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AN ε-INSENSITIVE APPROACH TO FUZZY

CLUSTERING

Jacek ŁĘSKI∗

Fuzzy clustering can be helpful in finding natural vague boundaries in data. The
fuzzy c-means method is one of the most popular clustering methods based on
minimization of a criterion function. However, one of the greatest disadvantages
of this method is its sensitivity to the presence of noise and outliers in the
data. The present paper introduces a new ε-insensitive Fuzzy C-Means (εFCM)
clustering algorithm. As a special case, this algorithm includes the well-known
Fuzzy C-Medians method (FCMED). The performance of the new clustering
algorithm is experimentally compared with the Fuzzy C-Means (FCM) method
using synthetic data with outliers and heavy-tailed, overlapped groups of the
data.

Keywords: fuzzy clustering, fuzzy c-means, robust methods, ε-insensitivity,

fuzzy c-medians

1. Introduction

Clustering plays an important role in many engineering fields such as pattern recog-
nition, system modelling, image processing, communication, data mining, etc. The
clustering methods divide a set of N observations (input vectors) x1,x2, . . . ,xN in-
to c groups denoted by Ω1,Ω2, . . . ,Ωc in such a way that the members of the same
group are more similar to one another than to the members of other groups. The
number of clusters may be pre-defined or it may be set by the method.

Generally, clustering methods can be divided into (Duda and Hart, 1973; Fukuna-
ga, 1990; Tou and Gonzalez, 1974) the following kinds: hierarchical, graph theoretic,
decomposing a density function, minimizing a criterion function. In this paper, cluster-
ing by minimization of a criterion function will be considered. Usually, the clustering
methods assume that each data vector belongs to one and only one class. This method
can be natural for clustering of compact and well-separated groups of data. However,
in practice, clusters overlap, and some data vectors belong partially to several clus-
ters. Fuzzy set theory (Zadeh, 1965) is a natural way of describing this situation. In
this case, a membership degree of the vector xk to the i-th cluster (uik) is a value
from the [0, 1] interval. This idea was first introduced by Ruspini (1969) and used
by Dunn (1973) to construct a fuzzy clustering method based on minimization of a
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criterion function. Bezdek (1982) generalized this approach to an infinite family of
fuzzy c-means algorithms using a weighted exponent on the fuzzy memberships.

Fuzzy c-means clustering algorithm has been successfully applied to a wide va-
riety of problems (Bezdek, 1982). However, one of the greatest disadvantages of this
method is its sensitivity to noise and outliers in data. In this case, computed clusters
centres can be placed away from the true values. In the literature, there are a number
of approaches to reduce the effect of outliers, including the possibilistic clustering
(Krishnapuram and Keller, 1993), fuzzy noise clustering (Davé, 1991), Lp norm clus-
tering (0 < p < 1) (Hathaway and Bezdek, 2000), and L1 norm clustering (Jajuga,
1991; Kersten, 1999). In this paper, the last approach is of special interest.

In real applications, the data are corrupted by noise and outliers, and assumed
simplified models are only approximators to the reality. For example, if we assume
that the distribution of the data in clusters is Gaussian, then using the weighted (by
a membership degree) mean should not cause a bias. In this case, the L2 norm is
used as a dissimilarity measure.

The noise and outliers existing in data imply that the clustering methods need
to be robust. According to Huber (1981), a robust method should possess the follow-
ing properties: (i) it should have a reasonably good accuracy at the assumed model,
(ii) small deviations arising from the model assumptions should impair the perfor-
mance only by a small amount, (iii) larger deviations arising from the model as-
sumptions should not cause a catastrophe. In the literature, there are many robust
estimators (Davé and Krishnapuram, 1997; Huber, 1981). In this paper, Vapnik’s
ε-insensitive estimator is of special interest (Vapnik, 1998).

The goal of the present paper is to establish a connection between fuzzy c-
means clustering and robust statistics using Vapnik’s ε-insensitive estimator. The
paper presents a new fuzzy clustering method based on a robust approach. The fuzzy
c-medians can be obtained as a special case of the introduced clustering method.

