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SPATIAL COMPENSATION OF BOUNDARY

DISTURBANCES BY BOUNDARY ACTUATORS

Larbi AFIFI∗, Abdelhakim CHAFIAI∗

Abdelhaq EL JAI∗∗

In this paper we show how to find convenient boundary actuators, termed bound-
ary efficient actuators, ensuring finite-time space compensation of any boundary
disturbance. This is the so-called remediability problem. Then we study the re-
lationship between this remediability notion and controllability by boundary ac-
tuators, and hence the relationship between boundary strategic and boundary
efficient actuators. We also determine the set of boundary remediable distur-
bances, and for a boundary disturbance, we give the optimal control ensuring
its compensation.

Keywords: distributed-parameter systems, remediability, controllability, actu-
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1. Problem Statement

This paper deals with the notion of remediability and efficient actuators introduced
in (Afifi et al., 1998; 1999; 2000) for a class of linear distributed systems. The reme-
diability problem consists in studying the existence of a convenient input operator
(efficient actuators), ensuring the compensation of any disturbance acting on the con-
sidered system. The previous works on the problem of remediability are focused on
the compensation of internal disturbances, and this paper constitutes an extension
to the boundary case. The proposed approach and the problem itself are different
from those considered in previous works on disturbance problems, the so-called dis-
turbance rejection or decoupling problems, particularly studied for finite-dimensional
systems (Malabre and Rabah, 1993; Otsuka, 1991; Pandolfi, 1986; Rabah and Mal-
abre, 1997; Senamel et al., 1995).

∗ Faculty of Sciences, University Hassan II Ain Chock, B.P.5366–Maârif Casablanca, Morocco,
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In this paper without loss of generality, we focus our attention on a class of
disturbed linear systems described by the following state equation:

(SP )
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
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∂z

∂t
(x, t) = ∆z(x, t) in Ω×]0, T [,

∂z

∂ν
(·, t) = f(·, t) +B(·)u(t) on Γ×]0, T [,

z(x, 0) = 0 in Ω,

where Ω is an open and bounded subset of � n with a sufficiently regular boundary
Γ = ∂Ω, B ∈ L(U ;L2(Γ)), u ∈ L2(0, T ; U), U is a Hilbert space (control space),
and ∂/∂ν is the partial derivative with respect to the outward unit normal of ∂Ω.
The disturbance f ∈ L2(0, T ;L2(Γ)) is in general unknown. Let A be the operator
defined by

D(A) =
{

z ∈ H2(Ω)
∣

∣

∂z

∂ν /Γ
= 0

}

and Az = ∆z for z ∈ D(A).

A generates a strongly continuous semigroup (s.c.s.g.) (S(t))t≥0 which is self-adjoint
and analytic.

The system (SP ) is augmented by the output equation

(E) y(t) = Cz(t),

where C ∈ L(L2(Ω), Y ), Y is a Hilbert space (observation space) and z(t) is iden-
tified with z(·, t).
In this paper we show how to find convenient (efficient) boundary actuators

ensuring the compensation of any known or unknown boundary disturbances. This
is the basic concept of remediability, which turns out to be a weaker notion than
controllability. We also determine the set of boundary disturbances which are exactly
remediable, and we construct, using an extension of the Hilbert Uniqueness Method
(H.U.M., Lions, 1988; Lions and Magenes, 1968), an optimal control which ensures
the exact compensation of a boundary disturbance acting on the system.

Let G be the Green operator (Necas, 1967) defined by

G :
L2(Γ) −→ L2(Ω),

g 7−→ Gg = h,
(1)

with











h−∆h = 0 in Ω

∂h

∂ν
= g on Γ.
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The solution to (SP ), denoted by zu,f , has the from

zu,f (t) = −
∫ t

0

AS(t− s)GBu(s) ds+
∫ t

0

S(t− s)GBu(s) ds

−
∫ t

0

AS(t− s)Gf(s) ds+
∫ t

0

S(t− s)Gf(s) ds.

We have

zu,f (T ) = Hu+ H̃f, (2)

where H and H̃ are the linear operators defined as follows:

H :
L2(0, T ;U) −→ L2(Ω),

u 7−→ Hu = −
∫ T

0

AS(T − s)GBu(s) ds
(3)

+

∫ T

0

S(T − s)GBu(s) ds,

and

H̃ :
L2
(

0, T ;L2(Γ)
)

−→ L2(Ω)

f 7−→ H̃f = −
∫ T

0

AS(T − s)Gf(s) ds
(4)

+

∫ T

0

S(T − s)Gf(s) ds.

Hence

yu,f (T ) = Czu,f (T ) = CHu+ CH̃f. (5)

Let R be the linear operator defined by

R :
L2
(

0, T ;L2(Γ)
)

−→ Y,

f 7−→ Rf = CH̃f.
(6)

We then have

yu,f (T ) = CHu+Rf. (7)

If f = 0 and u = 0, the observation is given by y0,0(t) = 0, but if f 6= 0 and
u = 0, then

y0,f (t) = −
∫ t

0

CAS(t− s)Gf(s) ds+
∫ t

0

CS(t− s)Gf(s) ds.

The problem consists in studying the existence of an input operator B (actuators),
with respect to a given output operator C (sensors), ensuring finite-time compen-
sation of any boundary disturbance; in other words, we wish to show that for any
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f ∈ L2(0, T ;L2(Γ)) there exists u ∈ L2(0, T ;U) such that yu,f (T ) = 0, or for a
given ε > 0 and any f ∈ L2(0, T ;L2(Γ)) there exists u ∈ L2(0, T ;U) such that
‖yu,f (T )‖ < ε.

