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SIMULATIONS OF GRAVITY WAVE INDUCED

TURBULENCE USING 512 PE CRAY T3E†

Joseph M. PRUSA∗, Piotr K. SMOLARKIEWICZ∗∗,

Andrzej A. WYSZOGRODZKI***

A 3D nonhydrostatic, Navier-Stokes solver has been employed to simulate grav-
ity wave induced turbulence at mesopause altitudes. This paper extends our
earlier 2D study reported in the literature to three spatial dimensions while
maintaining fine resolution required to capture essential physics of the wave
breaking. The calculations were performed on the 512 processor Cray T3E ma-
chine at the National Energy Research Scientific Computing Center (NERSC)
in Berkeley. The physical results of this study clearly demonstrate advantages
of highly parallel technologies. We briefly outline the physical outcome of the
study, as well as compare the relative model performance across several machines
using both MPI and Shmem communication software.

Keywords: nonhydrostatic gravity wave turbulence, parallel Navier-Stokes

solver

1. Introduction

In recent years, a number of new machines based on massively parallel processing
(MPP) technology have become available for large-scale computations in science and
engineering. Among the existing MPP computers, those consisting of hundreds or
thousands of processors communicating via explicit message passing implementation
of application programs appear particularly competitive with conventional vector su-
percomputers. On the other hand, there are a number of important yet sufficiently
small problems that can be addressed successfully using vector supercomputers, single
processor scalar workstations, or even modern PCs.
In order to best utilize the wide range of computing resources now available for

science and engineering, application codes require a high degree of portability be-
tween different systems. To appreciate the significance of portability, consider that
in the area of computational fluid dynamics, numerical research models usually solve
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systems of nonlinear partial differential equations on discrete meshes consisting of
millions of points over O(102)−O(104) time steps (iterations). The associated com-
puter programs consist of O(103)−O(105) lines of code, and often evolve on a daily
basis. Clearly, this makes supporting several versions of the same model cumbersome,
expensive, and overall impractical. In this paper we emphasize the portability issue
and report on our MPP model performance across several machines representative of
the modern computing environment.

The MPP Fortran code adopted for the purpose of this study has already been
described in the literature (Anderson and Smolarkiewicz 1997; Anderson et al., 1997).
The underlying solver is an incompressible-type fluid model cast in a curvilinear rotat-
ing framework, with a subgrid-scale turbulence parameterization and water substance
phase-change processes included. The distinctive aspect of our model (Smolarkiewicz
and Margolin, 1997) is its numerical design which incorporates a two-time-level; either
semi-Lagrangian (Smolarkiewicz and Pudykiewicz, 1992) or Eulerian (Smolarkiewicz
and Margolin, 1993), nonoscillatory forward-in-time (NFT) algorithm. The finite-
difference approximations to the resulting trajectory-wise or point-wise integrals of
the governing fluid equations are at least second-order-accurate. The Eulerian algo-
rithm requires the traditional CFL stability condition, limiting thereby local commu-
nications to nearest neighboring points on the mesh; the semi-Lagrangian algorithm
admits Courant numbers well exceeding unity and results in irregular communica-
tions patterns extending over a number of grid points. In order to take full advantage
of MPP systems, the solver has been implemented using a single program multiple
data (SPMD) message passing approach. In (Anderson and Smolarkiewicz, 1997),
the authors evaluated the performance of the prototype dynamic core of the model
(ideal Boussinesq fluid) for the two optional formulations of the model algorithm and
two distinct parallelization approaches (High Performance Fortran, HPF, vs. mes-
sage passing). In (Anderson et al., 1997), this earlier study was extended to a more
complete model (i.e., one including planetary rotation, phase change processes, and
subgrid-scale turbulence schemes) suitable for simulating natural atmospheric flows.
There, the authors quantified the overall performance of the complete model, as well
as the relative performance of its distinct components (transport, elliptic pressure
solver, phase-change modeling, subgrid-scale parameterization, etc.), on a distributed
memory Cray T3D.

