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INGHAM-TYPE INEQUALITIES AND RIESZ

BASES OF DIVIDED DIFFERENCES

Sergei AVDONIN∗, William MORAN∗∗

We study linear combinations of exponentials eiλnt, λn ∈ Λ in the case where
the distance between some points λn tends to zero. We suppose that the se-
quence Λ is a finite union of uniformly discrete sequences. In (Avdonin and
Ivanov, 2001), necessary and sufficient conditions were given for the family of
divided differences of exponentials to form a Riesz basis in space L2(0, T ). Here
we prove that if the upper uniform density of Λ is less than T/(2π), the family
of divided differences can be extended to a Riesz basis in L2(0, T ) by adjoining
to {eiλnt} a suitable collection of exponentials. Likewise, if the lower uniform
density is greater than T/(2π), the family of divided differences can be made
into a Riesz basis by removing from {eiλnt} a suitable collection of functions
eiλnt. Applications of these results to problems of simultaneous control of elastic
strings and beams are given.

Keywords: simultaneous controllability, string equation, beam equation, Riesz

bases, divided differences

1. Introduction

Families of ‘nonharmonic’ exponentials {eiλnt} appear in various fields of mathemat-
ics and signal processing. One of the central problems arising in all of these applica-
tions is the question of the Riesz basis property of an exponential family. For L2(0, T ),
this problem was considered for the first time in the classical work of R. Paley and
N. Wiener (1934), and since then has motivated a great deal of work by many mathe-
maticians; a number of references are given in (Avdonin and Ivanov, 1995; Khrushchev
et al., 1981; Nikol’skĭi, 1986; Young, 1980). The problem was ultimately given a com-
plete solution (Khrushchev et al., 1981; Minkin, 1991; Pavlov, 1979) on the basis of
an approach suggested by B. Pavlov.
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The main result in this direction can be formulated as follows (Pavlov, 1979):

Theorem 1. Let Λ := {λn | k ∈
�
} be a countable set in the complex plane. The

family {eiλnt} forms a Riesz basis in L2(0, T ) if and only if the following conditions
are satisfied:

(i) Λ lies in a strip parallel to the real axis,

sup
n∈ �
|=λn| <∞,

and is uniformly discrete (or separated), i.e.

δ(Λ) := inf
k 6=n
|λk − λn| > 0; (1)

(ii) there exists an entire function F of exponential type with indicator diagram of
width T and zero set Λ (the generating function of the family {eiλnt} on the
interval (0, T )) such that, for some real h, the function |F (x + ih)|2 satisfies
the Helson-Szegö condition: functions u, v ∈ L∞( � ), ‖v‖L∞ ( � ) < π/2 can be
found such that

|F (x+ ih)|2 = exp{u(x) + ṽ(x)}. (2)

Here the map v 7→ ṽ denotes the Hilbert transform for bounded functions:

ṽ(x) =
1

π
p.v.

∫ ∞

−∞

v(t)

{

1

x− t
+
t

t2 + 1

}

dt.

It is well-known that the Helson-Szegö condition is equivalent to the Mucken-
houpt condition (A2):

sup
I∈J

{

1

|I |

∫

I

|F (x+ ih)|2 dx
1

|I |

∫

I

|F (x+ ih)|−2 dx

}

<∞,

where J is the set of all intervals of the real axis.

The notion of the generating function mentioned above plays a central role in the
modern theory of nonharmonic Fourier series (Avdonin and Ivanov, 1995; Khrushchev
et al., 1981). This notion also plays an important role in the theory of exponential
bases in Sobolev spaces (Avdonin and Ivanov, 2000; Lyubarskii and Seip, 2000). It is
possible to write an explicit expression for this function:

F (z) = lim
R→∞

∏

|λn|≤R

(

1−
zn
λn

)

(we replace the term (1− λ−1n z) by z if λn = 0).

The theory of nonharmonic Fourier series was successfully applied to control
problems for distributed parameter systems and formed the base of the powerful
method of moments (Avdonin and Ivanov, 1995; Butkovsky, 1965; Russell, 1978).
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This method is based on properties of exponential families (usually in L2(0, T )), the
most important of which for control theory are minimality, the Riesz basis property,
and also the L-basis property. The last notion is introduced to make a Riesz basis
meaningful in the closure of its linear span.

Recent investigations into new classes of distributed systems such as hybrid sys-
tems and structurally damped systems have raised a number of new difficult problems
in the theory of exponential families (see, e.g. Hansen and Zuazua, 1995; Jaffard et
al., 1998; Micu and Zuazua, 1997). One of them is connected with the properties of
the family E = {eiλnt} in the case when the set Λ does not satisfy the separation
condition (1), and therefore E does not form a Riesz basis in its span in L2(0, T )
for any T > 0. In this case we meet the problem of obtaining a description of Riesz
bases of elements which are ‘simple and natural’ linear combinations of exponentials.