The paper is organized as follows. Section 2 presents a short description of clus-
tering methods based on minimization of a criterion function. A novel clustering algo-
rithm is described in Section 3. Section 4 presents simulation results of clustering for
synthetic data with outliers and heavy-tailed groups of data, as well as a comparative
study with the fuzzy c-means method. Finally, conclusions are drawn in Section 5.

2. Clustering by Minimization of Criterion Function

A very popular way of data clustering is to define a criterion function (a scalar index)
that measures the quality of the partition. In the fuzzy approach (Bezdek, 1982),
the set of all possible fuzzy partitions of N p-dimensional vectors into c clusters is
defined by

=fc =







U ∈ <cN

∣

∣

∣
∀

1≤i≤c
1≤k≤N

uik ∈ [0, 1],
c
∑

i=1

uik = 1, 0 <

N
∑

k=1

uik < N







. (1)
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<cN denotes a space of all real (c×N)-dimensional matrices. The fuzzy c-means
criterion function has the form (Bezdek, 1982)

Jm(U,V) =

c
∑

i=1

N
∑

k=1

(uik)
m
d2ik , (2)

where U ∈ =fc, V = [v1,v2, . . . ,vc] ∈ <pc is a prototypes matrix and m is a
weighting exponent in [1,∞). Furthermore, dik is the inner product induced norm

d2ik = ‖xk − vi‖
2
A
= (xk − vi)

T
A (xk − vi) , (3)

where A is a positive definite matrix. Criterion (2) for m = 2 was introduced by
Dunn (1973). An infinite family of fuzzy c-means criteria for m ∈ [1,∞) was intro-
duced by Bezdek. Using the Lagrange multipliers technique, the following theorem
can be proved, via obtaining necessary conditions for minimization of (2) (Bezdek,
1982):

Theorem 1. If m and c are fixed parameters, and Ik is the set defined as

∀
1≤k≤N

Ik =
{

i | 1 ≤ i ≤ c; dik = 0
}

, (4)

then (U,V) ∈ (=fc ×<pc) may be globally minimal for Jm(U,V) only if

∀
1≤i≤c
1≤k≤N

uik =



































(dik)
2

1−m

[

c
∑

j=1

(djk)
2

1−m

]−1

, Ik = ∅,











0, i /∈ Ik ,
∑

i∈Ik

uik = 1, i ∈ Ik ,
Ik 6= ∅,

(5)

and

∀
1≤i≤c

vi =

N
∑

k=1

(uik)
m
xk

N
∑

k=1

(uik)
m

. (6)

The optimal partition is determined as a fixed point of (5) and (6) (Pal and
Bezdek, 1995):

1◦ Fix c (1 < c < N), m ∈ (1,∞). Initialize V(0) ∈ <pc, j = 1,

2◦ Calculate the fuzzy partition matrix U(j) for the j-th iteration using (5),

3◦ Update the centres for the j-th iteration V(j) = [v
(j)
1 v

(j)
2 · · · v

(j)
c ] using (6) and

by U(j),

4◦ If
∥

∥U(j+1) −U(j)
∥

∥

F
> ξ, then j ← j + 1, and go to 2◦.
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Here ‖ · ‖F denotes the Frobenius norm (‖U‖2F = Tr (UU
T ) =

∑

i

∑

k u
2
ik), and ξ

is a pre-set parameter. The above algorithm is called the fuzzy ISODATA or fuzzy
c-means. Note that the original FCM algorithm proposed in (Bezdek, 1982) does not
use the Frobenius norm, but rather a convenient matrix norm (usually the maximum
norm). The FCM algorithm is often called the alternating optimization one as it loops
through a cycle of estimates for V(j−1) → U(j) → V(j). Equivalently, the procedure
can be shifted by one-half cycle, so that initialization is done on U(0), and a cycle of
estimates is U(j−1) → V(j) → U(j). The convergence theory is the same in both the
cases (Pal and Bezdek, 1995). In the FCM algorithm, the parameter m influences
the fuzziness of the clusters; a larger m results in fuzzier clusters. For m −→ 1+,
the fuzzy c-means solution becomes a hard one, and for m −→∞ the solution is as
fuzzy as possible: uik = 1/c, for all i, k. Because there is no theoretical basis for the
optimal selection of m, usually m = 2 is chosen.

