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EXTERNALLY AND INTERNALLY POSITIVE

TIME-VARYING LINEAR SYSTEMS

Tadeusz KACZOREK
∗

The notions of externally and internally positive time-varying linear systems
are introduced. Necessary and sufficient conditions for the external and internal
positivities of time-varying linear systems are established. Moreover, sufficient
conditions for the reachability of internally positive time-varying linear systems
are presented.

1. Introduction

Roughly speaking, positive systems are systems whose trajectories are entirely con-
tained in the nonnegative orthant

�
n
+ whenever the initial state and input are nonneg-

ative. Positive systems arise while modelling systems in engineering, economics, social
sciences, biology, medicine and other areas (d’Alessandro and de Santis, 1994; Berman
et al., 1989; Berman and Plemmons, 1994; Farina and Rinaldi, 2000; Kaczorek, 2001;
Rumchev and James, 1990; 1995). The single-input single-output externally and in-
ternally positive linear time-invariant systems were investigated in (Berman et al.,
1989; Berman and Plemmons, 1994; Farina and Rinaldi, 2000). The notions of ex-
ternally and internally positive systems were extended to singular continuous-time,
discrete-time and two-dimensional linear systems in (Kaczorek, 2001). The reachabil-
ity and controllability of standard and singular internally positive linear systems were
analysed in (Fanti et al., 1990; Klamka, 1998; Otha et al., 1984; Valcher, 1996). The
notions of weakly positive discrete- and continuous-time linear systems were intro-
duced in (Kaczorek, 1998b; 2001). Recently, the positive two-dimensional (2D) linear
systems have been extensively investigated by Fornasini and Valcher (Fornasini and
Valcher, 1997; Valcher, 1996; 1997) and (Kaczorek 2001).
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2. Preliminaries

Let
�
p×q be the set of real p × q matrices and �

p :=
�
p×1 . The set of p × q

real matrices with nonnegative entries will be denoted by
� p×q
+ and

� p
+ :=

� p×1
+ .

Consider the linear time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0, (1a)

y(t) = C(t)x(t) +D(t)u(t), (1b)

where ẋ(t) = dx(t)/dt, x(t) ∈ �
n is the state vector, u(t) ∈ �

m signifies the input
vector, y(t) ∈ �

p stands for the output vector, and A(t), B(t), C(t), D(t) are real
matrices of appropriate dimensions with continuous-time entries. A solution x(t) to
the equation satisfying the initial condition x(t0) = x0 is given by (Gantmacher,
1959)

x(t) = Φ(t, t0)x0 +

t
∫

t0

Φ(t, τ )B(t)u(τ) dτ, (2)

where Φ(t, t0) is the fundamental matrix defined by

Φ(t, t0) = In +

t
∫

t0

A(τ) dτ +

t
∫

t0

A(τ)

τ
∫

t0

A(τ1) dτ1 dτ + · · · , (3)

In being the n× n identity matrix.
If A(t1)A(t2) = A(t2)A(t1) for t1, t2 ∈ [t0,∞), then (3) takes the form (Gant-

macher, 1959)

Φ̄(t, t0) = exp

(

t
∫

t0

A(τ) dτ

)

. (3a)

The fundamental matrix Φ(t, t0) satisfies the matrix differential equation

Φ̇(t, t0) = A(t)Φ(t, t0), (4)

and the initial condition Φ(t0, t0) = In.

3. Externally Positive Systems

Definition 1. The system (1) is called externally positive if for all u(t) ∈ � m
+ , t ≥ t0

and zero initial conditions (x0 = 0) the output vector y(t) ∈
� p
+ for t ≥ t0.

Let g(t) ∈ �
p×m be the matrix impulse response of the system (1). It is well-

known that the output vector y(t) of the system (1) with zero initial conditions for
an input vector u(t) is given by the formula

y(t) =

t
∫

t0

g(t, τ)u(τ) dτ, t ≥ t0, (5)
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where

g(t, τ ) = C(t)Φ(t, τ )B(t) +D(t)δ(t− τ ), (6)

for t ≥ τ , and δ(t) is the Dirac impulse.

Theorem 1. The system (1) is externally positive if and only if

g(t) ∈ � p×m
+ for t ≥ t0. (7)

Proof. The necessity follows immediately from Definition 1 and the definition of the
impulse response. To show the sufficiency, assume that (7) holds. Then from (5), for
u(t) ∈ �

m
+ , t ≥ t0 we have y(t) ∈

� p
+ for t ≥ t0.

4. Internally Positive Systems

Definition 2. System (1) is called internally positive if for every x0 ∈
�
n
+ and all

u(t) ∈ �
m
+ the state vector x(t) ∈

�
n
+ and y(t) ∈

� p
+ for t ≥ t0.