This work is organized as follows. In Section 2 we define and characterize the
notions of exact and weak remediabilities as well as efficient boundary actuators. In
Section 3 we study the problem of exact remediability with minimum energy using
an extention of the H.U.M. Then we characterize the set of boundary disturbances
which are exactly remediable, and we construct on optimal control which compensates
exactly an arbitrary disturbance acting on the boundary of the considered system.
In Section 4 we recall the notions of controllability and strategic actuators in the
boundary case and study the relationship between controllability and remediability,
and hence between strategic and efficient actuators. As applications we consider the
cases where the geometrical domain is a rectangle or a disc.

2. Remediability

2.1. Definition and Characterization

The definitions of exact and weak remediabilities are analoguous to the case of in-
ternal disturbances, but the characterization results are different, as they reflect the
boundary aspect of the considered problem.

Definition 1.
(i) We say that the system (SP ) augmented by the output equation (E) (or (SP )+
(E)) is exactly remediable on [0, T ] if for every f ∈ L2(0, T ;L2(Γ)) there exists
u ∈ L2(0, T ;U) such that

CHu+ Rf = 0. (8)

(ii) We say that (SP ) + (E) is weakly remediable on [0, T ] if for every f ∈
L2(0, T ;L2(Γ)) and every ε > 0 there exists u ∈ L2(0, T ;U) such that

‖CHu+Rf‖ < ε. (9)

The exact remediability characterization is given by the result below.

Proposition 1. The following conditions are equivalent:

(i) (SP ) + (E) is exactly remediable on [0, T ],

(ii) operators R and CH satisfy

Im(R) ⊂ Im(CH), (10)

(iii) ∃ γ > 0 such that ∀ θ ∈ Y ?

∥

∥

(

−G?S?(T − ·)A? +G?S?(T − ·)
)

C?θ
∥

∥

L2(0,T ;L2(Γ))

≤ γ
∥

∥

(

− B?G?S?(T − ·)A? +B?G?S?(T − ·)
)

C?θ
∥

∥

L2(0,T ; U ′)
, (11)
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where in the general case P ? is the adjoint operator of P , and Z ′ stands for the
dual space of Z.

Proof. The equivalence between (i) and (ii) follows easily from Definition 1. The
equivalence between (i) and (ii) results from

R? = H̃?C? =
(

−G?S?(T − ·)A? +G?S?(T − ·)
)

C?, (12)

H?C? =
(

−B?G?S?(T − ·)A? + B?G?S?(T − ·)
)

C? (13)

and Lemma 1 below.

Lemma 1. (Curtain and Pritchard, 1978; El Jai and Pritchard, 1988) Let X, Y and
Z be reflexive Banach spaces and P ∈ L(X,Z), Q ∈ L(Y, Z). Then the following
properties are equivalent:

(i) Im(P ) ⊂ Im(Q),
(ii) ∃γ > 0 such that ‖P ?z?‖X′ ≤ γ‖Q?z?‖Y ′ , ∀ z? ∈ Z ′.

Let us remark that if B = I , i.e. in the case of an action distributed over all the
boundary, the system (SP ) + (E) is exactly remediable for every output operator C
(this follows from (11) in Proposition 1).

Proposition 2. The following conditions are equivalent:

(i) (SP ) + (E) is weakly remediable on [0, T ],

(ii) operators R and CH satisfy

Im(R) ⊂ Im(CH), (14)

(iii) for the adjoint operators we have

ker(B?R?) = ker(R?). (15)

Proof. The equivalence between (i) and (ii) follows easily from Definition 1. The
equivalence between (ii) and (iii) results from the inclusion

Im(CH) ⊂ Im(R), (16)

because for f = −Bu we have Rf = −CHu. We also see that

H?C? = B?R?, (17)

which follows from (12) and (13), and from the use of orthogonal subspaces in (14).
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Remark 1. If the observation space has finite dimension, or the observation is given
by a finite number of sensors, the weak and exact remediabilities are equivalent.

In the case of p boundary actuators (Γi, gi)i=1:p, a characterization of the exact
remediability is given by the following result:

Proposition 3. (SP ) + (E) is exactly remediable on [0, T ] if and only if ∃γ > 0
such that ∀ θ ∈ Y ′

∫ T

0

∥

∥

(

−G?S?(T − s)A? +G?S?(T − s)
)

C?θ
∥

∥

2

L2(Γ)
ds

≤ γ
∫ T

0

p
∑

i=1

〈

gi,
(

−G?S?(T − s)A? +G?S?(T − s)
)

C?θ
〉2

Γ
ds, (18)

where 〈·, ·〉Γ is the inner product in L2(Γ).

Proof. The result follows directly from Proposition 1.