The first result in this direction was obtained by D. Ullrich (1980), who considered
sets Λ of the form Λ =

⋃

p∈ � Λ
(p), where the subsets Λ(p) consist of equal numbers

(say, N) real points λ
(p)
1 , . . . , λ

(p)
N close to p, i.e. |λ

(p)
j − p| < ε for all j and p. He

proved that, for sufficiently small ε > 0 (no estimate of ε was given), the family of
particular linear combinations of exponentials eiλnt—the so-called divided differences
constructed by subsets Λ(p) (see Definition 1 in Section 2)—forms a Riesz basis in
L2(0, 2πN). Such functions arise in numerical analysis (Isaacson and Keller, 1966;
Shilov, 1965), and the divided difference of eiµt, eiλt of the first order is (eiµt −
eiλt)/(µ−λ). In a sense, Ullrich’s result can be considered as a perturbation theorem
for the basis family {eint, teint, . . . , tN−1eint}, n ∈

�
.

The conditions of this theorem are rather restrictive and, as a result, it cannot
be applied to some problems arising in control theory (see, e.g. Baiocchi et al., 1999;
Castro and Zuazua, 1998; Jaffard et al., 1998; Lopes and Zuazua, 1998; Micu and
Zuazua, 1997). In (Avdonin and Ivanov, 2001), Ullrich’s result was generalized in
several directions: the set Λ is allowed to be complex and the subsets Λ(p) are allowed
to contain an arbitrary number of points which are not necessarily ‘very’ close to each
other (or even to some integer). Actually, (Avdonin and Ivanov, 2001) gives a full
description of Riesz bases of exponential divided differences and generalized divided
differences (the last ones appear in the case of multiple points λn).

To be more specific, a sequence Λ which is ‘a union’ of a finite number of separated
sets was decomposed into groups Λ(p) of ‘close’ points. For each group, a family
of generalized divided differences (GDDs) was chosen and it was proved that these
functions form a Riesz basis in L2(0, T ) if the generating function of the exponential
family satisfies the Helson-Szegö condition (2). In the case when Λ is not a finite
union of separated sets, a negative result was presented in (Avdonin and Ivanov,
2001): for some ordering of Λ, GDDs do not form a uniformly minimal family.

In the present paper, we continue the study of the GDDs of exponentials and
give answers to questions which are very important in applications to control theory.
It is known (Avdonin and Ivanov, 1995, Sec. III.3) that the L-basis property of the
exponential family is equivalent to the so-called B-controllability of the corresponding
dynamical system which, in turn, implies exact controllability. The most efficient way
to check that a family forms an L-basis is to prove that it can be extended to a Riesz
basis by adjoining a suitable collection of functions.
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On the other hand, the strongest negative result about controllability (i.e. the
absence of approximate controllability) is equivalent (Avdonin and Ivanov, 1995, Sec-
tion III.3) to weak linear dependence of the corresponding exponential family. The
most efficient way to check that a family is weakly linear dependent is to prove that
it can be transformed to a Riesz basis by removing a suitable collection of functions.

The main results of the present paper give simple sufficient conditions for the
family of exponential GDDs to be made into a Riesz basis by removing or adjoining a
suitable collection of exponentials in terms of the upper and lower uniform densities of
the sequence Λ. We also give applications of these results to problems of simultaneous
controllability of elastic strings and beams.

2. Main Results

Let Λ = {λn} be a sequence in � ordered in such a way that {<λn} forms a non-
decreasing sequence. In what follows, we also assume that sup |=λn| < ∞. To each
Λ, we associate the exponential family

E(Λ) = {eiλnt, teλnt, . . . , tmn−1eiλnt},

where mn is the multiplicity of λn ∈ Λ.

The sequence Λ is called uniformly discrete or separated if condition (1) is ful-
filled. Note that, in this case, all points λn are simple and we do not need to differen-
tiate between a sequence and a set. We say that Λ is relatively uniformly discrete if
it can be decomposed into a finite number of uniformly discrete subsequences. Some-
times we shall simply say that such a Λ is a finite union of uniformly discrete sets;
however, we always consider a point λn to be assigned a multiplicity.

We introduce the notations needed to formulate further results. For any λ ∈ � ,
denote by Dλ(r) a disc with centre λ and radius r. Let G

(p)(r), p = 1, 2, . . . be the
connected components of the union ∪λ∈ΛDλ(r), and write Λ(p)(r) = {λj,p} for the
subsequence of Λ lying in G(p), Λ(p)(r) := Λ ∩G(p)(r).

Denote by #A the number of elements in a set or a sequence A. The following
two statements are quite obvious (see (Avdonin and Ivanov, 2001) for details):

Lemma 1. Let Λ be a union of N uniformly discrete sets Λj,

δ(Λj) := inf
λ6=µ; λ,µ∈Λj

|λ− µ|, δ := δ(Λ) := min
j
δ(Λj).

Then, for r < r0 := δ/(2N), we have N (p)(r) := #Λ(p)(r) ≤ N .

In applications we often meet the case of real Λ’s. Then a relatively uniformly
discrete set can be characterized using a different parameter than in Lemma 1.

