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A NONLINEAR MODEL OF A TURBINE BLADE BY ASYMPTOTIC ANALYSIS
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In this paper we obtain a limit model for a turbine blade fixed to a 3D solid. This model is a three-dimensional linear elasticity
problem in the 3D part of the piece (the rotor) and a two-dimensional problem (the nonlinear shallow shell equations) in the
2D part (the turbine blade), with junction conditions in the part of the turbine blade fixed to the rotor. To obtain this model,
we perform an asymptotic analysis, starting with the nonlinear three-dimensional elasticity equations on all the pieces and
taking as a small parameter the thickness of the blade.
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1. Introduction 0° : x° € QF — %° = O°(x°) € ©¢(Qe),

The objective of this article is to mathematically justify a O0°(x%) = (1, 22,0%(x1,22)) + 25d° (21, 13),
coupled 3D-2D model for a turbine blade under centrifu-
gal and pressure forces. Let us suppose that the turbine 2 = ©°(Q2°),

blade can be modelled by a shallow shell, as defined by e -

(Ciarlet and Miara, 1992). O = {2102, 07 (w1, 22)) R (21,02) € W],

We shall assume that the turbine blade is made of a ST =0uUQe, A% =0rno, 05=0 - Qs
Saint Venant-Kirchhoff material. We shall need the fol- g

lowing notation: We shall use the summation convention for repeated

Let O be a bounded and connected open g&tC indices, where the Latin indices, (, k, . . .) take on val-
R3, with boundary 90 smooth enough (for instance, a ues in{1,2,3} and the Greek indicesy(j3,,...) take
Lipschitz boundary composed of a finite number of parts on values in{1,2}. For example,z,z, = % + 23,
of class C'). Let Ty C HO have positive measure z;x; = z7 + 23 + x3. Let §;; be the identity matrix,
(meagl’y) > 0). i.e. 6;; =0 1if i #j andd;; = 1 if i = j. We shall
use the following notation for partial derivativeg); for

Here and subsequently, we will use the following 9)0w:, 0F for 9)ox° and 5 for 0/ 03¢
i, O; T; 5 ;5.

symbols:
From our definitions, we can see th&f is a com-
wCR? Q=wx]-1,1[, QF =wx]-¢¢|, plete solid,O is the 3D part,Qs is the shallow shell and
w® stands for the middle surface of the shallow shell (a

w a bounded and connected open set vilih turbine usually has more than one blade, but the results

a Lipschitz boundary composed of can be easily extended). We shall also use the following

a finite number of curves of class?, notation:
0:(x1,20) €T — R, 0cC3*w), Let wg = {(x1,22) € w : (x1,22,0) € O}, and

suppose that me@sz) > 0. Then we havevs # ) and,

0% (21, 2) = b(z1, 2), for a smalle, Q5 # 0.

Oée(xl,l’2> =1+ |81Q5|2+|8205|27 Let w* = w — w3, = o N @z, r* =
5 _ —1/2 v x [=1,1], Q5 = wex]-1,1], Q@ = w* x |-1,1],
A (w1, 22) = () TV2(=010%, ~ 0207, 1), I'y = w* x {1}. The upper face of the shallow shell

7€ ix €0 — X = 7°(x) = (v1,az,c25) € ¥, can be defined byl = 9(0°-05) N ©(w x
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{e}). We also introduc&2s(e) = (6% o 7)™ (Q%) c

Q, T.(e) (0 o 7%) (r) and wg(e)
{(z1,22) Ew: (Jcl,xg,ee(xl, 2)) € O}.

2. Problem Posed onS®

We shall consider the nonlinear elasticity problem for a
solid S°. We are interested in the case whéh is a

3. Changing to the Reference Sets

Let us now perform two changes of variables to reference
open sets in order to be able to pass on to the limit within
open sets independent of the parameteret us consider
the following two changes of variables:

A) O=0+r,withr eR? (xe€ O & i; =i +

rit,fca € O)andletO5 = 05 +r, Q5 = Q5 +,
etc.

turbine blade subjected to large centrifugal and pressure gy x ¢ 0 — x* = 7¢(x) € Q°

forces, and we suppose that the turbine is fixedIgn
(we shall choose a reference frame that spins vth).