It is well-known that L2(Ω) has a complete orthonormal system of eigenfunctions
(ψnj) n≥1

j=1:rn

of A, associated with the eigenvalues (λn)n≥1, rn being the multiplicity

of λn, and the semi group (S(t))t≥0 generated by A is given by

S(t)z =
∑

n≥1

eλnt
rn
∑

j=1

〈z, ψnj〉Ωψnj . (19)

Corollary 1. (SP ) + (E) is exactly remediable on [0, T ] if and only if there exists
γ > 0 such that ∀ θ ∈ Y ′

∫ T

0

∥

∥

∥

∑

n≥1

eλn(T−s)
rn
∑

j=1

〈C?θ, ψnj〉ΩLnj
∥

∥

∥

2

L2(Γ)
ds

≤ γ
∫ T

0

p
∑

i=1

[

∑

n≥1

eλn(T−s)
rn
∑

j=1

〈C?θ, ψnj〉Ω〈gi, ψnj〉Γ
]2

ds, (20)

with

Lnj(z) = 〈ψnj , z〉Γ, ∀ z ∈ L2(Γ). (21)

Proof. The result follows from the fact that, for z ∈ L2(Γ), the Green formula yields

−〈Aψnj , Gz〉Ω + 〈ψnj , Gz〉Ω = 〈ψnj , z〉Γ.
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If the system output is given by q sensors (Di, hi)i=1:q , where hi ∈ L2(Di) with
Di = supp (hi) ⊂ Ω for i = 1, . . . , q and Di∩Dj = ∅ for i 6= j, we have the following
result:

Corollary 2. (SP ) + (E) is exactly remediable on [0, T ] if and only if there exists
γ > 0 such that ∀ θ = (θ1, . . . , θq)tr ∈ � q

∫ T

0

∥

∥

∥

∑

n≥1

eλn(T−s)
rn
∑

j=1

q
∑

l=1

θl〈hl, ψnj〉ΩLnj
∥

∥

∥

2

L2(Γ)
ds

≤ γ
∫ T

0

p
∑

i=1

[

∑

n≥1

eλn(T−s)
rn
∑

j=1

〈gi, ψnj〉Γ
q
∑

l=1

θl〈hl, ψnj〉Ω
]2

ds. (22)

2.2. Efficient Actuators

In this part we define the notion of boundary efficient actuators, and we give some
characterizations of these actuators with respect to sensors.

Definition 2. Actuators (Γi, gi)i=1:p ensuring the weak remediability of (SP )+(E)
are said to be boundary efficient actuators.

In the multi-actuator case and an s.c.s.g. given by (19), we have the following
characterization.

Proposition 4. Boundary actuators (Γi, gi)i=1:p are efficient if and only if
⋂

n≥1

ker(Ltrn fn) =
⋂

n≥1

ker(Mnfn), (23)

where, for n ≥ 1,

Mn =
(

〈gi, ψnj〉Γ
)

i=1:p
j=1:rn

, (24)

fn :
Y ′ −→ � rn

θ 7−→ fn(θ) =
(

〈C?θ, ψn1〉Ω, . . . , 〈C?θ, ψnrn〉Ω
)tr (25)

and

Ln = (Ln1, . . . , Lnrn)
tr, (26)

Lnj being given by (21), and in the general case N
tr is the transpose of N .

Proof. For θ ∈ Y ′, we have

R?θ =
∑

n≥1

eλn(T−·)
rn
∑

j=1

〈C?θ, ψnj〉Ω(G? −G?A?)ψnj .
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By analyticity, we obtain then

R?θ = 0⇐⇒
rn
∑

j=1

〈C?θ, ψnj〉Ω(G? −G?A?)ψnj = 0, ∀ n ≥ 1.

Since A? = A, from the Green formula we have (G? −G?A?)ψnj = Lnj , and hence

R?θ = 0⇐⇒
rn
∑

j=1

〈C?θ, ψnj〉ΩLnj = 0, ∀ n ≥ 1.

Consequently,

ker(R?) =
⋂

n≥1

ker(Ltrn fn). (27)

On the other hand,

B?R?θ =
(

∑

n≥1

eλn(T−·)
rn
∑

j=1

〈(G? −G?A?)ψnj , gl〉Γ〈C?θ, ψnj〉Ω
)tr

l=1:p
.

Similarly, we obtain

B?R?θ = 0⇐⇒
rn
∑

j=1

〈gl, ψnj〉Γ〈C?θ, ψnj〉Ω = 0, ∀ n ≥ 1, ∀ l = 1 : p.

Using (24) and (25), we have

B?R?θ = 0⇐⇒Mnfn(θ) = 0, ∀ n ≥ 1,

and hence

ker(B?R?) =
⋂

n≥1

ker(Mnfn). (28)

Consequently, (15) in Proposition 2 becomes

⋂

n≥1

ker(Ltrn fn) =
⋂

n≥1

ker(Mnfn).

Corollary 3. If, for every n ≥ 1, the vectors (Lnj)j=1:rn are linearly independent,
then the boundary actuators (Γi, gi)i=1:p are efficient if and only if

⋂

n≥1

ker(Mnfn) = ker(C
?). (29)

Proof. The result follows from the fact that ker(R?) = ker(C?) and from the equali-
ties (28) and (15).
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Now, if the output is given by q sensors (Di, hi)i=1:q , the characterization of
boundary efficient actuators is given in the following proposition:

Proposition 5. Boundary actuators (Γi, gi)i=1:p are efficient if and only if
⋂

n≥1

ker
(

MnG
tr
n

)

=
⋂

n≥1

ker(GnLn)
tr, (30)

where

Gn = (〈hi, ψnj〉Ω) i=1:q
j=1:rn

.

Proof. For θ = (θ1, . . . , θq)
tr ∈ � q , we have

R?θ = 0 ⇐⇒
rn
∑

j=1

〈C?θ, ψnj〉ΩLnj = 0, ∀ n ≥ 1.