In this paper, we demonstrate a satisfactory performance of the model on a large
scientific application, using one of the most complicated options of the model algo-
rithm. As the application addressed is much too large to be executed straightforwardly
on other machines available to us, the accompanying studies of the model performance
exploit either an abbreviated version of this same experiment, or a less extreme phys-
ical scenario of large eddy simulation (LES) of convective planetary boundary layer
using the default Eulerian variant of the model algorithm (cf. Smolarkiewicz and
Margolin, 1998).
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2. Model Description

The numerical model used in this study was described in (Anderson and Smo-
larkiewicz, 1997; Anderson et al., 1997; Grabowski and Smolarkiewicz, 1996; Prusa
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et al., 1996; Smolarkiewicz and Margolin, 1997; 1998). It is a generalization of non-
hydrostatic atmospheric models that solve the anelastic equations of motion in the
standard, nonorthogonal terrain-following coordinates (Gal-Chen and Sommerville,
1975). Below we comment briefly on the essential aspects of the model design while
referring the reader to earlier works for further details. A key analytical feature of this
model is that it uses a time variable coordinate transformation to effect stretching of
the domain of analysis. This allows the numerical algorithm to concentrate grid points
in areas of interest and to change the shape of the domain as the solution develops.
In the present study, this adaptive capability is used to force the gravity wave field
with a deflection of the lower boundary streamline (see Section 4).

Generally, symbols with overbars indicate variables in the transformed coordi-
nates. Symbols without overbars indicate variables in Cartesian coordinates. Vector
quantities are denoted by boldface. The conservation laws for the dependent variables
of the model may then all be written in the compact form

∂ρ∗ψ

∂t
+∇ · (ρ∗v∗ψ) = ρ∗F (Ψ). (1)

Here ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z); ψ denotes any of the three Cartesian velocity compo-
nents (u, v, w): the potential temperature, water substance mixing ratios (vapor, cloud
water, rain, etc.), as well as turbulent kinetic energy; and ρ∗ ≡ ρoG is the reference
(Boussinesq type, cf. Section 4) density profile premultiplied by the Jacobian of the co-
ordinate transformation (from the Cartesian to the terrain following, time-dependent,
curvilinear framework). Note that the advective velocity appearing in (1) is the con-
travariant velocity in transformed coordinates, e.g., v∗ ≡ (u∗, v∗, w∗) ≡ dx/dt. The
corresponding anelastic approximation of the mass conservation law is (Lipps and
Hemler, 1982)

∂ρ∗

∂t
+∇ · (ρ∗v∗) = 0. (2a)

The time derivative must be retained in (2a) because of the time variation in the
coordinate transformation (Prusa et al., 1996). This form of continuity is used to
develop the flux form conservation law given in (1). The continuity equation is also
used to construct an elliptic pressure equation. However, the time derivative in (2a)
results in a source term that reduces the efficiency of the elliptic solver. Instead, we
use the alternate, divergence free form

∇ · (ρ∗vs) = 0. (2b)

where vs ≡ (us, vs, ws) ≡ v∗ − ∂x/∂t denotes what we term the solenoidal velocity
in the transformed coordinates. The solenoidal and contravariant velocity differ by
the coordinate rate of stretching term. Proofs for the forms (2a) and (2b) are outlined
in the Appendix.

The associated F (Ψ) terms on the right-hand side of (1) are, in general, func-
tionals of the vector Ψ of all dependent variables ψ, and they represent the sum of
the resolved and subgrid-scale parts of the total forcings. In the momentum equations,
the resolved terms include pressure gradient forces, Coriolis accelerations, buoyancy
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force, as well as wave absorbing devices in the vicinity of open boundaries. In the
thermodynamic equations, the resolved terms include heat and moisture sink/sources
due to the phase changes of water, and the wave absorbers near the boundaries.
Turbulence subgrid-scale (SGS) forcing terms are complicated but standard. We em-
ploy a turbulence model based on the prognostic turbulent kinetic energy equation
(Schumann, 1991) or, optionally, its abbreviated version—the celebrated Smagorinsky
model (Smagorinsky, 1993).

The integration of the discrete equations over a time step uses a regular un-
staggered mesh. We write the finite-difference approximations to (1) in the compact
form

ψn+1
i
= LE(ψ̃) + 0.5∆tF n+1

i
. (3)

Here, LE denotes either the advective semi-Lagrangian or flux-form Eulerian NFT
transport operator; ψ̃ ≡ ψn + 0.5∆tF n; indices i and n have the usual meaning of
the spatial and temporal location on a (logically) rectangular Cartesian mesh.

