50). Then,
(h, (1 − γ∆)ψ)L2(Ω) = 0 for all ψ ∈ H3(Ω) ∩ H20 (Ω) by (52). As a consequence of
this, the left side of (53) vanishes: ((1 − γ∆)h, ψ)L2(Ω) = 0, ∀ψ ∈ H3(Ω) ∩ H20 (Ω).
Then h ∈ �

by definition (41). Thus, (55) is established.

In conclusion: identity (51) is thus proved.

Returning now to (45), with P⊥ as in (51) and V ′ as in (49), we conclude
that (43) holds true. This finishes the proof.
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3.3. Definition of the Space H̃−1(Ω). Equivalent Formulations

Paralleling the development of Section 2.2 in (Lasiecka and Triggiani, 2000b), we
consider (see (11)–(14), (28))

(i)

{

the space D(A 3
4 ) ≡ H3(Ω) ∩H20 (Ω) as a closed

subspace of D(Aγ) = H2(Ω) ∩H10 (Ω);
(56)

(ii) the space D(A
1
2
γ ) as a pivot space, with norm as in (14), or (18).

However, the space D(A 3
4 ) is dense in D(A

1
2
γ ), so (Aubin, 1972, p.51) applies.

We then define the (Hilbert) space H̃−1(Ω) as follows:

H̃−1(Ω) ≡ dual of the space D(A
3
4 ) with respect to the space D(A

1
2
γ )

as a pivot space, endowed with the norm of (18).
(57)

This means the following: let f ∈ D(A 3
4 ) ≡ H3(Ω) ∩ H20 (Ω) ⊂ D(Aγ) ≡ H2(Ω) ∩

H10 (Ω), or φ = A
3
4 f ∈ L2(Ω). Then:

g ∈ H̃−1(Ω)⇐⇒ (f, g)
D(A

1
2
γ )
= (Aγf, g)L2(Ω) = finite, (58a)

∀ f ∈ D(A 3
4 ) = H3(Ω) ∩H20 (Ω),

= (f,Aγg)L2(Ω) = (A−
3
4φ,Aγg)L2(Ω)

= (φ,A−
3
4Aγg)L2(Ω) = finite, ∀ φ ∈ L2(Ω), (58b)

where we write in the same way inner products and corresponding duality pairings.

Proposition 5. (i) Definition (58) is equivalent to the following restatement:

g ∈ H̃−1(Ω) ⇐⇒ (Aγf, g)L2(Ω) = (F, g)L2(Ω)

=
(

(1− γ∆)f, g
)

L2(Ω)
=
(

f, (1− γ∆)g
)

L2(Ω)
= finite, (59)

∀ f ∈ D(A 3
4 ) ≡ H3(Ω)∩H20 (Ω), or ∀ F ∈ H1(Ω)∩H, where F = Aγf = (1− γ∆)f ;

(ii) accordingly,

H̃−1(Ω) ≡
[

H1(Ω) ∩ H⊥
]′ ∼=
[

H1(Ω)
]′
/

� ∼= � ⊥ , (60)

with duality with respect to L2(Ω) as a pivot space.

(iii) Definition (58) is equivalent to the following restatement:

g ∈ H̃−1(Ω)⇐⇒ A−
3
4Aγg ∈ L2(Ω) (61)

(iv) (counterpart of Proposition 1)

g ∈ H̃−1(Ω)⇐⇒
{

g has a component g1 defined by g1 = πg =
g| � ⊥ ∈

� ⊥ ⊂
[

H1(Ω)
]′
, which is the orthogo-

nal projection of g onto
� ⊥ ,

(62)
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in which case

(1− γ∆)g = (1− γ∆)g1 in
[

D(A 34 )
]′
. (63)

Proof. (i), (ii) Returning to (58), we invoke Lemma 1(a4), eqn. (33a), and obtain

AγD(A 34 ) = [H1(Ω)∩H⊥]. Thus, (58) yields (59) and (60), also via Green’s identity.

(iii) Part (iii), eqn. (61), follows at once from (59b).

(iv) Counterpart of the proof of Proposition 2.