Since C?θ =
∑q
i=1 θihi, it follows that

R?θ = 0 ⇐⇒
rn
∑

j=1

q
∑

i=1

θi〈hi, ψnj〉ΩLnj = 0, ∀ n ≥ 1

⇐⇒
q
∑

i=1

θi

rn
∑

j=1

〈hi, ψnj〉ΩLnj = 0, ∀ n ≥ 1

⇐⇒ (GnLn)trθ = 0, ∀ n ≥ 1.
Then

ker(R?) =
⋂

n≥1

ker(GnLn)
tr. (31)

On the other hand,

B?R?θ =
(

∑

n≥1

eλn(T−·)
rn
∑

j=1

〈(G? −G?A?)ψnj , gl〉Γ
q
∑

i=1

θi〈hi, ψnj〉Ω
)tr

l=1:p
.

By analyticity and the Green formula, we obtain

B?R?θ = 0 ⇐⇒
rn
∑

j=1

〈gl, ψnj〉Γ
q
∑

i=1

θi〈hi, ψnj〉Ω = 0, ∀ l = 1 : p, ∀ n ≥ 1

⇐⇒ MnG
tr
n θ = 0, ∀ n ≥ 1.

Hence

ker(B?R?) =
⋂

n≥1

ker(MnG
tr
n ), (32)

and the result follows from (15).
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Corollary 4. If for every n ≥ 1 the vectors (Lnj)j=1:rn are linearly independent,
then the boundary actuators (Γi, gi)i=1:p are efficient if and only if

⋂

n≥1

ker[MnG
tr
n ] = {0}. (33)

Proof. The result follows from the fact that ker(R?) = {0}, and from equalities (32),
(36) and (15).

Corollary 5. If for every n ≥ 1 the vectors (Lnj)j=1:rn are linearly independent,
and there exists n0 ≥ 1 such that

rank(Mn0G
tr
n0) = q, (34)

then the boundary actuators (Γi, gi)i=1:p are efficient.

The results are analoguous in the case of boundary pointwise actuators or point-
wise sensors, with some technical precautions.

3. Exact Remediability with Minimal Energy

In this section we consider the following exact remediability problem: For f ∈
L2(0, T ;L2(Γ)), does there exist an optimal control u ∈ L2(0, T ; U) such that
yu,f (T ) = CS(T )z0, i.e. minimizing the function J(v) = ‖v‖2 on the set {v ∈
L2(0, T ; U) | yv,f (T ) = CS(T )z0}?
This problem will be solved using an extension of the H.U.M. approach. For

θ ∈ Y ′ ≡ Y , let

‖θ‖F =
[

∫ T

0

∥

∥

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?θ
∥

∥

2

U ′
ds

]
1

2

, (35)

where F is a space which will be precised later. Note that ‖ · ‖F is a semi-norm, but
not necessarily a norm.

Lemma 2. If for every n ≥ 1 the vectors (Lnj)j=1:rn are linearly independent and
ker(C?) = {0}, then the following conditions are equivalent:
(i) (SP ) + (E) is weakly remediable on [0, T ],

(ii) ker(H?C?) = {0},
(iii) ‖ · ‖F is a norm on Y .

Proof.
(i) ⇐⇒ (ii) It follows from (17), Proposition 2, and the fact that

ker(R?) = ker(C?) = {0}.
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(ii) =⇒ (iii) Let θ ∈ Y such that ‖θ‖F = 0. This is equivalent to
∥

∥

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?θ
∥

∥

2

U ′
= 0, ∀s ∈ [0, T ].

Then
(

−B?G?S?(T − ·)A? +B?G?S?(T − s)
)

C?θ = 0,

which means H?C?θ = 0. Since ker(H?C?) = {0}, we have θ = 0.
(iii) =⇒ (ii) It follows from (13).
Let us consider the operator Λ = CHH?C?. For θ ∈ Y ′ ≡ Y , we have

Λθ =

∫ T

0

C
(

−AS(T − s)GB + S(T − s)GB
)(

−B?G?S?(T − s)A?

+B?G?S?(T − s)
)

C?θ ds ∈ Y (36)

From Lemma 2, it is easy to deduce the following result.

Lemma 3. If, for every n ≥ 1, the vectors (Lnj)j=1:rn are linearly independent and
ker(C?) = {0}, then the following conditions are equivalent:
(i) (SP ) + (E) is weakly remediable on [0, T ],

(ii) the operator Λ = CHH?C? is positive definite.

Remark 2. If the system output is given by sensors, then ker(C?) = {0}.

Suppose that ‖ · ‖F is a norm and let F be the completion of the space Y with
respect to the norm ‖ · ‖F , i.e.

F = Y ‖·‖F . (37)

F is a Hilbert space, with the inner product defined by

〈θ, σ〉F =
∫ T

0

〈(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?θ,

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?σ
〉

U ′
ds (38)

∀ θ, σ ∈ F .

Proposition 6.

(i) Y is contained in F with continuous injection.
(ii) We have

〈Λθ, σ〉Y = 〈θ, σ〉F , ∀ θ, σ ∈ Y. (39)
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(iii) Λ has a unique extension as an isomorphism from F to F ′ such that

〈Λθ, σ〉Y = 〈θ, σ〉F , ∀ θ, σ ∈ F (40)

and

‖Λθ‖F ′ = ‖θ‖F , ∀ θ ∈ F . (41)

Proof. (i) It follows from the fact that, for θ ∈ Y , we have

‖θ‖2F =
∫ T

0

∥

∥

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?θ
∥

∥

2
ds

≤
∫ T

0

∥

∥

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?‖2 ds
∥

∥θ‖2Y ≤ γ‖θ‖2Y .