Completion of the model time step requires F n+1 values of forcings in (3). Grav-
ity wave absorbers, Coriolis accelerations, condensation, and pressure gradient forces
are treated implicitly, whereas subgrid-scale terms and slow phase-change tendencies
(such as rain formation or evaporation, see (Grabowski and Smolarkiewicz, 1996)) are
treated explicitly (i.e., F n+1 is predicted from earlier values of dependent variables).
The implicitness of the pressure gradient forces is essential as it enables projecting the
preliminary values LE(ψ̃) onto solutions of the continuity equation (2b), cf. (Chorin,
1968). Here, it requires a straightforward algebraic inversion of the linear system
composed of equations (3), and the formulation of the boundary-value problem for
pressure implied by the continuity constraint (2b). The resulting elliptic equation is
solved (subject to appropriate boundary conditions) using the generalized conjugate-
residual approach—a preconditioned nonsymmetric Krylov solver, see (Smolarkiewicz
and Margolin, 1994; 1997; Smolarkiewicz et al., 1997) for further details. The numeri-
cal stability of computations is controlled by properly limiting Courant and Lipschitz
numbers C = ‖∆tV/∆X‖ and L = ‖∆t(∂V/∂x)‖, respectively, for the Eulerian and
semi-Lagrangian variants of the model.

3. Parallelization versus Portability Strategy

In (Anderson and Smolarkiewicz, 1997), we evaluated the relative merits of message
passing and HPF strategies of parallelization. Overall, we concluded that the mes-
sage passing code runs 2.5 and 1.8 times faster (on Cray T3D) than the HPF code,
respectively, for the Eulerian and semi-Lagrangian versions of the model. Consequent-
ly, we settled on a message passing approach. We used a two-dimensional horizontal
decomposition of the grid, explicitly dimensioned each array to contain a subgrid of
the total array plus extra space for a copy of the neighboring processors’ boundary
cells. This is a common technique (cf. Johnson et al., 1994), where the extra bound-
ary points are often referred to as “halo cells” or “halos”. They are used to minimize
communications needed when finite difference operations are performed. The number
of halo cells depends on the local stencils used in the model algorithm and on the
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maximum Courant number. In simulations reported here, C ≤ 3. When necessary,
the halo cell information is updated by having each processor exchange information
with its neighbors. This communication process is further economized by admitting
only a partial update of halos with their selected portions being exchanged between
the processors as implied by the finite-difference algorithms employed. Reduction op-
erations such as sums and extrema, unavoidable in fluid models, require exchanging
information globally between all processors.

To exchange messages between processors, in general, we use the most portable
and widely supported MPI (message-passing-interface) standard. However, on Crays
T3D and T3E machines we optionally employ Shmem (shared-distributed memory
data-passing support) library routines.

In order to facilitate the portability of the code, we use the same halo-update
subprograms on the distributed or shared-memory parallel architectures, as well as
on a single processor machines. On single-processor and shared-memory platforms, all
updates are elementary. They employ one processor for the total domain dimension
with halo used to set appropriate conditions at the domain boundaries. In this case,
there is no need for an explicit message-passing protocol, and only selected parts of
total arrays are rewritten to halo cells on the same processor.

In regards to the portability issue, input/output (I/O) operations raise some se-
rious concerns. In general, outputed fields should be independent of the machine size
and number of parallel processors used in simulations. Files written by programs run-
ning on N processors should be readable to applications running on M processors.
This is convenient for debugging and is especially important for postprocessing (e.g.,
diagnostics, visualizations, etc.) of large computing projects. Furthermore, the out-
put files must be also readable on different platforms with different binary file formats
(Cray floating-point, Cray 64-bit IEEE, standard 32-bit IEEE, etc.). In our code, one
processor performs all I/O communication operations by collecting and distributing
arrays between other processors. Relative efficiencies of these I/O operations depend
on the particular computer at hand and are important to the overall model perfor-
mance. Keeping the total grid array on one processor does have the disadvantage of
limiting the size of the application. But this is more than compensated by simplicity
in coding, and seems to offer an optimal performance.