Lemma 2. A real sequence Λ is a union of N uniformly discrete sets Λj if and

only if infn(λn+N − λn) := δ̃ > 0. Along with that, minj δ(Λj) ≤ δ̃.
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Let µk, k = 1, . . . ,m be arbitrary complex numbers, not necessarily different.

Definition 1. The generalized divided difference (GDD) of order zero of the function
eiµt corresponding to the point µ1 is [µ1](t) := e

iµ1t. The GDD of the order n− 1,
n ≤ m, of eiµt corresponding to µ1, . . . , µn is

[µ1, . . . , µn] :=















[µ1, . . . , µn−1]− [µ2, . . . , µn]

µ1 − µn
, µ1 6= µn,

∂

∂µ
[µ, µ2, . . . , µn−1]

∣

∣

∣

µ=µ1
, µ1 = µn.

We use the term generalized divided differences when there are multiple points
in Λ. If all λn have multiplicity one, we use the term divided differences (DDs).

If all µk are distinct, one can easily derive the explicit formula for the DD:

[µ1, . . . , µn](t) =

n
∑

k=1

eiµkt
∏

j 6=k(µk − µj)
. (3)

For any points {µk}, the following formula is valid (see, e.g. Shilov, 1965, p.228)

[µ1, . . . , µn](t) =

∫ 1

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−2

0

dτn−1(it)
n−1

exp
(

it [µ1 + τ1(µ2 − µ1) + · · ·+ τn−1(µn − µn−1)]
)

.

Let Λ(p)(r), p = 1, 2, . . . be the subsequences of Λ described above:

Λ(p)(r) = {λj,p} , j = 1, . . . ,N
(p)(r).

Denote by E(p)(Λ, r) the family of GDDs corresponding to the points Λ(p)(r):

E(p)(Λ, r) = {[λ1,p], [λ1,p, λ2,p], . . . , [λ1,p, . . . , λN (p),p]}.

Note that E(p)(Λ, r) depends on the enumeration of Λ(p), although every GDD de-
pends symmetrically on its parameters. Write {E (p)(Λ, r)} for the family of E (p)(Λ, r)
corresponding to all p = 1, 2, . . . .

The following theorem describes Riesz bases of GDDs. It is proved in (Av-
donin and Ivanov, 2001) using the methods developed in (Avdonin and Ivanov, 1995,
Secs. II.2, II.3).

Theorem 2. Let Λ be a relatively uniformly discrete sequence and r < r0. Then
the family {E(p)(Λ, r)} forms a Riesz basis in L2(0, T ) if and only if there exists an
entire function F of exponential type with indicator diagram of width T and zeros
at the points λn of multiplicity mλn (the generating function of the family E(Λ) on
the interval (0, T )) such that, for some real h, the function |F (x+ ih)|2 satisfies the
Helson-Szegö condition (2).
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To formulate our next result, we write

n+(r) := sup
x∈ �
#{<Λ ∩ [x, x+ r)}, n−(r) := inf

x∈ �
#{<Λ ∩ [x, x+ r)},

and define in a standard way (see, e.g. Beurling, 1989, p.346) the upper and lower
uniform densities of Λ to be respectively

D+(Λ) := lim
r→∞

n+(r)

r
, D−(Λ) := lim

r→∞

n−(r)

r
.

Both the limits exist due to the subadditivity of n+(r) and superadditivity of n−(r).

The proof of the following theorem is based on the ‘1/4 in the mean’ theorem
(Avdonin, 1974; Avdonin and Ivanov, 1995, Section II.4). This theorem generalizes a
similar result of K. Seip (1995) concerning the case of uniformly discrete sequences
(when instead of GDDs we deal with families of exponentials).

Theorem 3. Under the conditions of the previous theorem, the following statements
are valid:

(i) For any T < 2πD−(Λ), there exists a subfamily E0 of {E(p)(Λ, r)} which forms
a Riesz basis in L2(0, T ); the family {E(p)(Λ, r)} \ E0 is infinite.

(ii) For any T > 2πD+(Λ), the family {E(p)(Λ, r)} forms an L-basis in L2(0, T ).
Moreover, it can be extended to a family E1 of GDDs which forms a Riesz basis
in this space; the family E1 \ {E

(p)(Λ, r)} is infinite.

Remark 1. The results of this theorem were announced in (Avdonin, 2000). Inde-
pendently, the L-basis statement of (ii) was announced in (Baiocchi et al., 2000). It
should be noted that there, Λ is contained in � .

The fact that exponential divided differences form a Riesz basis or an L-basis
in L2(0, T ) can be written as a two-sided inequality which generalizes the classical
inequality of Ingham and extends previous results (Baiocchi et al., 1999; Jaffard et
al., 1997) in this direction to sets containing an arbitrary number of close points.