(ii) Let θ, σ ∈ Y . We have

〈Λθ, σ〉Y =
〈

∫ T

0

C(−AS(T − s)GB + S(T − s)GB)
(

−B?G?S?(T − s)A?

+B?G?S?(T − s)
)

C?θ ds, σ
〉

Y

=

∫ T

0

〈

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?θ,

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?σ
〉

ds = 〈θ, σ〉F .

(iii) For θ ∈ F , we consider the linear mapping Λθ : σ ∈ Y 7−→ 〈Λθ, σ〉Y ∈ � . We
have

|(Λθ)(σ)| = |〈Λθ, σ〉Y | = |〈θ, σ〉F | ≤ ‖θ‖F‖σ‖F .

Λθ is then continuous on Y for the topology of F , so it can be continuously extended
in a unique way to F . Hence Λθ ∈ F ′ and 〈Λθ, σ〉Y = 〈θ, σ〉F , ∀σ ∈ Y , and then
‖Λθ‖F ′ = ‖θ‖F .
The operator Λ : F 7−→ F ′ is linear and injective. Indeed, for θ ∈ F such that

Λθ = 0, we have 〈Λθ, θ〉 = 0. This means that ‖θ‖2F = 0 and then θ = 0. Λ is also
surjective, using the Riesz theorem. Λ is then an isomorphism from F to F ′.
As regards the problem of exact remediability with minimal energy, we have the

following result.

Proposition 7. If the observation yf = Rf ∈ F ′, then there exists a unique element
θf ∈ F such that Λθf = −yf , and the control

uθf (t) =
(

−B?G?S?(T − t)A? +B?G?S?(T − t)
)

C?θf (42)
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satisfies

CHuθf + yf = 0. (43)

Moreover, uθf is optimal, with

‖uθf ‖L2(0,T ; U) = ‖θf‖F . (44)

Proof. We have

Λθf =

∫ T

0

C
(

−AS(T − s)GB + S(T − s)GB
)(

−B?G?S?(T − s)A?

+B?G?S?(T − s)
)

C?θ ds

=

∫ T

0

C
(

−AS(T − s)GB + S(T − s)GB
)

uθf ds = CHuθf = −yf .

On the other hand, consider the set

C =
{

u ∈ L2(0, T ; U) such that yu,f (T ) = 0
}

.

C is convex, closed and non-empty, because uθf ∈ C. Consider the function
J(u) = ‖CHu+ yf‖2 + ‖u‖2.

For u ∈ C we have J(u) = ‖u‖2. J is strictly convex on C, hence it admits a unique
minimum in u? ∈ C with u? characterized by

〈u?, v − u?〉 ≥ 0, ∀v ∈ C.
For v ∈ C, we have

〈uθf , v − uθf 〉L2(0,T ; U) =
∫ T

0

〈uθf (t), v(t) − uθf (t)〉 dt

=

∫ T

0

〈(

−B?G?S?(T − t)A? +B?G?S?(T − t)
)

C?θf , v(t)− uθf (t)
〉

dt

=
〈

θf ,

∫ T

0

C(−AS(T − t)GB + S(T − t)GB)v(t) dt

−
∫ T

0

C(−AS(T − t)GB + S(T − t)GB)uθf (t) dt
〉

= 〈θf , CHv − CHuθf 〉 = 〈θf ,−yf + yf 〉 = 0.
Since u? is unique, we have u? = uθf , and uθf is optimal with

‖uθf ‖2L2(0,T ; U) =
∫ T

0

‖uθf (t)‖2 dt

=

∫ T

0

∥

∥

(

−B?G?S?(T − s)A? +B?G?S?(T − s)
)

C?θf
∥

∥

2
dt = ‖θf‖2F .
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Consider now the set

E =
{

f ∈ L2
(

0, T ;L2(Γ)
)

| ∃u ∈ L2(0, T ; U) which satisfies CHu+Rf = 0
}

. (45)

Proposition 8. E is the inverse image of F ′ by R, i.e.

RE = F ′ (46)

Proof. Let y ∈ F ′. There exists a unique θ ∈ F such that Λθ = y. Let

∫ T

0

C(AS(T − s)GB + S(T − s)GB)
(

−B?G?S?(T − s)A?

+B?G?S?(T − s)
)

C?θ ds = y.

If u is the control defined by

u(·) =
(

−B?G?S?(T − ·)A? +B?G?S?(T − ·)
)

C?θ ∈ C,

we have

Λθ =

∫ T

0

C
(

AS(T − s)GB + S(T − s)GB
)

u(s) ds = y,

i.e. CHu = y, and for f = −Bu ∈ L2(0, T ;L2(Γ)) we have CHu = −Rf = y. Then
y ∈ RE .
Conversely, let y ∈ RE . There exists f ∈ L2(0, T ;L2(Γ)) such that y = Rf

and CHu + Rf = 0 with u ∈ C. If we identify CHu and the linear mapping
L : θ ∈ Y 7−→ 〈CHu, θ〉, we have

L(θ) = 〈CHu, θ〉

=
〈

C

∫ T

0

(AS(T − s)GB + S(T − s)GB)u(s) ds, θ
〉

=

∫ T

0

〈

u(s),
(

− B?G?S?(T − s)A? +B?G?S?(T − s)
)

θ
〉

ds.