4. Physical Problem

The test problem for the Cray T3E simulated the evolution of an internal gravity wave
packet generated by a narrow, 2D squall line at tropopause levels (∼ 15 km altitude)
and its subsequent breaking near the mesopause (∼ 85 km altitude). We used a spatio-
temporal Gaussian deflection of the lower domain boundary (streamline) as a proxy
for the squall line disturbance. The transformed vertical coordinate was computed
from z = H(z − zs)/(H − zs), where zs = A exp[−((x− xo + cxt)/σx)

2] exp[−((t−
to)/σt)

2]. The values of the parameters were: A = 200m, xo = −30 km, cx = 7ms
−1,

σx = 2km, to = 2h, and σt = 1h. This vertical coordinate transformation clearly
illustrates the time variable stretching capability that is built into the core of the
model.
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The basic state was one of uniform zonal wind (uo = −32ms
−1), stabili-

ty (with Brunt-Väisällä frequency N = 0.02 s−1), and density scale height (e.g.,
ρo(z) = exp(−z/H) with H = 6.63 km). This basic state and forcing initially favor
the development of a 2D wavefield that is monochromatic, quasi-stationary, and has
near unity aspect ratio. Each of these characteristics is due to linear wave dispersion.
A few Brunt-Väisällä periods after maximum forcing, this wavefield undergoes a 2D
primary (convective) instability. For a comprehensive description of the basic state,
run set up, and results and analysis of the ensuing convective instability, see (Prusa
et al., 1996).

The problem is of interest for at least two reasons. First, the middle atmosphere is
known to be far from radiative equilibrium at mesopause altitudes, and wave forcing is
the main factor behind this phenomenon (Garcia and Solomon, 1985). Determination
of the extent to which gravity wave breaking is responsible for this non-equilibrium has
great relevance to a complete understanding of the process and its parameterization.
Second, numerical simulation of turbulence is of considerable theoretical interest. The
wavebreaking in this study generated a highly inhomogeneous, anisotropic turbulence.
It was not initialized according to any a priori turbulence model nor constrained
by the domain size (which can limit wave-wave interactions, see (Scinocca, 1995)).
Instead, the turbulence developed from a very smooth linear wavefield in accordance
with the physics of a wave packet propagating into a very deep model atmosphere (of
over 16 density scale heights—corresponding to a density variation from the bottom
to the top of over 107 to one).

Some idea of the inhomogeneity of the wavefield can be gleaned from Fig. 1, which
shows a contour density plot of the potential temperature (θ) field. The vertical plane
of this plot is perpendicular to the zonal flow. The wavefield is seen to be homogeneous
in the spanwise direction (left to right) but inhomogeneous in the vertical (note that
the complete altitude range is 15 ≤ z ≤ 125 km; the regions above and below that
shown in Fig. 1 are very smooth and characterized by constant stratification). Similar
inhomogeneity occurs in the zonal direction (Prusa et al., 1996; 1999).

The computational grid consisted of 544× 80× 291 points with a resolution of
380m. To save computer resources, the problem was executed in 2D on a 544×1×291
grid until 120 minutes of the physical time. At 120 minutes, the 3D domain was created
by repeating the solution in the spanwise direction y, and seeding the buoyancy field
with a small amplitude (1% of the basic state) white noise. Further computations
continued in five minute portions of physical time. The lateral zonal and spanwise
boundaries were periodic with lateral zonal sponges. A specially tuned vertical sponge
was also employed, such that it approximated the effects of atmospheric viscosity. The
explicit sub-grid scale viscosity option was not employed in this simulation. Instead,
energy removal at the grid scale was effected with the monotonicity option of the
interpolator. This option invokes a topological constraint whereby no two streamtubes
are allowed to intersect. Essentially energy is removed at the grid scale to the extent
needed to avoid local negative entropy production. This corresponds well with the
Kolmogorov microscale, which is of the same order of magnitude as the grid size at
the initial altitude of breaking. The time chosen for 3D seeding was carefully selected
based upon data generated with earlier 2D (Prusa et al., 1996) and 3D (Prusa et al.,
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Fig. 1. Results from the wavebreaking experiment: contour density plot of
ln(θ) in vertical yz (spanwise) plane at zonal location x = −35 km at
t = 155 minutes showing the region of vigorously breaking waves.
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1997) experiments. The run was terminated at 180 minutes because at that point
breaking had consumed the zonal extent of the domain.