From the comparison of Definitions 1 and 2 it follows that every internally positive
system (1) is always externally positive.

Lemma 1. The fundamental matrix satisfies

Φ(t, t0) ∈
� n×n
+ for t ≥ t0, (8)

if and only if the off-diagonal entries aij , i 6= j, i, j = 1, . . . , n of the matrix A(t)
satisfy the condition

t
∫

t0

aij(τ) dτ ≥ 0 for i 6= j, i, j = 1, . . . , n. (9)

Proof. First, we shall show that (9) implies (8). Let xi(t) (resp. zi(t)) be the i-th
component of the vector x(t) (resp. z(t)) and

xi(t) = zi(t) exp

(

t
∫

t0

aii(τ) dτ

)

, i = 1, . . . , n. (10)

Substitution of (10) into (1a) for u(t) = 0, t ≥ t0 yields (Ratajczak, 1967)

ż(t) = Ā(t)z(t), (11)

where Ā(t) = [āij(t)] ∈
�
n×n

āij(t) =















aij(t) exp

(

t
∫

t0

[

ajj(τ)− aii(τ)
]

dτ

)

for i 6= j,

0 for i = j,

(12)
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From (10) it follows that

zi(t0) = xi(t0) ≥ 0 for i = 1, . . . , n if x0 ∈
� n
+ . (13)

Using (2) for u(t) = 0, t ≥ t0 and (3) for (11), we obtain

z(t) = Φ̄(t, t0)z0, (14)

where

Φ̄(t, t0) = In +

t
∫

t0

Ā(τ) dτ +

t
∫

t0

Ā(τ)

τ
∫

t0

Ā(τ1) dτ1 dτ + · · · . (15)

From (12) it follows that if (9) holds, then Ā(t) ∈ � n×n
+ , and by (15) this implies

Φ̄(t, t0) ∈
� n×n
+ and z(t) ∈ �

n
+ , t ≥ t0 for any z0 ∈

�
n
+ . Hence, by (10) and (13)

we have x(t) ∈ �
n
+ , t ≥ t0 for any x0 ∈

�
n
+ . Therefore (9) implies (8). The necessity

follows immediately from (3a) and the fact that Φ̄(t, t0) ∈
� n×n
+ only if

∫ t

t0
Ā(τ) dτ

is a Metzler matrix for any t ≥ t0 (Kaczorek, 1998a).

Remark 1. If the matrix A(t) is independent of t, i.e. A(t) = A = [aij ] and aij ≥ 0
for i 6= j, then A is the Metzler matrix (Farina and Rinaldi, 2000; Kaczorek, 2001)
and Φ(t, t0) = exp(A(t− t0)).

Theorem 2. System (1) is internally positive if and only if

(i) the off-diagonal entries of A(t) satisfy (9),

(ii) B(t) ∈ � n×m
+ , C(t) ∈ � p×n

+ , D(t) ∈ � p×m
+ for t ≥ 0.

Proof. (Necessity) Let u(t) = 0 for t ≥ t0 and x0 = ej . The trajectory does not
leave the orthant

� n
+ only if ẋ(t0) = A(t0)ej ≥ 0, and this implies (9). For the same

reasons, for x0 = 0 we have ẋ(t0) = Bu(t0) ≥ 0, and this implies B(t) ∈
�
p×m ,

t ≥ t0 since u(t0) ∈
�
m
+ may be arbitrary. From (1b), for u(t0) = 0 we have y(t0) =

C(t0)x0 ∈
� p
+ and C(t) ∈

� p×n
+ , t ≥ 0 since x0 ∈

�
n
+ may be arbitrary. Similarly,

from (1b), for x0 = 0 we obtain y(t0) = D(t0)u(t0) ∈
� p
+ and D(t) ∈

� p×m
+ for

t ≥ 0 since u(t0) ∈
�
m
+ may be arbitrary.

(Sufficiency) If the condition (9) is satisfied, then, by Lemma, (8) holds and
from (2) we obtain x(t) ∈ �

n
+ for any x0 ∈

�
n
+ and u(t) ∈

�
m
+ , t ≥ t0, since

B(t) ∈ � n×m
+ . If C(t) ∈ � p×n

+ and D(t) ∈ �
+p×m for t ≥ 0, then from (1b) we

obtain y(t) ∈ � p
+ since x(t) ∈

�
n
+ and u(t) ∈

�
m
+ for t ≥ t0.
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5. Reachability

Definition 3. The state xf (t) ∈
�
n
+ of the system (1) is called reachable in time

tf − t0 if there exists an input vector u(t) ∈
�
m
+ for [t0, tf ] which steers the state of

the system from x0 = 0 to xf .