Using (35), we get

|L(θ)| ≤ ‖u‖L2(0,T ; U) ‖θ‖F .

L is then a continuous linear mapping on Y for the topology of F , and hence it has
a unique continuous extension to F . Hence L ∈ F ′, CHu = −Rf = −y ∈ F ′, and
therefore y ∈ F ′.
In the case of q sensors, we have Y = � q = F ≡ F ′. Then the set E defined

in (45) is L2(0, T ;L2(Γ)).
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4. Remediability and Controllability

In this section we study the relationship between the notions of controllability by
boundary actions and remediability, and hence the relationship between strategic
and efficient boundary actuators. Let us recall first the notion of controllability and
strategic boundary actuators.

4.1. Controllability

We consider the system described by the following state equation:

(S)



























∂z

∂t
(x, t) = ∆z(x, t) in Ω×]0, T [,

∂z

∂ν
(·, t) = B(·)u(t) on Γ×]0, T [,

z(x, 0) = 0 in Ω.

System (S) has a unique weak solution given by

zu(t) = −
∫ t

0

AS(t− s)GBu(s) ds+
∫ t

0

S(t− s)GBu(s) ds. (47)

Definition 3. The system (S) is said to be

(i) exactly controllable on [0, T ] if Im(H) = L2(Ω).

(ii) weakly controllable on [0, T ] if Im(H) = L2(Ω).

Proposition 9. System (S) is

(i) exactly controllable on [0, T ]⇐⇒ ∃γ > 0 such that

‖z?‖L2(Ω) ≤ γ
∥

∥

(

−B?G?S?(T − ·)A? +B?G?S?(T − ·)
)

z?
∥

∥

L2(0,T ; U ′)
,

∀z? ∈ L2(Ω) (48)

⇐⇒ the operator M = HH? : L2(Ω) −→ L2(Ω) is coercive; (49)

(ii) weakly controllable on [0, T ]

⇐⇒ ker(H?) = {0} (50)

⇐⇒ the operator M = HH? is positive definite. (51)

Remark 3. Exact controllability implies weak one and the converse is not true
(Berrahmoune, 1984; El Jai and Pritchard, 1988).
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4.1.1. Controllability and Actuators

In the case of p zone boundary actuators (Γi, gi)i=1:p, we have U = � p and (El Jai,
1991; El Jai and Pritchard, 1988)

B :

� p −→ L2(Γ),

u(t) 7−→ Bu(t) =

p
∑

i=1

giui(t),

where u = (u1, . . . , up)
tr ∈ L2(0, T ; � p) and gi ∈ L2(Γi) with Γi = supp (gi) ⊂ Γ

for i = 1 : p and Γi ∩ Γj = ∅. For i 6= j, we have

B?z =
(

〈g1, z〉Γ1 , . . . , 〈gp, z〉Γp
)tr
for z ∈ L2(Γ).

Definition 4. We say that actuators are strategic if the corresponding system (S) is
weakly controllable.

Proposition 10. (Berrahmoune, 1984; El Jai and Pritchard, 1988) The actuators
(Γi, gi)i=1:p are strategic if and only if

{

p ≥ rn, ∀ n ≥ 1,
rank(Mn) = rn, ∀ n ≥ 1,

(52)

where Mn is defined in (24).

Let us remark that the condition p ≥ supn rn is necessary for boundary actuators
(Γi, gi)i=1:p to be strategic, but it is not necessary for them to be efficient.

Remark 4. In the case of pointwise boundary actuators (bi, δbi)i=1:p, we have
z(·) ∈ L2(0, T ;V ) where V ′ ⊂ L2(Ω) ⊂ V , with continuous injections, and the
characterization of strategic pointwise actuators is similar to (52) for zone actuators,
with Mn = (ψnj(bi)) i=1:p

j=1:rn

.

The following results show that remediability is a weaker notion than controllability.

Proposition 11. If (S) is exactly controllable on [0, T ], then (SP )+(E) is exactly
remediable on [0, T ].

Proof. For θ ∈ Y ′, we have
∥

∥

(

−G?S?(T − ·)A? +G?S?(T − ·)
)

C?θ
∥

∥

2

L2
(

0,T ;L2(Γ)
)

=

∫ T

0

∥

∥

(

−G?S?(T − s)A? +G?S?(T − s)
)

C?θ
∥

∥

2

L2(Γ)
ds

≤
∫ T

0

‖ −G?S?(T − s)A? +G?S?(T − s)‖2 ds ‖C?θ‖2L2(Ω) ≤M‖C?θ‖2L2(Ω)
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with M > 0. On the other hand, using the exact controllability hypothesis, there
exists γ1 > 0 such that

‖C?θ‖L2(Ω) ≤ γ1
∥

∥

(

−B?G?S?(T − ·)A? + B?G?S?(T − ·)
)

C?θ
∥

∥

L2(0,T ; U ′)
.

Consequently, there exists γ =M(γ1)
2 > 0 such that

‖(−G?S?(T − ·)A? +G?S?(T − ·))C?θ‖2L2(0,T ;L2(Γ))

≤ γ‖(−B?G?S?(T − ·)A? +B?G?S?(T − ·))C?θ‖2L2(0,T ; U ′),
and the result follows from Proposition 1.