Let Λ be a relatively uniformly discrete sequence lying in a strip parallel to
the real axis. According to Lemma 1, it can be represented as a union of finite subse-
quences Λ(p)(r) separated from one another, where the number of elements in Λ(p)(r)

is not greater than some N . Here Λ(p)(r) will be denoted by two indices as Λ
(s)
n ,

where n is the number of elements in this subsequence and s is a numbering of
subsequences consisting of n elements. Then we can write Λ in the form

Λ =
N
⋃

n=1

Λn, where Λn =
⋃

s

Λ(s)n ,

and

dist
(

Λ(s)n , Λ \Λ
(s)
n

)

≥ 2r > 0 ∀n, s.
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For any finite sequence (aλ)λ∈Λ, we set

G1 =
∑

λ∈Λ1

|aλ|
2, G2 =

∑

s

∑

{λ1,λ2}∈Λ
(s)
2

(

|aλ1+aλ2 |
2+|aλ2(λ2−λ1)|

2
)

,

G3 =
∑

s

∑

{λ1,λ2,λ3}∈Λ
(s)
3

(

|aλ1+aλ2+aλ3 |
2+|aλ2(λ2−λ1)+aλ3(λ3−λ1)|

2

+ |aλ3(λ3 − λ1)(λ3 − λ2)|
2
)

,

...

GN =
∑

s

∑

{λ1,λ2,...,λN}∈Λ
(s)

N

(

∣

∣

∣

∣

N
∑

k=1

aλk

∣

∣

∣

∣

2

+

N
∑

m=2

∣

∣

∣

∣

N
∑

k=m

aλk(λk − λ1)(λk − λ2) . . . (λk − λm−1)

∣

∣

∣

∣

2
)

.

Formula (3) directly implies the following statement:

Proposition 1. Let all points λn have multiplicity one. If the family {E (p)(Λ, r)} of
exponential divided differences forms an L-basis in L2(0, T ), then there exist positive
constants C1 and C2 such that

C1

N
∑

n=1

Gn ≤

∥

∥

∥

∥

∑

λ∈Λ

aλe
iλt

∥

∥

∥

∥

2

L2(0,T )

≤ C2

N
∑

n=1

Gn

for any finite sequence (aλ)λ∈Λ.

3. Proof of Theorem 3

We need the following definition from (Avdonin, 1974). Let Λ be, as in Section 2, a
sequence of complex numbers in a strip parallel to the real axis, and {αj}j∈ � ⊂ �
be an increasing sequence such that supj∈ � lj <∞, lj := αj+1 − αj . Partition

Λ =
⋃

j∈ �
Λj , Λj := {αj ≤ <λn < αj+1} ,

is said to be an α-partition of Λ.

The proof of Theorem 3 is based on the following result (Avdonin, 1974).

Proposition 2. Let Λ = {λn} be a zero set of a sine-type function (see the corre-
sponding definition in (Avdonin and Ivanov, 1995, p.61)), {δn} a bounded sequence
of complex numbers, and F an entire function of the Cartwright class (Avdonin and
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Ivanov, 1995, p.60) with the zero set {λn + δn}. If, for some α-partition of {λn}
and some d > 0,

∣

∣

∣

∣

∑

n:λn∈Λj

<δn

∣

∣

∣

∣

≤ d lj ,

then, for any d1 > d, functions u, v ∈ L∞( � ), ‖v‖L∞( � ) < 2πd1 can be found such
that

|F (x+ ih)|2 = exp{u(x) + ṽ(x)}

for any real h satisfying that |h| > sup |=(λn + δn)|.

For the proof of this assertion, one argues using (Avdonin, 1974, Lemma 1), and
in much the same way as in the proof of (Avdonin, 1974, Lemma 2), that there exists
a sine-type function with zeros µn such that, for any d1 > d,

d1<(µn−1 − µn) ≤ <(λn + δn − µn) ≤ d1<(µn+1 − µn).

Then Proposition 2 follows directly from (Avdonin and Joó, 1988, Lemmas 1 and 2).

The proof of Theorem 3 follows the scheme of the proofs of Theorems 2.3 and 2.4
in (Seip, 1995). Note that the same ideas based on the ‘1/4 in the mean’ theorem
(Avdonin, 1974) were also used in (Avdonin et al., 1989; Avdonin and Ivanov, 1995,
pp.109, 110).

By a scaling argument, we may assume that, in the conditions of assertion (i) of
Theorem 3, T = 2π and D−(Λ) > 1. Then an integer L greater than 2δ(Λ) can be
found such that the number of elements of <Λ in each interval of length L− 2δ(Λ)
is at least L+ 1. Set M = L(L+ 1) and consider the problem of how to select M
elements from the sequence

Λ(m) := {λn ∈ Λ: <λn ∈ [mM + 1/2, (m+ 1)M + 1/2)} .

We choose elements λn from the subsequences Λ
(p) whose real parts are entirely

inside the intervals [mM + 1/2 + kL,mM + 1/2 + (k + 1)L], k = 0, 1, . . . , L. Such
Λ(p)’s exist in each of the intervals because max{|λ − λ′| : λ, λ′ ∈ Λ(p)} < δ(Λ) and
L was selected to be large enough. When we choose elements of Λ(p), we select the
first several elements of this sequence. Thus we will be able to obtain a subfamily of
{E(p)(Λ, r)} which forms a Riesz basis in L2(0, 2π).