Since g ∈ H̃−1(Ω) implies a-fortiori g ∈ [H1(Ω)]′ by (60), therefore (41) im-
plies (62) so that

(

(1− γ∆)f, g
)

L2(Ω)
= (Aγf, g)L2(Ω) = (Aγf, g1)L2(Ω) =

(

(1− γ∆)f, g1
)

L2(Ω)
, (64)

for f ∈ H3(Ω)∩H20 (Ω). Hence, (64) and Green’s identity yield (f, (1−γ∆)g)L2(Ω) =
(f, (1− γ∆)g1)L2(Ω) and (63) is established.

4. Implications on Regularity of Kirchhoff Elastic Plate
Equations with Clamped B.C.

4.1. PDE Model: (1)

Abstract model. The abstract model of the mixed problem (1) is given by (Lasiecka
and Triggiani, 2000b; 2000c; Triggiani, 1993; 2000),

(I + γA)wtt = −Aw +AG2u+ F, (65)

where A and A are the operators defined in (11) and (12), respectively. Moreover,
G2 in (65) is the following Green map defined by (Lasiecka and Triggiani, 2000b),

v = G2u⇐⇒
{

∆2v = 0 in Ω; v|Γ = 0,
∂v

∂ν

∣

∣

∣

∣

Γ

= u

}

, (66)

and by elliptic regularity (Grisvard, 1967; Lions and Magenes, 1972), see (Lasiecka
and Triggiani, 2000b; Triggiani, 2000),

G2 : continuous L2(Γ)→ H
3
2 (Ω) ∩H10 (Ω)

⊂ H 3
2−4ε(Ω) ∩H10 (Ω) = D(A

3
8−ε) (67a)

A
3
8−εG2 : continuous L2(Γ)→ L2(Ω). (67b)
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4.2. The Non-Homogeneous Boundary Case: u6=0. Proof of Theorem 1,
Eqn. (6)

In this section, which is complementary to the previous sections, we consider the
mixed problem (1) with

w0 = 0, w1 = 0, u ∈ L2
(

0, T ;L2(Γ)
)

, (68)

whose abstract model is given by (65).

Theorem 3. Consider problem (1) subject to hypothesis (68). Then, continuously,


















w ∈ C
(

[0, T ];H10 (Ω) ≡ D(A
1
4 )
)

, (69)

wt ∈ C
(

[0, T ]; L̃2(Ω)
)

, (70)

wtt ∈ L2
(

0, T ; H̃−1(Ω)
)

. (71)

Proof. Conclusions (69), (70) on {w,wt} follow by duality on the sharp trace regu-
larity of the corresponding homogeneous problem, due to (Lagnese and Lions, 1988,
Ch.5). Details of the technical duality are given in (Eller et al., 2001a; Lasiecka and
Triggiani, 2000b; Triggiani, 2000).

Here we establish (71). We return to the abstract model (65), which we rewrite
as

A−
3
4Aγwtt = −A

1
4w +A−

1
8+ε
(

A
3
8−εG2u

)

∈ L2
(

0, T ;L2(Ω)
)

, (72)

where the regularity noted in (72) follows from A
1
4w ∈ C([0, T ];L2(Ω)) by (69),

as well as from A
3
8−εG2u ∈ L2(0, T ;L2(Ω)) by (67b), as well as from A

3
8−εG2u ∈

L2(0, T ;L2(Ω)) by (67b) on G2 and (68) on u. Thus, as usual via the characteriza-
tion (61), we see that (72) says that wtt ∈ L2(0, T ; H̃−1(Ω)), as claimed in (71). (The
above argument shows that, in the present circumstances, the term Aw is the critical
one, while AG2u is subordinated to it, in model (65).)

5. Implications on Regularity of Mixed Kirchhoff Thermoelas-
tic Plate Equations with Clamped B.C.: Proof of Theorem
2, Eqns. (9) and (10)

In this section we let Ω be an open bounded domain in � n , for any positive integer
n, with smooth boundary Γ. On Ω we consider the following thermoelastic mixed
problem in the unknown {w(t, x), θ(t, x)}, which is (2) rewritten for convenience:







































wtt − γ∆wtt +∆2w +∆θ = 0 in (0, T ]× Ω = Q, (73a)

θt −∆θ −∆wt = 0 in Q, (73b)

w(0, · ) = w0; wt(0, · ) = w1; θ(0, · ) = θ0 in Ω, (73c)

w|Σ ≡ 0;
∂w

∂ν

∣

∣

∣

∣

Σ

= u; θ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ, (73d)
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where, for our present purposes, it will suffice to take

w0 = 0, w1 = 0, θ0 = 0; u ∈ L2
(

0, T ;L2(Γ)
)

. (74)

As in the elastic case of Section 4, in the present thermoelastic case we shall take the
constant γ > 0 throughout. Our goal is to establish the following sharp regularity
result.