Let us consider the case when the Lamé coefficients are

A¢ and ¢ in S¢. Let us consider a body forck (x¢) =
(f£(x¢)) applied in 8¢ and a surface forcg® (x°) =
(95 (%x%)) applied on fi- Let us remember that we are
interested in the case whef is a centrifugal force and
g° is a pressure, so we have §F spins around th&x,
axis):

Fi(& %) = 67 (%) (0°)? (2] + 45 (X)), f5(%7) =0,
f5(%°,00) = 67 (%) (0°)? (@5 + 45(%%)), 1)
G (K°) = = (7 + 0 (%)) df (% + 00 (%)),
where %(%°) is the mass density at point®, w® is

the angular velocity,5° is the normal pressure to/ +
u®)(I'¢) and d° is the unit outward normal to +

o) (D).
Then our problem is (see, e.g., Ciarlet, 1990): Find
u°¢ € Ve such that

| (B ais + 2B a0 e ) axe
+/ {XEE;p(ﬁs)dw+2u5E5(A5)}(’9§ai ° 55 A

g5 (X, 0%)0; da,

fE (x5, 0°)05 d%° + /

SE £
Vv eVe, (2)
where
A%Wﬂ:e(%+yﬁyf
1 Ae ~e Ae ~e 14 £ ~E AERE
= 5(8jvi + 07 95) + 58 vka 9% (3)

and Ve = {¥° € W'4(S°) : v =00nTy}.

— x° = 0°(7°(x)) e Qe

Let us taker € R3 such thatQ N @ = § and
consider now VeO*©(x?) (505 (x)). If we use
(a®)~Y2 =1 + £%r(¢,0), wherer(e,6) is bounded on

w (Ciarlet and Miara, 1992; Ciarlet and Paumier, 1986),
we have

1 0 —6319
VEOE(xT)=| 0 1 —edf |+2M(5;%7), (4)
edhf €020 1

where sup max |M(g;x%)| < +o0.
0<e<eg X €0QE

Consider now the following terms which appear
when performing the change of the variables of the prob-
lem (2) to the reference sets:

6% (x%) = det (VO°(x9)), )

1 x¢ € QF,
150 = ((9°076e) ),

= (05,05, (x)) %,

We can prove (Ciarlet and Miara, 1992; Ciarlet and Pau-
mier, 1986) that we have

B (x%)

x® elq.

05 (x%) = 1+ &2ra(e;x°),
B5(x°) = 1+¢e%rp(e;x°),
b5p(X°) = dap + 7rag(e;x),
bos(x%) = £0ab + 3rq3(e; x7),
b5, (x°) = —£0a8 + 3r34(g;x°),
53(x°) = 1+ ra3(e5x°),

where

sup max { [ra(e;x%)],|ri;(e;x%)],
0<e<eq xccQe
Irp(e;x%)| } < +o0.
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We now use the change of variables to the reference

&

Now, for eachve € W14(S¢), we define the pair

sets in egn. (2). The change of variables used depends oriv,v) € W14(0) x W4(Q), given by the following

the integral under consideration as follows:

/ Fe(x°)d&° = / Fe(x%)dx° + / Fe(x°) dx®
€ o AE_Q[EB

= / F(e)(x)dx

o
+/ F(e)(x) (1 + EQTA(E)(X))dX, (5)

Q-0 ()
where F¢(%°) is any function onsS¢, and F(¢)(x) and

F(e)(x) denote their images o® and Q2 through the
changes of variables. The same goesifars)(x) and
Ta(g;x%).

In order not to have to integrate over a domé&in-
Q3(¢e) that dependa priori on ¢, we make the following
simplifying geometric assumption:

Q- Qu(e) = 0, (6)

where Q* is independent ot.