The evolution of the turbulence was assessed by examining 1D and 2D energy
spectra computed from θ fields (approximate equipartition occurs even during wave
breaking, cf. (Prusa et al., 1997)). The inhomogeneity of the wavefield caused severe
windowing problems (Briggs and Henson, 1995) in the zonal (and vertical) spectra at
intermediate to high wavenumbers. In particular, the localization of high wavenum-
ber features (e.g., turbulence) to an approximately ∼ 50 km zonal (∼ 30 km vertical)
sub-domain caused (i) severe Gibb’s oscillations, and (ii) excess power at the highest
wavenumbers in spectra computed using the full extent of the computational do-
main. These high wavenumber problems did not occur, or were greatly diminished if
the spectra were computed using sub-domains embedded in the region of turbulence.
After considerable experimentation, we settled on fixed sub-domains that were ap-
proximately centered at 100 km altitude and −45 km zonal location, and had zonal
× vertical extents of 30× 20 km. The vertical extent was smaller because the strong
vertical stratification of the basic state limited the extent of the altitude spread of the
turbulence. The spanwise extent of the sub-domains was 30 km—the full spanwise
extent of the computational domain. Although spectra based upon this sub-domain
captured the correct high wavenumber behavior, they contained no information at
scales larger than the sub-domain. To incorporate the lowest wavenumber power into
the analysis, spectra were also computed using the full zonal and vertical extent of
the computational domain.

All raw spectra were Hamming-Tukey smoothed, which acts to minimize the win-
dowing effects of finite domain size (Bath, 1974). A differential correction algorithm
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was developed to smoothly match the sub-domain Esd(k) and full-domain Efd(k)
energy spectra into a single, corrected spectra Ec(k), according to

d(lnEc)

dk
=
(
1− β(k′)

)d(lnEfd)
dk

+
(
β(k′)
)d(lnEsd)
dk

≡ K(k, k′). (4a)

Here k′ is a linear function of the wavenumber k such that k′ → 0 and k′ → 1
as k ranges from kmin to kmax. The function β(k

′) is a low order polynomial of k′

such that β(0) = 0; and β = 1 and dβ/dk′ = 0 at k′ = 1. Integration of (4a) yields
a finite difference equation for computing the corrected spectra

Ep+1c = Epc

(
1 +K

(
kp, k′

p)
∆k
)
. (4b)

The initial condition for (4b) is Ec
0 = Efd(kmin). This algorithm corrects the

full-domain spectra so that they show sub-domain spectral tendencies at the high-
est wavenumbers while simultaneously leaving the spectral tendencies at the lowest
wavenumbers unaffected. The wavenumber domain for k′ was from ln(kmin) = −1.0
to ln(kmax) = ln(kNyq) = 2.1, where kNyq = 8.27 km

−1 is the Nyquist wavenumber
(and kmin = 0.37 km

−1). The resulting zonal spectra shown in Fig. 2 depict both the
highest (due to localized turbulence) and lowest (due to changes in the mean state of
the atmosphere) wavenumber features with high fidelity.
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Fig. 2. Time evolution of zonal spectral energy from 125 to 180 minutes
(straight dashed lines have slopes of −5/3 and −3).

Figure 2 shows the evolution of the zonal energy spectra. At 125 minutes, energy
is concentrated at k = 0.40 km−1 (ln(k) = −0.90), corresponding to λx = 15.5 km.
This fundamental is due to a linear growth of the gravity wave packet as it ascends.
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At k = 0.80 km−1 (ln(k) = −0.23), a much weaker second harmonic of the fundamen-
tal can also be seen. This second harmonic is a harbinger of the primary convective
instability that is about to occur. For the given basic state, linear waves have an
evanescent limit at k = 0.62 km−1, and this corresponds to the very sharp drop off
between the fundamental and second harmonic. At later times, wave dispersion causes
the fundamental to broaden and peak at lower wavenumbers (longer waves are slower
and take more time to propagate upwards, see (Prusa et al., 1996)). With the on-
set of vigorous wave overturning (∼ 140 minutes), a buoyancy subrange (Weinstock,
1985) with a slope of −3 appears just upscale of the fundamental. Until this primary
instability occurs, there is negligible energy at the highest wavenumbers. With the
onset of a secondary (3D) instability, a tendency towards a −5/3 slope can be seen.
The critical buoyancy wavenumber that separates the two regimes decreases from
kb = 4.0 to 1.8 km

−1 as t increases from 140 to 180 minutes, respectively. This com-
pares favorably with earlier results on a Cray J90 (at 625m resolution) which yielded
kb = 2.1 km