3. A New Clustering Algorithm

The clustering algorithm described in the previous section uses a quadratic loss func-
tion as a dissimilarity measure between the data and the cluster centres. The reason
for using this measure is mathematical, i.e. it is employed owing to the simplicity and
low computational burden. However, this approach is sensitive to noise and outliers.
In the literature, there are many robust loss functions (Huber, 1981), but due to its
simplicity, Vapnik’s ε-insensitive loss function (Vapnik, 1998) is of special interest. If
we denote an error by t, then the ε-insensitive loss function has the form

|t|ε =

{

0, |t| ≤ ε,

|t| − ε, |t| > ε,
(7)

where ε stands for the insensitivity parameter. The well-known absolute error loss
function is a special case of (7) for ε = 0.

Using the ε-insensitive loss function, the fuzzy c-means criterion function (2)
takes the form

Jmε (U,V) =

c
∑

i=1

N
∑

k=1

(uik)
m |xk − vi|ε , (8)

where

|xk − vi|ε =

p
∑

l=1

|xkl − vil|ε . (9)
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Write λ+ or λ− as λ(±), and the cardinality of a set A as card(A).

Theorem 2. If m, c and ε are fixed parameters, then (U,V) ∈ (=fc × <pc) may
be globally minimal for Jmε(U,V) only if

∀
1≤i≤c
1≤k≤N

uik =



































(|xk − vi|ε)
1

1−m

[

c
∑

j=1

(

|xk − vj |ε
)

1
1−m

]−1

, Ik = ∅,











0, i /∈ Ik,
∑

i∈Ik

uik = 1, i ∈ Ik,
Ik 6= ∅,

(10)

and

∀
1≤i≤c

∀
1≤l≤p

vil =















(xkl + ε) , ∀
{k|λ+

k
∈Λ+
i
}
,

(xkl − ε) , ∀
{k|λ−

k
∈Λ−
i
}
,

(11)

where

Λ
(±)
i =

{

λ
(±)
k ∈

(

0, (uik)
m )
∣

∣

∣
min

{λ+
k
},{λ−

k
}

N
∑

k=1

(

λ+k − λ
−
k

)

xkl + ε

N
∑

k=1

(

λ+k + λ
−
k

)

,

subject to

N
∑

k=1

λ+k =

N
∑

k=1

λ−k and λ
+
k , λ

−
k ∈ [0, (uik)

m
]
}

, (12)

and the set Ik is defined as Ik = {i | 1 ≤ i ≤ c; |xk − vi|ε = 0}, k = 1, 2, . . . , N .

Proof. If V ∈ <cp is fixed, then the columns of U are independent, and the mini-
mization of (8) can be performed term by term:

Jmε(U,V) =

N
∑

k=1

gk (U) , (13)

where

∀
1≤k≤N

gk (U) =

c
∑

i=1

(uik)
m |xk − vi|ε . (14)

The Lagrangian of (14) with constraints from (1) is as follows:

∀
1≤k≤N

Gk (U, λ) =

c
∑

i=1

(uik)
m |xk − vi|ε − λ

[

c
∑

i=1

uik − 1

]

, (15)

where λ is the Lagrange multiplier. Setting the Lagrangian’s gradient to zero, we
obtain

∀
1≤k≤N

∂Gk (U, λ)

∂λ
=

c
∑

i=1

uik − 1 = 0 (16)
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and

∀
1≤s≤c
1≤k≤N

∂Gk (U, λ)

∂usk
= m (usk)

m−1 |xk − vs|ε − λ = 0. (17)

From (17) we get

usk =

(

λ

m

)
1

m−1
(

|xk − vs|ε
)

1
1−m . (18)

From (18) and (16) it follows that

(

λ

m

)
1

m−1
c
∑

j=1

(

|xk − vj |ε
)

1
1−m = 1. (19)

Combining (18) and (19) yields

∀
1≤s≤c
1≤k≤N

usk =

(

|xk − vs|ε
)

1
1−m

c
∑

j=1

(

|xk − vj |ε
)

1
1−m

. (20)

If Ik 6= ∅, then the choice of uik = 0 for i /∈ Ik and
∑

i∈Ik
uik = 1 for i ∈ Ik results

in minimization of the criterion (8), because the elements of the partition matrix are
zero for non-zero distances, and non-zero for zero distances. Finally, the necessary
conditions for minimization of (8) with respect to U can be written as in (10).