The converse is not true. This is illustrated with the following example:

Example 1. Let Ω be a bounded open subset of � n , with a sufficiently regular
boundary Γ = ∂Ω, X = L2(Ω) and Az = ∆z for z ∈ D(A) = H2(Ω) ∩ H10 (Ω).
Consider the system

(S)



























∂z

∂t
(x, t) = ∆z(x, t) in Ω×]0, T [,

∂z

∂ν
(ξ, t) = u(ξ, t) on Γ×]0, T [,

z(x, 0) = 0 in Ω.

(S) is augmented by the output equation

(E) y(·, t) = Cz(·, t).
In this case, B = I and (S) is not exactly controllable on L2(Ω) (El Jai and
Pritchard, 1988). However, (11) is satisfied on L2(Ω), so that (SP ) + (E) is exactly
remediable for any output operator C. �
Proposition 12. If (S) is weakly controllable on [0, T ], then (SP ) + (E) is weakly
remediable on [0, T ].

Proof. From (15) and (17), we deduce that (SP ) + (E) is weakly remediable if and
only if ker(H?C?) = ker(R?), or equivalently, ker(H?C?) ⊂ ker(R?). Then, for θ ∈
ker(H?C?), we have H?C?θ = 0, and hence C?θ = 0, because ker(H?) = {0}. Since
ker(C?) ⊂ ker(R?), we have θ ∈ ker(R?).

Remark 5. In case C = I and A generates an s.c.s.g. given by (19), remediability
is equivalent to controllability, and the characterizations are the same.

In multi-actuator and multi-sensor cases, we have the following result:

Corollary 6. Strategic actuators are necessarily efficient.

The converse is not true (cf. Section 5).
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5. Applications

Let Ω be an open and bounded subset of � n , with a sufficiently regular boundary
∂Ω. We consider the diffusion system

(S)



























∂z

∂t
(x, t) = ∆z(x, t) in Ω×]0, T [,

∂z

∂ν
(ξ, t) =

p
∑

i=1

gi(ξ)ui(t) on Γ×]0, T [,

z(x, 0) = 0 in Ω.

(S) is augmented by the output equation

(E) y = Cz =
(

〈h1, z〉Ω, . . . , 〈hq , z〉Ω
)tr
.

If the system is disturbed on its boundary by a term f ∈ L2(0, T ;L2(Γ)), we have

(SP )



























∂z

∂t
(x, t) = ∆z(x, t) in Ω×]0, T [,

∂z

∂ν
(ξ, t) = f(ξ, t) +

p
∑

i=1

gi(ξ)ui(t) on Γ×]0, T [,

z(x, 0) = 0 in Ω.

5.1. Case of a Rectangle Ω=]0,α[×]0,β[

In this setting, the eigenvectors of ∆ are defined by

ψm,n(x, y) =
2√
αβ
cos
(mπx

α

)

cos

(

nπy

β

)

.

The associated eigenvalues are

λm,n = −
(

m2

α2
+
n2

β2

)

π2.

It is known (Berrahmoune, 1984; El Jai, 1991; El Jai and Pritchard, 1988) that

(i) If α2/β2 /∈ Q, then the eigenvalues are simple, and hence a single actuator
(Γ1, g1) with Γ1 = supp (g1) ⊂ Γ is enough to have weak controllability. Indeed,
an actuator (Γ1, g1) is strategic if and only if

〈g1, ψmj,nj〉Γ1 6= 0, ∀ m,n ≥ 1. (53)

(ii) If α = β = 1, i.e. in the case of a square domain Ω, we have λm,n = −(m2 +
n2)π2, supm,n≥1 rm,n = ∞, and then we cannot have weak controllability by a
finite number of boundary actuators.
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On the other hand, using Corollary 5, (SP ) + (E) is weakly remediable if for
every m,n ≥ 1, vectors (Lm,nj)j=1:rm,n are linearly independent, and there exist
m0, n0 ≥ 1 such that

rank(Mm0n0G
tr
m0n0) = q.

Thus, in the case of one sensor (h1,Ω1), (q = 1), one actuator is enough for any α
and β.

Since (Lm,nj) n≥1
j=1:rm,n

are linearly independent vectors, (Γ1, g1) is efficient if

there exist m0, n0 ≥ 1 such that
rm0,n0
∑

j=1

〈g1, ψm0j,n0j〉Γ1〈h1, ψm0j,n0j〉Ω1 6= 0. (54)

If α2/β2 /∈ Q, we have rm,n = 1, ∀ m,n ≥ 1, and hence the condition (54) becomes

〈g1, ψm0,n0〉Γ1〈h1, ψm0,n0〉Ω1 6= 0. (55)

In this case, we have the following possibilities:

� If Γ1 = [a1 − l1, a1 + l1] × {0}, there exists m1 ≥ 1 such that 2a1m1/α1 is
odd and h1 = ψm0,n0 with m0 6= m1. Then an actuator (Γ1, g1) such that
g1 is symmetric with respect to the straight line x1 = a1 is efficient, but not
strategic.

� If Γ1 = [0, a1 + l1] × {0} ∪ {0} × [0, a2 + l2], there exist m1, n1 ≥ 1 such
that 2a1m1/α1 and 2a2n1/α2 are odd, and h1 = ψm0,n0 with m0 6= m1 and
n0 6= n1. Then an actuator (Γ1, g1) such that g1 is symmetric with respect to
the straight lines x1 = a1 and x2 = a2 is efficient, but not strategic.