Definition 4. If every state xf (t) ∈
�
n
+ of the system (1) is reachable in time tf−t0,

then the system is called reachable in time tf − t0.

Definition 5. If for every state xf (t) ∈
�
n
+ there exists tf > t0 such that the state

is reachable in time tf − t0, then the system (1) is called reachable.
A matrix A ∈ � n×n

+ is called monomial (or the generalised permutation matrix)
if in each row and in each column only one entry is positive and the remaining entries
are zero.

Theorem 3. The internally positive system (1) is reachable in time tf − t0 if

R(tf , t0) :=

tf
∫

t0

Φ(tf , τ )B(τ)B
T (τ)ΦT (tf , τ ) dτ (T denotes the transpose) (16)

is a monomial matrix. The input vector which steers the state vector of (1) from
x0 = 0 to xf is given by

u(t) = BT (t)ΦT (tf , t)R
−1(tf , t)xf , (17)

for t ∈ [t0, tf ].
Proof. If R(tf , t0) is a monomial matrix, then R

−1(tf , t0) ∈
� n×n
+ and u(t) ∈ � m

+

for [t0, tf ]. We shall show that (17) steers the state of (1) from x0 = 0 to xf .
Substituting (17) into (2) for t = tf and x0 = 0, we obtain

x(tf ) =

tf
∫

t0

Φ(tf , τ )B(τ)B
T (τ)ΦT (tf , τ)R

−1(tf , t0)xf dτ

=

[

tf
∫

t0

Φ(tf , τ )B(τ)B
T (τ)ΦT (tf , τ) dτ

]

R−1(tf , t0)xf = xf .

Therefore, if (16) is a monomial matrix, then the positive system (1) is reachable in
time tf − t0.

Theorem 4. The internally positive system (1) is reachable in time tf − t0 if

A(t) = diag [a1(t), a2(t), . . . , an(t)], (18)

(ai(t), i = 1, . . . , n is continuous-time function) and B(t) ∈
� n×n
+ is a monomial

continuous-time matrix.
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Proof. It is well known (Gantmacher, 1959) that if A(t) has the form (18), then

A(t1)A(t2) = A(t2)A(t1) for t1, t2 ∈ [t0,∞) and Φ(t, t0) = exp(
∫ t

t0
A(τ) dτ ) is also

a diagonal nonnegative matrix for t ≥ t0. Hence the matrix Φ(t, t0)B(t) ∈
� n×n
+ is a

monomial matrix and so is the matrix

R(tf , t0) =

tf
∫

t0

Φ(tf , τ )B(τ)B
T (τ)ΦT (tf , τ) dτ

=

tf
∫

t0

Φ(tf , τ )B(τ)[Φ(tf , τ)B(τ)]
T dτ.

Then, by Theorem 3, the system (1) is reachable in time tf − t0.

Remark 2. If the diagonal matrix (18) and B(t) are independent of t, then from
Theorems 3 and 4 we obtain the corresponding theorems 3.10 and 3.11 in (Kaczorek,
2001).

Similar results can be obtained for the controllability of time-varying linear sys-
tems.

6. Example

Consider system (1) with t0 = 0 and

A(t) =





2 0

0 t



 , B(t) =





0 et

√
t 0



 . (19)

By Theorem 4, the system is reachable in time tf−t0. Therefore there exists an input
u(t) which steers the state of the system from x0 = 0 to xf = [2 1]

T in time tf = 1.
Using (3a), (16) and (17), we obtain

Φ(1, τ ) = exp

(

1
∫

τ

A(τ) dτ

)

=







exp
(

2(1− τ )
)

0

0 exp

(

1

2

(

1− τ2
)

)






,

R(tf , t0) = R(1, 0) =

1
∫

0

Φ(1, τ)B(τ)BT (τ)ΦT (1, τ) dτ =







e4

2

(

1− e−2
)

0

0
1

2
(e− 1)






,

u(t) = BT (t)ΦT (1, t)R−1(1, 0)xf =







0
2t

e− 1 exp
(

1

2

(

1− t2
)

)

4 exp(−t)
e2 − 1 0






.
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7. Concluding Remarks

The notions of externally and internally positive time-varying linear systems were
introduced. Necessary and sufficient conditions for the external and internal positivi-
ties of time-varying linear systems were established. The concept of reachability was
extended to internally positive time-varying linear systems, and sufficient conditions
for the reachability of internally positive time-varying linear systems were established.
With minor modifications, the consideration can be extended to discrete time-varying
linear systems. A generalization to 2D linear systems with variable coefficients is also
possible. An open problem is an extension of the consideration to singular time-varying
linear systems.
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