A more difficult problem is to obtain necessary conditions for the prototype
matrix V. Combining (8) and (9) yields

Jmε (U,V) =

c
∑

i=1

N
∑

k=1

(uik)
m

p
∑

l=1

|xkl − vil|ε =
c
∑

i=1

p
∑

l=1

gil (vil) , (21)

where

gil (vil) =

N
∑

k=1

(uik)
m |xkl − vil|ε (22)

can be called the weighted ε-insensitive (or fuzzy ε-insensitive) estimator. For ε = 0
we obtain the fuzzy median estimator (Kersten, 1999).

Our problem of minimizing the criterion (8) with respect to the prototypes can be
decomposed to c · p minimization problems of (22) for i = 1, . . . , c and l = 1, . . . , p.
In a general case, the inequalities xkl− vil ≤ ε and vil −xkl ≤ ε are not satisfied for
all data. If we introduce slack variables ξ+k , ξ

−
k ≥ 0, then for all the data xkl we can

write






vil − xkl ≤ ε+ ξ
+
k ,

xkl − vil ≤ ε+ ξ
−
k .

(23)
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Now, the criterion (22) can be written in the form

gil (vil) =

N
∑

k=1

(uik)
m (

ξ+k + ξ
−
k

)

, (24)

and minimized subject to the constraints (23) and ξ+k ≥ 0, ξ
−
k ≥ 0. The Lagrangian

of (24) with the above constraints is

Gil (vil) =

N
∑

k=1

(uik)
m (

ξ+k + ξ
−
k

)

−
N
∑

k=1

λ+k
(

ε+ ξ+k − vil + xkl
)

−
N
∑

k=1

λ−k
(

ε+ ξ−k + vil − xkl
)

−
N
∑

k=1

(

µ+k ξ
+
k + µ

−
k ξ
−
k

)

, (25)

where λ+k , λ
−
k , µ

+
k , µ

−
k ≥ 0 are the Lagrange multipliers. The objective is to minimize

the Lagrangian with respect to vil, ξ
+
k and ξ

−
k . It must be also maximized with respect

to the Lagrange multipliers. The following optimality conditions (for the saddle point
of the Lagrangian) are obtained by differentiating (25) with respect to vil, ξ

+
k , ξ

−
k

and setting the result to zero:







































∂Gil (vil)

∂vil
=

N
∑

k=1

(

λ+k − λ
−
k

)

= 0,

∂Gil (vil)

∂ξ+k
= (uik)

m − λ+k − µ
+
k = 0,

∂Gil (vil)

∂ξ−k
= (uik)

m − λ−k − µ
−
k = 0.

(26)

The last two conditions in (26) and the requirements µ+k , µ
−
k ≥ 0 imply λ

+
k , λ

−
k ∈

[0, (uik)
m
]. Imposing conditions (26) on the Lagrangian (25), we get

Gil (vil) = −
N
∑

k=1

(

λ+k − λ
−
k

)

xkl − ε
N
∑

k=1

(

λ+k + λ
−
k

)

. (27)

Maximization of (27) subject to constraints















N
∑

k=1

(

λ+k − λ
−
k

)

= 0,

λ+k , λ
−
k ∈ [0, (uik)

m
]

(28)

constitutes the so-called Wolfe dual formulation (problem). It is well-known from op-
timization theory that at the saddle point, for each Lagrange multiplier, the following
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Karush-Kühn-Tucker conditions must be satisfied:































λ+k
(

ε+ ξ+k − vil + xkl
)

= 0,

λ−k
(

ε+ ξ−k + vil − xkl
)

= 0,
(

(uik)
m − λ+k

)

ξ+k = 0,
(

(uik)
m − λ−k

)

ξ−k = 0.