Theorem 4. With reference to the mixed problem (73) with γ > 0 and zero ini-

tial conditions as in (74), the following regularity results hold true, where D(A 1
4 ) ≡

H10 (Ω) (norm equivalence): the map

u ∈ L2
(

0, T ;L2(Γ)
)

⇒






















{w,wt} ∈ C
(

[0, T ];D(A 1
4 )× L̃2(Ω)

)

, (75)
[

wtt −
1

γ
θ

]

∈ L2
(

0, T ; H̃−1(Ω)
)

, (76)

θ ∈ Lp
(

0, T ;H−1(Ω)
)

∩ C
(

[0, T ];H−1−ε(Ω)
)

, 1 < p <∞; ∀ ε > 0, (77)

is continuous. However, in addition, we have

{

θ ∈ C
(

[0, T ];L2(Ω)
)

, and wtt ∈ L2
(

0, T ; H̃−1(Ω)
)

,

but not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

(78)

(that is, the closed graph theorem does not apply to the maps u → θ or u → wtt
in (78)). More precisely, regarding θ, we have

θ(t) = −wt(t) + θ1,a(t) + θ1,b(t), (79)

where wt satisfies (75), and







θ1,b(t) =
1

γ

∫ t

0

e−A(t−τ)θ(τ) dτ ∈ C
(

[0, T ];L2(Ω)
)

continuously in u ∈ L2
(

0, T ;L2(Γ)
)

,

(80a)

while







θ1,a(t) =

∫ t

0

e−A(t−τ)
[

wtt(τ) −
1

γ
θ(τ)

]

dτ ∈ C
(

[0, T ];L2(Ω)
)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.

(80b)

Proof of Theorem 4. The mechanical regularity (75) for {w,wt} was established in
(Triggiani, 2000, Thm.4.1), and it coincides with the mechanical regularity (4.4.2),
(4.4.3) in the elastic case of Proposition 4.4.1. We shall repeat a sketch of the argument
for completeness, following (Triggiani, 2000) or (Eller et al., 2001a).
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Step 1. We start with the dual {φ, η}-thermoelastic problem:






































φtt − γ∆φtt +∆2φ−∆η = 0 in Q = (0, T ]× Ω, (81a)

ηt −∆η +∆φt = 0 in Q, (81b)

φ(0, · ) = φ0, φt(0, · ) = φ1, η(0, · ) = η0 in Ω, (81c)

φ|Σ ≡ 0,
∂φ

∂ν

∣

∣

∣

∣

Σ

≡ 0, η|Σ ≡ 0 in Σ = (0, T ]× Γ, (81d)

with initial conditions,

{φ0,−φ1, η0} ∈ Yγ ≡ H20 (Ω)×H10 (Ω)× L2(Ω). (82)

Thus the solution {φ(t),−φt(t), η(t)} = e
�
∗

γ t[φ0,−φ1, η0] is given by the adjoint semi-
group e

�
∗

γ t on Yγ to the one e
�
γ t claimed (by the Lumer-Phillips theorem) in (Eller

et al., 2001a, eqn. (2.10); Triggiani, 2000 below (4.17)), etc. Thus, its a-priori regu-
larity is







{φ,−φt, η} ∈ C
(

[0, T ];H20(Ω)×H10 (Ω)× L2(Ω)
)

, (83a)

η ∈ L2
(

0, T ;H10(Ω)
)

, ∆η ∈ L2
(

0, T ;H−1(Ω)
)

, (83b)

using also the usual dissipativity argument for η (Lasiecka and Triggiani, 2000d).
Next, we rewrite problem (81) in the following way:











φtt − γ∆φtt +∆2φ = ∆η ∈ L2
(

0, T ;H−1(Ω)
)

, (84a)

φ|Σ ≡ 0,
∂φ

∂ν

∣

∣

∣

∣

Σ

≡ 0. (84b)