−1 at 150 minutes (Prusa et al., 1997). The experimental value of kb
may also be compared with the scaling result, kb ∼ N3/εo ∼ 1.6 km

−1 (Weinstock,
1985), where εo is the turbulence dissipation rate. Finally, Fig. 2 shows another −5/3
power law regime at the lowest wavenumbers at earlier times (125 to 145 minutes).
This is consistent with a 2D reversed energy cascade that is transferring energy into
the zonal mean fields (Kraichnan, 1967). The Eliassen-Palm flux divergence has its
maximum value precisely in this time interval, of order 0.02ms−1, at breaking alti-
tudes. After 150 minutes, the energy spectra flatten out at the lowest wavenumbers.
At this point, wave breaking has disrupted the linear wave field sufficiently so that it
lacks the large scale coherence needed to effectively modify the zonal average state.
Vertical spectra (not presented) show very similar evolutionary tendencies, with the
only significant difference being the lack of the −5/3 power law regime at the lowest
wavenumbers. Spanwise energy spectra (not presented) show very different evolution-
ary tendencies, however. The spectrum at 125 minutes is quite flat and 15 orders of
magnitude below the fundamental of the zonal spectra. Growth of spanwise energy
is negligible for the first 10–15 minutes after 3D seeding. In the next 5–10 minutes,
spanwise spectral energy explodes as the secondary instability undergoes a period of
exponential growth. An inertial subrange, characterized by a −5/3 power law, ap-
pears at the highest wavenumbers. As t continues to increase, this subrange expands
to lower wavenumbers, until at 180 minutes, most of the spectrum lies within it.

5. Model Performance Results

The experiment described in the preceding section was performed on the 512 proces-
sor Cray T3E machine at NERSC. Table 1 outlines the history of its computational
cost versus the overall model performance (measured by the elapsed wallclock time,
or WCT) as functions of the simulated physical time, time step ∆t, number of time
steps Nt, and average number of iterations Nit in the elliptic Krylov solver (per
timestep) per 5 minute portion of the experiment. In addition to summarizing ele-
mentary aspects of the model efficiency, this table illustrates the important point that
the overall model performance (as well as the relative performance of various model
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components such as advective transport, pressure solver, etc.; see (Anderson et al.,
1997) for a discussion) is a complicated function of the simulated flow. Consider, for
instance, that at the onset of vigorous wave breaking at 145 minutes, accuracy argu-
ments (Prusa et al., 1996; Smolarkiewicz and Pudykiewicz, 1992) dictate halving the
time step. Yet, as the flow becomes more quiescent following the onset of breaking,
the elliptic solver converges (see (Smolarkiewicz et al., 1997) for a discussion on the
convergence criteria vs. the model algorithm) using only a third as many iterations
per timestep.

Table 1. Gravity-wave breaking experiment on 512 PE Cray T3E. The history of the average
number of iterations Nit in the elliptic pressure-solver per 5 minute portion of the
experiment, wallclock time (WCT), and CPU time are given as functions of the
simulated physical time, time step ∆t, and number of timesteps Nt per 5 minutes
portion of the experiment. Only every second portion is shown.

physical time ∆t Nt Nit WCT User CPU

125–130 (minutes) 5 (s) 60 32 1156 (s) 583159 (s)

135–140 5 60 31 1123 566583

145–150 2.5 120 19 1500 757776

155–160 2.5 120 15 1379 696690

165–170 2.5 120 12 1278 645268

175–180 2.5 120 11 1212 611210

The gravity-wave-breaking experiment was much too large to be used as a bench-
mark for any systematic performance studies across various machines. Also, our lim-
ited resources at NERSC precluded any ‘lavishness’ and left little room for additional
tests beyond the production runs. As a result, relative performance issues (e.g., per-
formance vs. machine architecture and/or the number of processors) were addressed
using either a 2D variant of the experiment, or our earlier LES calculations of convec-
tive boundary layers, using the Eulerian variant of the model with the nonoscillatory
option of the MPDATA algorithm for the LE operator in (3) (Anderson et al., 1997;
Smolarkiewicz and Margolin, 1998).