Let us note that, in the case of a square domain, one boundary actuator can be
efficient, e.g. for h = ψm0j0,n0j0 and g1 ∈ L2(Γ1) such that 〈g1, ψm0,n0〉Γ1 6= 0, the
actuator (Γ1, g1) is efficient, but a finite number of actuators cannot be strategic.

5.2. Case of Ω Being a Disc D(0,1)

The Laplacian in polar coordinates is given by

∆z =
∂2z

∂ρ2
+
1

ρ2
∂z

∂ρ
+
1

ρ2
∂2z

∂θ2

with 0 ≤ ρ < 1 and 0 ≤ θ < 2π. The eigenvalues of ∆ are given by

λnm = −βnm2, ∀ n ≥ 0 and m ≥ 1,

where βnm are non-zero roots of Bessel functions Jn defined by

Jn(t) =
1

2π

∫ π

−π

eit sin(θ)e−inθ dθ, n ≥ 0.
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The eigenfunctions are given by

ϕ0m(ρ, θ) = J0(β0mρ), m ≥ 1,
ϕnm1(ρ, θ) = Jn(βnm1ρ) cos(nθ) n ≥ 1, m ≥ 1,
ϕnm2(ρ, θ) = Jn(βnm2ρ) sin(nθ) n ≥ 1, m ≥ 1.

In this case, the multiplicity orders are defined as follows:

rnm = 2, ∀ n,m ≥ 1,

r0m = 1, ∀ m ≥ 1.
System (S) cannot be weakly controllable with a single actuator (Berrahmoune,

1984; El Jai, 1991; El Jai and Pritchard, 1988). For p = 2, the actuators (Γ1, g1) and
(Γ2, g2), with Γi = supp (gi) ⊂ Γ for i = 1, 2 and Γ1

⋂

Γ2 = ∅, are strategic if and
only if

〈g1, ψ0m〉2Γ1 + 〈g2, ψ0m〉2Γ2 6= 0, ∀ m ≥ 1 (56)

and
∣

∣

∣

∣

∣

〈g1, ψnm1〉Γ1 〈g1, ψnm2〉Γ1
〈g2, ψnm1〉Γ2 〈g2, ψnm2〉Γ2

∣

∣

∣

∣

∣

6= 0, ∀ n , m ≥ 1. (57)

On the other hand, in a single-sensor case (h1,Ω1), using Corollary 5, an actuator
(Γ1, g1) is efficient if and only if there exist n0 and m0 such that

rn0,m0
∑

j=1

〈g1, ψn0,m0j〉Γ1〈h1, ψn0,m0j〉Ω1 6= 0. (58)

Let us remark that for n0 = 0 and n0 6= 0, (58) respectively becomes
〈g1, ψ0,m0〉Γ1〈h1, ψ0,m0〉Ω1 6= 0 (59)

and

2
∑

j=1

〈g1, ψn0,m0j〉Γ1〈h1, ψn0,m0j〉Ω1 6= 0. (60)

Remark 6. In the case of a Dirichlet boundary condition, System (SP ) becomes

(S)























∂z

∂t
(x, t) = ∆z(x, t) in Ω×]0, T [,

z(x, t) = f(x, t) +Bu(t) on Γ×]0, T [,

z(x, 0) = 0 in Ω.

The state of (SP ) at final time T is not necessarily in L
2(Ω), for u ∈ L2(0, T ;U) and

f ∈ L2(0, T ;L2(Γ)). But for u ∈ Ld(0, T ;U) and f ∈ Lr(0, T ;L2(Γ)) with d > 4
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and r > 4, we have zu,f (T ) ∈ L2(Ω) (Berrahmoune, 1984; El Jai and Pritchard,
1988). Up to some technical details, the results are analogous to those obtained in the
case of the Neumann boundary condition, with the controllability matrix

Mn =

(

〈gi,
∂ϕnj
∂ν
〉L2(Γ)

)

i=1:p
j=1:rn

.

Similarly, we show that the actuators (Γi, gi)i=1:p are efficient if and only if

⋂

n≥1

ker(MnG
tr
n ) =

⋂

n≥1

ker[(Gnan)
tr],

where

Gn =
(

〈hi, ϕnj〉
)

i=1:q
j=1:rn

and

an =

(

∂ϕn1
∂ν

, . . . ,
∂ϕnrn
∂ν

)tr

.

6. Conclusion

In the case of systems subjected to Neumann boundary conditions, we defined and
characterized the notion of remediability, which consists for a given output equation
(sensors) in studying a possibility of finite-time space compensation of any boundary
disturbance using boundary actions. We showed how to find convenient boundary
actuators ensuring this compensation (efficient actuators). Then we studied the re-
lationship between the notions of remediability and controllability with boundary
actuators. More precisely, we showed that remediability is a weaker notion than con-
trollability, and hence that strategic actuators are necessarily efficient, the converse
not being true. Then we demonstrated (in the last section) that the number condition
(p ≥ sup rn) for boundary actuators to be strategic is not necessary for them to be
efficient. We also determined the set of remediable boundary disturbances, and for a
boundary disturbance, we gave an optimal control guaranteeing its compensation. We
also indicated how to extend the results to a Dirichlet boundary condition. Finally, let
us note that this approach and the results obtained can be also extended to the case
of internal actuators or boundary sensors, and that other aspects of remediability can
be studied and other systems can be considered.



920 L. Afifi et al.

References

Afifi L., Chafiai A. and El Jai A. (1998): Compensation spatiale en temps fini dans les
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