We represent the chosen points in the form

λ′n = n+ δn, n = mM + 1,mM + 2, . . . , (m+ 1)M,

and consider the following α-partition of the set of integers:
�
=
⋃

m∈ �

�
m,

�
m = {n ∈

�
: mM + 1/2 ≤ n < (m+ 1)M + 1/2}.

Let Smin(m) and Smax(m) denote respectively the smallest and largest possible
values of the sum

(m+1)M
∑

n=mM+1

<δn.
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It is easy to see that

Smin(m) < (L+ 1)

L
∑

j=1

(jL+
1

2
)−

M
∑

j=1

j = 0

and

Smax(m) > (L+ 1)
L
∑

j=1

(M +
1

2
− jL)−

M
∑

j=1

j = 0.

Since supn∈ � (<λn+1 − <λn) ≤ 2L, it follows that λ′n can be chosen in such a way
that

∣

∣

∣

∣

(m+1)M
∑

n=mM+1

<δn

∣

∣

∣

∣

≤ L =
M

L+ 1
.

Consider the subfamily E0 ⊂ {E(p)(Λ, r)}, E0 := E(Λ′), Λ′ := {λ′n}, corresponding
to such a choice of Λ′. From Proposition 2 it follows that the generating function
of the family E0 satisfies the Helson-Szegö condition if L > 3. It is clear from the
construction of Λ′ that D+(Λ′) = D−(Λ′) = 1 and so the width of the indicator
diagram of the generating function is equal to 2π. Owing to Theorem 2, the family
E0 forms a Riesz basis in L2(0, 2π); the sequence Λ \ Λ′ is infinite by construction.
Assertion (i) of Theorem 3 is proved.

Assertion (ii) can be proved in the same way. If D+(Λ) < 1, an integer L greater
than 2δ(Λ) can be found such that the number of elements of <Λ in each interval
of length L is at most L − 1. Set M = L(L + 1). Consider the problem of how to
extend the sequence

Λ(m) := {λn ∈ Λ: <λn ∈ [mM + 1/2, (m+ 1)M + 1/2)}

consisting at most of (L− 1)(L+ 1) elements, to a sequence consisting of L(L+ 1)
elements. We can take the additional points with real parts from the interval [mM +
1/2, (m + 1)M + 1/2) in a rather arbitrary way and choose, in particular, all the
points adjoined to Λ(m) to lie in an interval of length L. It is only important that if
we choose additional points from a set G(p)(r), we adjoin them as the last elements
of the corresponding Λ(p)(r), and this allows us to extend the family E (p)(Λ, r) to a
Riesz basis.

Let now

λ′n = n+ δn, n = mM + 1,mM + 2, . . . , (m+ 1)M

denote an arbitrary extension of Λ(m), and let Smin(m) and Smax(m) be respectively
the smallest and largest possible values of the sum

(m+1)M
∑

n=mM+1

<δn.
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Then

Smin(m) < (L− 1)
L+1
∑

j=1

(jL+
1

2
) + (L+ 1)(L+

1

2
)−

M
∑

j=1

j = 0

and

Smax(m) > (L− 1)
L
∑

j=0

(jL+
1

2
) + (L+ 1)(M +

1

2
− L)−

M
∑

j=1

j = 0.

The remainder of the proof is the same as that of assertion (i).

4. Applications to Simultaneous Control Problems

Boundary controllability of elastic systems has been intensively studied in recent years
(see, e.g. (Avdonin and Ivanov, 2001; Lagnese and Lions, 1988; Lions, 1988) and the
references therein). In particular, the following challenging problem was discussed
for some distributed parameter systems in (Russell, 1986; Lions, 1988, Ch. 5): For
a collection of several exactly controllable systems, find assumptions allowing for a
simultaneous control of all systems using the same input function. This property is
called simultaneous controllability. For two elastic strings it was studied in (Avdonin
and Tucsnak, 2001; Baiocchi et al., 1999; Tucsnak and Weiss, 2000), and for two
beams in (Baiocchi et al., 1999).

In (Avdonin and Moran, 2001), we investigated the simultaneous controllability
of several strings subjected to the Dirichlet boundary conditions. In the present paper,
we consider this question for several beams controlled from a common end point and
for a string-beam system.

4.1. Several Beams

For ξj > 0, j = 1, . . . , N , we consider the problems














































∂2uj
∂t2
(x, t) +

∂4uj
∂x4
(x, t) = 0 ∀ x ∈ (0, ξj), ∀ t ∈ (0,∞),

uj(0, t) = 0, uj(ξj , t) = 0 ∀ t ∈ (0,∞),

∂2uj
∂x2
(0, t) = f(t),

∂2uj
∂x2
(ξj , t) = 0 ∀ t ∈ (0,∞),

uj(x, 0) = 0,
∂uj
∂t
(x, 0) = 0 ∀ x ∈ (0, ξj).