(29)

The last two conditions in (29) show that λ+k ∈ (0, (uik)
m) leads to ξ+k = 0 and

λ−k ∈ (0, (uik)
m
) implies ξ−k = 0. In this case, the first two conditions in (29) yield







vil = xkl + ε, for λ
+
k ∈
(

0, (uik)
m
)

,

vil = xkl − ε, for λ
−
k ∈
(

0, (uik)
m
)

.
(30)

Thus we can determine the cluster centre vil from (30) by taking arbitrarily any
xkl for which the corresponding Lagrange multipliers are within the open inter-
val (0, (uik)

m
). Equations (27), (28) and (30) can be written with elegance as (11)

and (12).

The freedom to choose xkl in (30) results from the fact that we may have many
xkl at a distance ±ε from the cluster centre vil. Each datum at a distance less than
ε has λ

(±)
k = 0, and at a distance greater than ε it has λ

(±)
k = (uik)

m. So, taking

any xkl for which λ
(±)
k ∈ (0, (uik)

m), we must obtain the same value of the cluster
centre. But, from the numerical point of view, it is better to take the mean value of
vil obtained for all the data for which the conditions (30) are satisfied, i.e.

∀
1≤i≤c

∀
1≤l≤p

vil =
1

card
(

Λ+i ∪ Λ
−
i

)







∑

{k|λ+
k
∈Λ+
i
}

(xkl + ε) +
∑

{k|λ−
k
∈Λ−
i
}

(xkl − ε)






. (31)

On the basis of Theorem 2 and (31), we obtain an algorithm that can be called
ε-insensitive Fuzzy C-Means (εFCM):

1◦ Fix c (1 < c < N), m ∈ (1,∞) and ε ≥ 0. Initialize V(0) ∈ <pc, set j = 1.

2◦ Calculate the fuzzy partition matrix U(j) for the j-th iteration using (10).

3◦ Update the centres for the j-th iteration V(j) = [v
(j)
1 v

(j)
2 · · ·v

(j)
c ] using (31),

(12) and U(j).

4◦ If
∥

∥U(j+1) −U(j)
∥

∥

F
> ξ, then j ← j + 1, and go to 2◦.
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4. Numerical Experiments

In all the experiments for both FCM and εFCM the weighted exponent m = 2 was
used. The iterations were stopped as soon as the Frobenius norm in a successive pair
of U matrices was less than 10−5 for the FCM and 10−2 for the εFCM. For a
computed terminal prototypes, we measured the performance of clustering methods
by the maximal (on vectors components) absolute difference between the true centres
and terminal prototypes. The Frobenius norm distances between the true centres and
terminal prototype matrices were computed as well. All the experiments were run in
the MATLAB environment. The linear optimization with constraints was performed
using the linprog procedure.

4.1. Synthetic Data with a Varying Number of Outliers

The purpose of this experiment was to investigate the sensitivity of the FCM and
εFCM methods to outliers. The two-dimensional (two features) data set presented in
Fig. 1 consists of three well-separated groups and a varying number of outliers located
at point (9,9). The number of outliers varies from 0 (no outliers) to 20 (the number
of outliers equal to the cardinality of the upper-right cluster marked by crosses). The
true cluster centres, calculated without outliers, are marked by triangles. Both the
tested methods were initialized using prototypes (4, 4), (5, 5) and (6, 6), marked with
squares in Fig. 1. The εFCM method was tested for the parameter ε equal to 0.2
(less than the cluster radius), 2.0 (approximately equal to the cluster radius), and 3.0
(greater than the cluster radius).

The results for the FCM and εFCM methods with the data from Fig. 1 are pre-
sented in Tabs. 1 and 2. They show that for both the methods there is no deterioration
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Fig. 1. Performance of the FCM method for the following
numbers of outliers: 0, 4, 8, 12 and 16.
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Table 1. Maximum cluster centre errors for the synthetic data with outliers.