Step 2. To problem (84) we apply the same energy method proof as in (Lagnese and
Lions, 1988, Ch.5 or Ch.6) by using the multiplier m · ∇φ,m|Γ = ν: it yields the
following sharp trace regularity:

{φ0, φ1} ∈ H20 (Ω)×H10 (Ω)⇒ ∆φ|Γ ∈ L2
(

0, T ;L2(Γ)
)

, (85)

(where, of course, η0 ∈ L2(Ω) as well) since
∫

Q
(m · ∇φ)(∆η) dQ is finite by (83):

f = m · ∇φ ∈ C([0, T ];H10 (Ω)) since f |Γ = m · ∇φ|Γ = ∂φ∂ν |Γ = 0. Details are given,
e.g. in (Eller et al., 2001a, eqns. (3.97)–(3.99), p.129; and also eqns. (C.47)–(C.49),
p.206).

Step 3. A duality argument, given in details in (Eller et al., 2001a, Step 1, p.206;
Triggiani, 2000, Section 5, Step 3), then shows the following preliminary result: for
the mixed problem (73), (74), the map

u ∈ L2(Σ)→







{w,wt} ∈ C
(

[0, T ];H10(Ω)× L̃2(Ω)
)

,

θ ∈ C
(

[0, T ]; [D(A)]′
)

(86)
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is continuous. This map is optimal for {w,wt}. The space L̃2(Ω) described in Sec-
tion 2 arises at this point, in connection with the second component space, as dual of

D(A 12 ) with respect to D(A
1
2
γ ) as a pivot space. So far, we have reproduced results

of (Eller et al., 2001a; Triggiani, 2000) for the mixed problem (73), (74). Thus, we
have established (75) for {w,wt}.

Step 4. (Proof of (77)) We next boost the regularity of θ (over (86)) to read: the map

u ∈ L2
(

0, T ;L2(Γ)
)

→ θ ∈ Lp
(

0, T ;H−1(Ω)
)

∩ C
(

[0, T ];H−1−ε(Ω)
)

,

1 < p <∞; ∀ ε > 0 (87)
is continuous. To establish (87), we return to eqn. (73b), and integrate by parts to
obtain via wt|Σ ≡ 0 and (12):

θ(t) =

∫ t

0

e−A(t−τ)∆wt(τ) dτ = −
∫ t

0

e−A(t−τ)Awt(τ) dτ

= −A 12A 12w(t) +A 12+ ε2
∫ t

0

A1− ε2 e−A(t−τ)A 12w(τ) dτ (88)

∈ Lp
(

0, T ;H−1(Ω)
)

∩ C
(

[0, T ];H−1−ε(Ω)
)

, (89)

for ∀ 1 < p < ∞; ∀ ε > 0, since w0 = 0 by (74). The regularity in (89) is obtained
by using the regularity (75) for w, along with the following two well-known results
for analytic semigroups: the map

f →
∫ t

0

e−A(t−τ)f(τ) dτ (90)

is continuous as follows:

Lp
(

0, T ;L2(Ω)
)

→ Lp
(

0, T ;D(A)
)

, ∀ 1 < p <∞, (91a)

L∞
(

0, T ;L2(Ω)
)

→ C
(

[0, T ];D(A1−ε)
)

, ∀ ε > 0, (91b)

see (De Simon, 1964) for (91), (Lasiecka and Triggiani, 2000c, p.4). Thus, (87) is
proved via (89).

Remark 2. The weaker result, over (78), that






θ ∈ Lp
(

0, T ;L2(Ω)
)

∩ C
(

[0, T ];H−ε(Ω)
)

, ∀ 1 < p <∞; ∀ ε > 0;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

,
(92)

follows at once from (88), via (75) on wt, (25), (91).

Step 5. (Proof of (76)) The abstract model of the mixed problem (73) is given by
(Eller et al., 2001a; Triggiani, 2000):

Aγwtt = −Aw +AG2u+Aθ = −Aw +AG2u+
1

γ
Aγθ −

1

γ
θ (93)
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(compare with (66)), from which we obtain

A−
3
4Aγ
[

wtt −
1

γ
θ

]

= −A 14w +A− 18+ε(A 38−εG2u)−
1

γ
A−

3
4 θ (94a)

∈ L2
(

0, T ;L2(Ω)
)

, (94b)

continuously in u ∈ L2(0, T ;L2(Γ)). The key regularity noted in (94b) is obtained
as follows: first, A

1
4w ∈ C([0, T ];L2(Ω)) by (75); next, A

3
8−εG2u ∈ L2(0, T ;L2(Ω))

by (67b) and u ∈ L2(0, T ;L2(Γ)); finally, A
− 34 θ ∈ L2(0, T ;D(A 1

2 )) by (77) with

p = 2, and D(A 1
4 ) = H10 (Ω), see (13). Hence, the regularity (94b) is established.