(4)

The systems above model the vibrations of several beams controlled at a common end
point, x = 0.

We introduce now the operators Aj , j = 1, . . . , N defined by

D(Aj) = H
2(0, ξj) ∩H

1
0 (0, ξj), Aj : D(Aj) 7→ L

2(0, ξj), Ajh = −
d2h

dx2
,
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and the spaces W sj and W
s defined as follows:

W sj = D
(

A
s/2
j

)

for s > 0, W 0j = L
2(0, ξj), W

s
j =

(

W−sj
)′
for s < 0, (5)

Ws =
N
∏

j=1

W s+1j ×W s−1j .

Each operator Aj possesses a set of eigenfunctions which forms an orthonormal basis
in L2(0, ξj):

ϕ(j)n (x) =
√

2/ξj sin(nπx/ξj), n ∈ � for j = 1, . . . , N.

It is well-known (see, e.g. Lions, 1988) that, for f ∈ L2(0, T ), each of the systems
in (4) is well-posed in H10 (0, ξj) ×H

−1(0, ξj). This allows us to define the bounded
linear operator

UT : L2(0, T ) 7→
N
∏

j=1

H10 (0, ξj)×H
−1(0, ξj) =W

0,

UT f = (u1(·, T ), u̇1(·, T ), u2(·, T ), u̇2(·, T ), . . . , uN(·, T ), u̇N(·, T )) ,

where the upper dot denotes the derivative with respect to time.

The space of the states simultaneously reachable by the systems (4) in the time
interval [0, T ] is defined as the range RT := UT (L2(0, T )) of the operator UT .
According to the properties of this space, we can define several types of simultaneous
controllability.

Definition 2.

1. The systems (4) are called simultaneously approximately controllable in the time
interval [0, T ] if RT is dense in W0.

2. The systems (4) are called simultaneously spectrally controllable in the

time interval [0, T ] if, for all n ≥ 1, the states (ϕ
(1)
n , 0, 0, . . . , 0),

(0, ϕ
(1)
n , 0, . . . , 0), . . . , (0, 0, . . . , 0, ϕ

(N)
n , 0), (0, 0, . . . , 0, ϕ

(N)
n ) are reachable at

time T , i.e. if they belong to RT .

3. The systems (4) are called simultaneously exactly controllable in the time inter-
val [0, T ] with respect to a space U ⊆ W0 if RT ⊇ U .

The following three theorems describe, respectively, simultaneous approximate
controllability, simultaneous spectral controllability and the simultaneously reachable
space. We set θjk = ξj/ξk, 1 ≤ j < k ≤ N .

Theorem 4. If at least one of θjk’s is rational, the systems (4) are not simultaneously
approximately controllable for any T > 0.
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Theorem 5. If all θjk’s are irrational, the systems (4) are simultaneously spectrally
controllable in the time interval [0, T ] for any T > 0.

To describe further results, we need some concepts from the theory of diophan-
tine approximation. Denote by S the set of all irrational numbers ρ such that if
[a0, a1, . . . , an, . . . ] is the expansion of ρ as a continued fraction, then the sequence
of partial quotients (an) is bounded. This is the set of ‘badly approximable num-
bers’. Note that S is obviously uncountable and, by classical results on diophantine
approximation (cf. Cassels, 1965, p.120), its Lebesgue measure is equal to zero.

Theorem 6. For any T, ε > 0 the following statements are valid:

(a) If all θjk’s belong to S, the systems (4) are simultaneously exactly controllable

with respect to
∏N
j=1H

1
0 (0, ξj)×H

−1(0, ξj).

(b) For almost all ξj ’s, the systems (4) are simultaneously exactly controllable with

respect to
∏N
j=1H

1+ε
0 (0, ξj)×H

−1+ε(0, ξj).

To prove Theorems 4–6, we apply the method of moments based on the Fourier
method (separation of variables). We represent the solution of initial boundary value

problems (4) in a form of series expansions by functions ϕ
(j)
n :

uj(x, t) =

∞
∑

n=1

a(j)n (t)ϕ
(j)
n (x).

Standard calculations show that the coefficients a
(j)
n satisfy the equalities

a(j)n (T ) = −
√

2/ξj (µ
(j)
n )
−1
∫ T

0

f(t) sinλ(j)n (T − t) dt, (6)

ȧ(j)n (T ) = −
√

2/ξjµ
(j)
n

∫ T

0

f(t) cosλ(j)n (T − t) dt, (7)

where µ
(j)
n = nπ/ξj and λ

(j)
n = (nπ/ξj)