Number FCM εFCM

of outliers — ε = 0.2 ε = 2.0 ε = 3.0

0

0.0188

0.0652

0.0101

0.2307

0.1047

0.0314

0.1712

0.1294

0.3282

0.1047

0.1294

0.0126

2

0.0581

0.0780

0.1764

0.0314

0.1047

0.2718

0.1047

0.1831

0.0314

0.1047

0.1334

0.0126

4

0.0922

0.1171

0.3739

0.1110

0.1465

0.2797

0.1047

0.1891

0.0314

0.1047

0.2463

0.1350

6

0.1263

0.1766

0.5898

0.2180

0.4497

0.1465

0.1110

0.1334

0.1821

0.1047

0.2710

0.0126

8

0.1585

0.2236

0.8375

0.1047

0.1467

0.2039

0.1173

0.1334

0.2889

0.1047

0.3277

0.0126

10

0.1870

0.2514

1.1453

0.6085

0.1334

5.9081

0.1047

0.1334

0.3779

0.1753

2.2363

0.0126

12

0.2169

0.2435

1.6039

0.1722

2.6480

5.9081

0.1251

0.1334

0.8405

0.1047

0.4338

0.0784

14

5.8203

1.3452

5.8417

0.6085

0.1334

5.9081

0.1047

0.1334

0.2390

0.1753

0.4780

0.2519

16

2.9990

6.2144

5.8503

0.6085

0.1334

5.9081

0.1047

0.1294

0.2519

0.0336

1.0494

6.7621

18

2.9988

6.2143

5.8569

0.9190

0.2313

7.1561

0.1173

0.1334

3.0385

1.2760

0.1294

5.9081

20

2.9987

6.2142

5.8621

0.9190

0.1511

7.1561

0.1173

0.1334

3.1936

0.1173

0.1334

5.9081
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Table 2. Frobenius norm of clusters centre errors for the synthetic data with outliers.

Number FCM εFCM

of outliers — ε = 0.2 ε = 2.0 ε = 3.0

0 0.0055 0.0821 0.1546 0.0281

2 0.0456 0.1241 0.0629 0.0461

4 0.1794 0.1298 0.0661 0.1133

6 0.4226 0.2831 0.0807 0.1023

8 0.8141 0.1194 0.1957 0.1363

10 1.4568 35.7255 0.2739 5.1902

12 2.7336 42.3886 0.8917 0.2237

14 70.2390 35.7264 0.1326 0.3784

16 104.3053 35.7264 0.1273 77.9249

18 104.3905 53.6137 9.6860 36.9925

20 104.4583 53.5580 10.6388 35.3492

in the quality of the terminal prototype vectors for as many as 8 outliers. For more
than 8 outliers, in the case of the εFCM method for ε = 0.2 (the approximately
fuzzy median method), the deviation of the computed prototypes from the true cen-
tres increases with the number of outliers. In the case of the FCM method, for more
than 12 outliers, the errors of the prototype calculation suddenly increase with the
number of outliers. However, for the εFCM and ε = 0.2 the errors are smaller with
respect to the FCM method for more than 12 outliers.

In the case of the εFCM method, for ε = 2 and as many as 16 outliers, the errors
of the prototype calculation are small. When a number of outliers is comparable with
the cardinality of the upper-right cluster, one prototype is located between the centre
of this cluster and outliers. Other prototypes are placed correctly. In the case of the
equal number of bad (outliers) and good points in the data, there is no method to
distinguish between good and bad points. In other words, the εFCM for ε = 2
has a very high (nearly the highest possible) breakdown point. For the εFCM and
ε = 3 the breakdown point is at 16 outliers, but the errors are smaller than for the
FCM method. We can conclude that the best performance of the εFCM method is
obtained for the parameter ε approximately equal to the radius of groups in the
data. Figure 1 illustrates the performance of the FCM method for a varying number
of outliers (equal to 0, 4, 8, 12 and 16). In this figure, the traces of the prototypes
calculated in consecutive iterations are also shown. A larger number of outliers results
in a greater attraction of the terminal prototypes towards outliers. Figure 2 illustrates
the performance of the εFCM method with ε = 2 for 6, 14 and 20 outliers. From this
figure we can observe that for 6 outliers the true centres are reached. For 14 outliers
the trace of one prototype passes through outliers, but terminates close to the true
cluster centre. For 20 outliers the trace of one prototype also passes through outliers
and terminates halfway between the true centre and outliers.
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Fig. 2. Performance of the εFCM method with ε = 2 for
the following numbers of outliers: 6, 14 and 20.