The results of the model-performance analysis are gathered in Tables 2–4. They
further demonstrate that the overall model performance is not only a function of
the flow but it also depends upon the machine, communication software, compiler
options, model algorithms, and the size of the problem. Table 2 describes the ma-
chines used in this study, whereas Table 3 addresses the scalability issue exploiting a
2D variant of the gravity-wave experiment (544 × 1 × 291 mesh with ∆t = 5 s and
Nt = 1800). These simulations were performed using 16 and 32 processors only. On
the HP and T3D, the resulting speedups were quite good regardless of the commu-
nication software employed (consistent with our earlier experiences in (Anderson and
Smolarkiewicz, 1997; Anderson et al., 1997), but were relatively poor on the T3E-900
using communication software. Table 4 shows a similar speedup factor analysis based
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upon a larger 3D computational problem—an LES boundary-layer type experiment.
In this case, the T3E-900 gave a more respectable performance (with speedup factors
closer to the ∼ 1.8 value concluded in our earlier studies) and outperformed the HP
when using a larger number of processors.

Table 2. Machines employed in model performance studies. Columns 2–5 show the number
of processors, location of the machine, nominal memory, and typical measured
performance (Mflops/PE), respectively.

machine # PE location memory performance

T3E-900 512 NERSC 256 MB/PE 150-300 (Mflops)

T3E-600 32 ICM2 128 MB/PE 100–200

T3D 128 NCAR 64 MB/PE 15

HP1 64 NCAR 8 GB 120

Cray J932se 24 NCAR 8 GB 60

Cray J916 16 NCAR 2 GB 60

Table 3. Scalability results using 2D semi-Lagrangian simulation of the gravity wave. The
“Oi” symbol in the first column refers to the compiler optimization level. The
second column specifies the communication software employed. Columns 3 and 5
show the wallclock time (s) of the entire experiment, whereas the fourth column
shows the resulting speedup (↗).

machine comm. soft. 16 PE ↗ 32 PE

HP O1 MPI 22354 (s) 1.93 11571 (s)

HP O2 MPI 7192 1.91 3758

T3D Shmem 9911 1.88 5266

T3E-900 Shmem 4365 1.58 2768

T3E-900 MPI 5325 1.50 3542

The relatively smaller speedup factor for smaller jobs using smaller numbers of
processors on the T3E-900 is not necessarily surprising. Since the simulated turbulent
flows are highly chaotic and unpredictable, the model algorithm can react even to
such minor changes in the code setup as the number of processors or the compiler
employed3. This sensitivity is insignificant insofar as the physical issues are concerned,
but it can quite substantially affect model performance.

1 Experiments performed in the double 64-bit precision, to match the Cray standard.
2 Interdisciplinary Center for Mathematical and Computational Modeling, University of Warsaw,
Poland.

3 The different execution of sums inherent in elliptic Krylov solvers can affect both the evaluated
pressure field and the number of the iterations required.
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Table 4. Scalability results using 3D Eulerian simulations of convective boundary layer.

machine comm. soft. 8 PE ↗ 16 PE ↗ 32 PE ↗ 64 PE

HP O1 MPI 24308 (s) 1.89 12836 (s) 1.50 8542 (s) 1.60 5325 (s)

HP O2 MPI 8912 1.65 5395 1.63 3307 1.44 299

HP O3 MPI 6516 1.64 3969 1.43 2777

hline HP O4 MPI 6463 1.54 4179 1.46 2859

T3D Shmem 16622 1.87 8866 1.61 5492 1.71 3164

T3D4 Shmem 15569 1.78 8751 1.79 4876

T3E-900 Shmem 3199 1.43 2236 1.77 1260

T3E-900 MPI 3555 1.43 2476 1.63 1516

T3E-600 Shmem 9127 1.92 4735

T3E-600 MPI 7471 1.87 3995

J932se5 none 14087 8545 49876

J9165 none 7696 7039

Table 4 contains a number of hints useful for the interested practitioner. We draw
attention to a few points that are especially noteworthy. The results from autotasking
runs on Crays J932se and J916 depend on the actual state of the machine, so they
should be viewed only as examples of possible overall performances. However, the
wallclock times attained with the maximal number of processors are representative
of our experiences running numerous simulations and models. The semi-Lagrangian
run is about 50% more expensive than the Eulerian run at the same ∆t (here C <∼ 1).
However, in our breaking gravity wave problem, much larger time steps are used (with
C<∼ 3) and, what is more important, the semi-Lagrangian algorithm is more accurate
as it treats equally the incompressible and compressible numerical regimes of flow,
dictated by the specified time-dependency of the problem geometry.