2. Equalities (6) and (7) can be written in
the form

c
(j)
k (T ) =

∫ T

0

f(t)e−iλ
(j)

k
t dt, (8)

where k ∈
�
∗ :=

�
\ {0}, µ

(j)
−n := −µ

(j)
n , λ

(j)
−n = −λ

(j)
n , and

c
(j)
k (T ) := −e

−iµ
(j)

k
T
√

ξj/2
[

iµ
(j)
k a
(j)
k (T )+ȧ

(j)
k (T )/µ

(j)
k

]

for k > 0, (9)

c
(j)
k (T ) := e

−iµ
(j)

k
T
√

ξj/2
[

−iµ
(j)
k a
(j)
|k| (T )+ȧ

(j)
|k|(T )/µ

(j)
k

]

for k < 0. (10)

To proceed further, we introduce the spaces `2s, s ∈ � of sequences {ck}, k ∈
�
∗

such that

‖ck‖
2
s :=

∑

k∈ � ∗
|ck|
2|k|2s <∞
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and set Vs := `2s × `
2
s × · · · × `

2
s (N factors). From (9) and (10) it follows that

mj‖{c
(j)
k (T )}‖

2
s ≤ ‖uj(·, T )‖

2
W s+1
j

+ ‖u̇j(·, T )‖
2
W s−1
j

≤Mj‖{c
(j)
k (T )}‖

2
s (11)

for some positive constants mj and Mj .

Therefore (cf. (8) and (11)), the reachable set RT is isomorphic to the set of

sequences {b
(1)
k , b

(2)
k , . . . , b

(N)
k } for which the problem of moments

b
(j)
k =

(

f, eiλ
(j)

k
t
)

L2(0,T )
, j = 1, . . . , N, k ∈ � ∗, (12)

has a solution f ∈ L2(0, T ) in the sense that, for any s ∈ � , the norm of UT f in
Ws is equivalent to the norm of {b

(1)
k , b

(2)
k , . . . , b

(N)
k } in Vs.

We introduce now the exponential family

E =
N
⋃

j=1

Ej , Ej =
{

eiλ
(j)

k
t
}

k∈ � ∗
.

In what follows we will extensively use Theorem III.3.10 of (Avdonin and Ivanov,
1995), which connects properties of the reachable set with properties of the family E
in L2(0, T ).

If θjq is rational for some j, q (1 ≤ j < q ≤ N), there are infinitely many m,n ∈
� such that mπ/ξj = nπ/ξq. Then the family E is linearly dependent in L2(0, T ) for
any T . Theorem 4 follows now from (Avdonin and Ivanov, 1995, Thm. III.3.10(e)).
Moreover, the codimension of the reachable set is infinite.

Now we suppose that all θjq ’s are irrational and so all λ
(j)
k ’s are distinct.

Proof of Theorem 5. A necessary and sufficient condition of the spectral controlla-
bility of systems (4) is the minimality of the family E (Avdonin and Ivanov, 1995,
Thm. III.3.10(d)). By the classical result of Paley and Wiener (see, e.g. Avdonin and
Ivanov, 1995, p.99), the family E is minimal in L2(0, T ) if and only if there exists
an entire function F of exponential type not greater than T/2 such that

F (λ
(j)
k ) = 0 ∀j, k and

∫

�
|F (x)|2(1 + x2)−1 dx <∞. (13)

Both the upper and lower uniform densities of the sequence Λ := ∪j{λ
(j)
k }k∈ � ∗ evi-

dently equal zero. Therefore, exactly as in the proof of the statement (ii) of Theorem 3,
for any T > 0 one can construct an entire function F of the exponential type T/2
which satisfies the first condition of (13) and the Helson-Szegö condition. It is known
(Garnett, 1981, Ch. VI) that the Helson-Szegö condition implies the second condition
in (13). Theorem 5 is thus proved.

Proof of Theorem 6. We set δ = minj=1,...,N 3(π/ξj)
2 and take r < δ/(2N). Then,

following the algorithm described in Section 2, we decompose the sequence Λ into an
infinite number of finite sets Λ(p)(r) = {λqp}, q = 1, . . . ,N (p) ≤ N . Using the new
numbering of points of Λ, we also obtain a new numbering {bqp} of the sequences on
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the left-hand side of (12). Denote by E (p)(r) = {φqp}, q = 1, . . . ,N (p) the family of
the divided differences correponding to Λ(p)(r). From (3) it follows that equalities (12)
can be rewritten in the form

βqp =

∫ T

0

f(t)φqp(t) dt, q = 1, . . . ,N
(p), p = 1, 2, . . . ,

where

βqp =

q
∑

i=1

bip
∏

s6=i(λip − λsp)
. (14)

Using Theorem 2 and the function F (z) constructed in the proof of Theorem 5,
we see that the family {E (p)(r)} forms an L-basis for any T > 0. Therefore the
sequence {bip} corresponds to a solvable problem of moments (12) if and only if the
sequence {βqp} constructed by (14) belongs to `

2.

For some m,n ∈
�
and some j, k, we have

λqp =
mπ

ξj
, λsp =

nπ

ξk
.

If all θjk ’s belong to S, then there exists a positive constant C1 such that

|λqp − λsp| =

∣

∣

∣

∣

mπ

ξj
−
nπ

ξk

∣

∣

∣

∣

∣

∣

∣

∣

mπ

ξj
+
nπ

ξk

∣

∣

∣

∣

=

(

π

ξj

)2

|θjkn−m| |θjkn+m| ≥
C1
n
n = C1.