4.2. Heavy-Tailed and Overlapped Groups of Data

The purpose of this experiment was to compare the usefulness of the FCM and εFCM
methods for clustering heavy-tailed and overlapped groups of the data. The two-
dimensional data set, presented in Fig. 3, consists of three overlapped groups. Each
group was generated by a pseudorandom generator with t-distribution. The true clus-
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Fig. 3. Performance of the εFCM method with ε = 2 on
heavy-tailed and overlapped clusters.
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ter centres are (2, 2), (−2, 2) and (2,−2). These centres are marked with triangles.
For all calculations performed in this subsection, the k-th component of the j-th
initial prototype was obtained as

∀
1≤j≤c

vjk = mk + j
Mk −mk
c+ 1

, (32)

where c is the number of clusters, mk = min
i
xik , Mk = max

i
xik .

The εFCM algorithm was tested with the parameter ε varying from 0 to 4.0
by 0.5. In Tab. 3, for these parameter values, the maximal absolute deviation of the
cluster centres from the true centres is presented. Also, the Frobenius norm of this
deviation is shown in Tab. 4. It can be seen from these tables that the εFCM method
terminated very close to the true values. The method is not very sensitive to the choice
of the ε parameter, but the best result was obtained for ε = 2. We can also see that
the FCM method terminated far away from the true centres. Figure 3 illustrates the
performance of the εFCM method for ε = 2. This figure presents only a part of the
data with the true cluster centres. In this figure, the traces of prototypes calculated
in sequential iterations are shown as well. The performance of the FCM method is
illustrated in Fig. 4. It should be noted that the range of this plot is wider than in
the previous figure. We can see that one prototype terminates in a wrong place (an
erroneous local minimum of the criterion function) and hence the other prototypes
must represent the data (the first in the cluster centre and the second between the
remaining cluster centres).

Table 3. Maximal of cluster centre errors for the data with heavy-tails.

εFCM

ε = 0 ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0

1.2774

0.3591

0.4361

0.2186

1.4384

0.1706

1.0891

0.9446

1.1458

0.0349

0.6262

1.4908

0.1188

0.2173

0.2358

εFCM FCM

ε = 2.5 ε = 3.0 ε = 3.5 ε = 4.0 —

0.2161

0.2124

0.1772

0.2943

0.4546

0.6164

0.6850

0.4765

0.8026

0.6233

0.0501

0.4453

15.7694

1.1294

0.5398

5. Conclusions

Noise and outliers in the clustered data imply that the clustering methods need to be
robust. This paper has established a connection between the fuzzy c-means method
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Table 4. Frobenius norm of clusters centre errors for the data with heavy-tails.

εFCM

ε = 0 ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0

2.0700 2.1618 3.4484 2.6981 0.1372

εFCM FCM

ε = 2.5 ε = 3.0 ε = 3.5 ε = 4.0 −

0.1414 0.7422 1.3814 0.6587 250.6377
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Fig. 4. Performance of the FCM method on heavy-tailed and over-
lapped clusters (the range of this plot is wider than in Fig. 3).

and robust statistics. The introduced ε-insensitive fuzzy clustering method is based
on Vapnik’s ε-insensitive loss function. The new method was introduced by solving a
constrained minimization problem of the criterion function. The necessary conditions
for obtaining a local minimum of the criterion function were proved. The existing
fuzzy c-median method can be obtained as a special case of the method introduced
in this paper. A comparative study of the ε-insensitive fuzzy c-means with tradition-
al fuzzy c-means was also included. The numerical examples show the usefulness of
the proposed method in clustering the data with outliers and with heavy-tailed and
overlapped groups of the data. The proposed clustering method requives an insensi-
tivity interval ε . This parameter depends upon the data structure, i.e. the cluster
size and shape, outliers location and cardinality. In application of this method to
high-dimensional real-word data, selection of the parameter ε can be made by means
of a validity index.
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Interesting tasks for future research include: (1) studying the use of the εFCM for
high-dimensional real-word databases, (2) determining the insensitivity parameter ε,
(3) establishing a computationally effective method for the cluster centre determina-
tion without using linear programming.
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