6. Remarks

The horizontal grid decomposition employed for the message-passing MPP implemen-
tation of our model was dictated, in essence, by the physics of natural geophysical
flows that makes the vertical (gravity) direction distinct. Coincidentally, it has a
purely computational advantage of admitting efficient applications of the same model
algorithm and code design on different types of machines including distributed- and
memory-shared as well as single-processor architectures.

Although our MPP model has been designed to run efficiently on the distribut-
ed memory architectures, it appears to perform reasonably well on standard vector
supercomputers. Consider that the original version of the same model, optimized for

4 The equivalent semi-Lagrangian run included for comparison.
5 J90 autotasking, shared (as opposed to dedicated) mode runs.
6 24 PE run.
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the shared-memory Cray vector machines, achieves on average 65–90 Mflops per pro-
cessor on J90s, depending on the number of processors and the application addressed,
whereas the MPP code is only slightly slower on these machines with its speed falling
in the range of 60–85 Mflops/PE.

Regardless of all the objective model-performance measures discussed in this pa-
per, the single most important outcome of this study cannot be overstated: Our earlier,
one order of magnitude smaller gravity-wave experiments performed in autotasking
mode on the 24 processor Cray J90 at NCAR used to take several days (including wait
time in economy queues) to accomplish a simulation of 5 minutes of physical time.
Present experiments, on the 512 PE Cray T3E with an order of magnitude larger
grid, were executed essentially overnight for the same 5 minutes period of simulated
physical time!
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Appendix: Continuity Equation in Transformed Coordinates
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We begin by noting that the velocity vector v ≡ (u, v, w) ≡ dx/dt in Cartesian
coordinates is a contravariant vector. Using the contravariant velocity, the form of
continuity given by (2a) is readily established for Cartesian coordinates as well as
for selected transformed, non-Cartesian systems. Next we introduce the 4-form of
velocity, v∗ ≡ (1, u∗, v∗, w∗), where the leading dimension refers to time. In index

form, u∗
i
≡ dxi/dt, where i = 0, 1, 2, 3, and 4 (i = 0 refers to time, t). Using index

notation, the velocity 4-form, and dividing by the Jacobian G, (2a) may be written
as

1

G

∂(Gρu∗
i
)

∂xi
= 0. (A1)

The form (A1) is readily identified as being the covariant derivative with respect to

xi of the contravariant vector ρu∗
i
contracted over i (Aris, 1962). This establishes

that (A1), and hence (2a)—when divided by G—are tensor equations and thus true
in all coordinate systems.

To establish (2b), we introduce the solenoidal velocity into (A1) using u∗
i
≡

us
i
+ ∂xi/∂t, multiply by G, and reorganize as follows:

∂(ρ∗us
i
)

∂xi
= −

∂(ρ∗xi,t)

∂xi
. (A2)

−→
∂(ρ∗us

j
)

∂xj
= −

∂(ρ∗us
0
)

∂x0
−
∂(ρ∗xj ,t)

∂xj
−
∂(ρ∗x0,t)

∂x0
≡ −R, (A3)

where j = 1, 2 and 3 only. Since u∗
0
≡ 1 and x0,t ≡ t,t ≡ ∂t/∂t ≡ 1, it follows that

us
0
≡ 0. These identities lead to

R ≡
∂(ρ∗xj ,t)

∂xj
+
∂ρ∗

∂t
. (A4)

−→ R ≡ G
(
xi,t

∂ρ

∂xi

)
+ ρ
(∂(Gxi,t)

∂xi

)
. (A5)

Note that (A5) is written using index i (ranging from 0 to 3) rather than j. The first
term in the parentheses on the right-hand side in (A5) is the material derivative of
the reference state density following the motion of the transformed coordinates, and is
identically zero (the reference state is always stationary by choice). The second term
in the parentheses represents the dilatation of the Jacobian of the transformation mul-
tiplied by the rate of stretching of the transformed coordinates, and is also identically
zero. The detailed proofs of these two identities are tedious but straigtforward. They
indicate that the only required conditions are that (i) the reference density must be
independent of time, ρ = ρ(x, y, z) and (ii) that the transformed coordinates can be
transformed into any stationary, curvilinear system. Now that R = 0, (A3) reduces
exactly to (2b) and we have the required result.
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