Then, as usual, via the characterization (61), we see that (94) says that [wtt − 1γ θ] ∈
L2(0, T ; H̃−1(Ω)), continuously in u ∈ L2(0, T ;L2(Γ)), as claimed in (76).

Step 6. (Proof of (78) for θ) We return to eqn. (73b), which we rewrite as

(θ + wt)t = ∆(θ + wt) + wtt, (95a)

and hence, by (12),

(θ + w)t = −A(θ + wt) + wtt, (95b)

because of the homogeneous B.C. (73d) for w and θ. Solving (95b), we obtain

θ(t) = −wt(t) + θ1(t), (96a)

where we shall show that

θ1(t) =

∫ t

0

e−A(t−τ)wtt(τ) dτ ∈ C
(

[0, T ];L2(Ω)
)

; (96b)

however, not continuously in u ∈ L2(0, T ;L2(Γ)). We rewrite θ1(t) as
θ1(t) = θ1,a(t) + θ1,b(t), (97)














θ1,a(t) =

∫ t

0

e−A(t−τ)
[

wtt(τ)−
1

γ
θ(τ)

]

dτ (98)

θ1,b(t) =
1

γ

∫ t

0

e−A(t−τ)θ(τ) dτ (99)

where, by (77) with p = 2, and H−1(Ω) = [D(A 12 )]′, i.e. with A− 12 θ ∈
L2(0, T ;L2(Ω)), continuously in u ∈ L2(0, T ;L2(Γ)), we have







γθ1,b(t) =

∫ t

0

A 12 e−A(t−τ)A− 12 θ(τ) dτ ∈ C
(

[0, T ];L2(Ω)
)

continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.

(100)

Moreover, by (76), [wtt − 1
γ θ] ∈ L2(0, T ; H̃−1(Ω)) continuously in u ∈

L2(0, T ;L2(Γ)). Since H̃−1(Ω) ≡ [H1(Ω)]′/
�
by (60), we also have







[

wtt −
1

γ
θ

]

∈ L2
(

0, T ; [H1(Ω)]′
)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.

(101)
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Hence, we obtain a-fortiori that







[

wtt −
1

γ
θ

]

∈ L2
(

0, T ;H−1(Ω)
)

, or A− 12
[

wtt −
1

γ
θ

]

∈ L2
(

0, T ;L2(Ω)
)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.

(102)

It then follows from (101) and (98) that







θ1,a(t) =

∫ t

0

A 12 e−A(t−τ)A− 12
[

wtt(τ) −
1

γ
θ(τ)

]

dτ ∈ C
(

[0, T ];L2(Ω)
)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.

(103)

Then (100) and (103), used in (97), (96), prove (78) for θ, as desired; in fact, prove
precisely (79), (80).

Step 7. (Proof of (78) for wtt) We return to (93) (left form) and obtain















A−
3
4Aγwtt = −A

1
4w +A−

1
8+ε(A−

3
8−εG2u)

+A−
1
4 (A−

1
2A)θ ∈ L2

(

0, T ;L2(Ω)
)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.

(104)

The new term, over the analysis below (94b), is the last one in (104), where now θ

satisfies (92) with p = 2 (which now suffices without invoking (78)). Since A−
1
2A

has a bounded extension on L2(Ω) by (12), (13) we conclude that







A−
1
4 (A−

1
2A)θ ∈ C

(

[0, T ];D(A 1
4 ) = H10 (Ω)

)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.
(105)

Then the regularity in (104) is established by (105). The usual characterization (61)
then yields







wtt ∈ L2
(

0, T ; H̃−1(Ω)
)

;

however, not continuously in u ∈ L2
(

0, T ;L2(Γ)
)

.
(106)

The proof of Theorem 4 is complete.
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