We used the fact that if θ ∈ S, then there exists Cθ > 0 such that, for any n ∈ � ,

inf
m∈ �
|θn−m| ≥

Cθ
n
.

Hence (see (14)),

βqp ≤ C2

q
∑

i=1

|bip|.

Since q ≤ N , it is clear that

{βqp} ∈ `
2 if {bjp} ∈ `

2.

Assertion (a) of Theorem 6 is thus proved. Assertion (b) can be proved in exactly the
same way using the fact that for almost all θ, the inequality |θn−m| ≥ Cθn−1−ε is
valid (Cassels, 1965, p.120).
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4.2. String-Beam Systems

One can study similar problems for several strings and several beams controlled at a
common end point. Let M and N be positive integers. For ξj > 0, j = 1, . . . ,M ,
we consider the initial boundary value problems for the string equations































∂2uj
∂t2
(x, t)−

∂2uj
∂x2
(x, t) = 0 ∀ x ∈ (0, ξj), ∀ t ∈ (0,∞),

uj(0, t) = f(t), uj(ξj , t) = 0 ∀ t ∈ (0,∞),

uj(x, 0) = 0,
∂uj
∂t
(x, 0) = 0 ∀ x ∈ (0, ξj),

(15)

and for ξj > 0, j =M + 1, . . . ,M +N we consider the problems as in (4):















































∂2uj
∂t2
(x, t) +

∂4uj
∂x4
(x, t) = 0 ∀ x ∈ (0, ξj), ∀ t ∈ (0,∞),

uj(0, t) = 0, uj(ξj , t) = 0 ∀ t ∈ (0,∞),

∂2uj
∂x2
(0, t) = f(t),

∂2uj
∂x2
(ξj , t) = 0 ∀ t ∈ (0,∞),

uj(x, 0) = 0,
∂uj
∂t
(x, 0) = 0 ∀ x ∈ (0, ξj)

(16)

Using the spaces W sj defined in (5), we introduce the spaces W
s in the following

way:

Ws =





M
∏

j=1

W sj ×W
s−1
j



×





M+N
∏

j=M+1

W s+1j ×W s−1j



 .

It is well-known that, for f ∈ L2(0, T ), each of the systems in (15) is well-posed
in L2(0, ξj)×H−1(0, ξj) (see, e.g. Lions, 1988; Avdonin and Ivanov, 1995). This allows
us to define the bounded linear operator UT : L2(0, T ) 7→ W0,

UT f = (u1(·, T ), u̇1(·, T ), u2(·, T ), u̇2(·, T ), . . . , uM+N (·, T ), u̇M+N (·, T )) .

The notions of simultaneous approximate, spectral and exact controllabilities for sys-
tems (15), (16) can be introduced as in Definition 2.

We set T∗ = 2
∑M
j=1 ξj ; θjk = ξj/ξk for 1 ≤ j < k ≤ M and for M + 1 ≤

j < k ≤ M +N , and σjk = πξj/ξ2k for 1 ≤ j ≤ M , M + 1 ≤ k ≤ M +N . The re-
sults concerning, respectively, simultaneous approximate controllability, simultaneous
spectral controllability and characterization of the simultaneously reachable space of
systems (15), (16) are expressed in the following three theorems:

Theorem 7. The following statements are valid:

(a) If at least one of θjk or σjk is rational, the systems (15) and (16) are not
simultaneously approximately controllable for any T > 0.
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(b) For any ξj , the systems (15) and (16) are not simultaneously approximately
controllable in time T ≤ T∗.

Theorem 8. If all θjk and σjk are irrational, the systems (15) and (16) are simul-
taneously spectrally controllable in the time interval [0, T ] for any T > T∗.

Theorem 9. For any T > T∗, ε > 0, the following statements are valid:

(a) If all θjk and σjk belong to S, the systems (15) and (16) are simultaneously
exactly controllable with respect to





M
∏

j=1

WM+N−1j ×WM+N−2j



×





M+N
∏

j=M+1

W 2M+1j ×W 2M−1j



 .

(b) For almost all ξj , the systems (15) and (16) are simultaneously exactly control-
lable with respect to





M
∏

j=1

WM+N−1+εj ×WM+N−2+εj



×





M+N
∏

j=M+1

W 2M+1+εj ×W 2M−1+εj



 .

The proofs of these theorems can be carried out similarly to those of Theorems 4–
6. However, they are more complicated and will be presented in a forthcoming paper.
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application à la théorie du contrôle. — C. R. Acad. Sci. Paris, Vol.330, Série I, pp.281–
286.

Beurling A. (1989): Balayage of Fourier-Stieltjes transforms, In: The Collected Works of
Arne Beurling, Vol.2 Harmonic Analysis (L. Carleson, P. Malliavin, J. Neuberger, J.
Wermer, Eds.). — Boston: Birkhäuser.
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