Hypothesis (6) is very restrictive and it means

(nearly) that the turbine blad€) is fixed to @ in a right

angle. This hypothesis simplifies the computations and we

shall study later the consequences of eliminating (6).
With hypothesis (6), eqn. (5) becomes

/ EFE(XE)dXE
= /O F(e)(%)dx

[ FO@O+Sra@m)ax. @)

Performing the change of variables frofa® to 2 in

functions §°(x°), b5;(x*) and 3°(x*), we obtain
d(e)(x) = 1+e%ra(e)(x),
Ble)(x) = 1+e2rp(e)(x),
bap(€)(x) = dap +%rap(e)(x), @®
bas(e)(x) = €040 + 3r43(e)(x),
b3a(€)(x) = —£0a0 + 3734() (%),
baz(e)(x) = 1+ ¢°rs3(e)(x),
where
s max{ ra ()], Imj(e)(X)\ 7
Irp(e)(x)| } < +oo.

scalings:
0F(%°) = 2;(x), x° €0,
05,(%°) = e%0a(x), 05(%°) = evs(x), X° € O ®
Then we have
8:;‘13;?(&5) = £20;0;(%), X € o (10
0505 (%) = Bz (x°)b, (x7), %7 € O,

where 9505 (x%) = €°0avs(x), 0505(x%) = dav3(x),
d5v5(x°) = edsvg(x), O5v5(x°) = Jzvs(x) and
by (x%) = bij(€)(x).

To proceed as with (7), let us consider tepart of
the integral on the left-hand side of (2). Let us suppose
that the Lamé constants satisfy = =—*\ and j°
et

Then we have, sinc&® fulfils relations (9),

/(D{S\EEE (a° )5ZJ+2MEEE (As)}é%({,g)die

+/ {)\E (& )6U+2u5E5(A5)}BA§a28%,§d§cE
(@]

=A% (qle), V), (11)
where
A®(a(e),v) = Ag(t(e), v) + e Az (u(e), v)
+ &' Ay (ale), v) (12)
and

Ao((e).%) = [ {Seps (@03,
+ 2f1es; (1i(e)) }eij(v) dx, (13)

% /O {0y (2)yin(2)3;

+ 21011k (2) Dy (g)}eij (v) dx

+/O{Ae,,,,< (0)) 05 + 2fiei; (3(0)) b

X &ﬂk(a)@fzk df(, (14)
- 1 Sa - _ AU
Ay(u(e),v) = 5‘/@{)\8puk(5)8puk(5)6ij + 2/10; 1 ()
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We are now going to do the same wigﬁf. We
must study the behaviour af;;(v¢) and 05 w; 0595, un-

der the change of variables. For this reason, we are go-

ing to define the following functionals o’ *4(Q2) and
WLA(Q) x WA(Q):

Pij(e)(v)(x) = g%é% (VI)(x), (16)

Qui()w, ) () = 5 {oragdsor ) +), a7)

respectively. The dependence of (16) and (17)conan
be studied if we use (8)—(10), and then we obtain

A€ € 1 € ,€ LE € € LE £, LE € ,,E LE
bap(Ve) = 5(&Yvabw—k@vvﬁbw+83vab35+63v5b3a)
e? 9

5 10700 (8,5 + 2r30(9))

+ 0505 (0ya + €°74a(€))

+ £ 0500 (—€030 + 3735(€))

+ e 05v5(—20a0 + 637”30[(6))}

2
= %(651]01 + 8&”6 - 83'Uaaﬁ9 — 83’()58&9)

54

+ 9 (0yvar5(€) + Oyv57yal(€)

+ O3var35(g) + 8311,37"3,1(5)),
so we have

Pap(e)(v) = ehp(v) +e%ch5(e,0:v),  (18)

where egﬁ(e, 6;v) depends on neithet nor vs:
1
eiﬁ(v) =eqs3(v) — 3 (000304 + 0a003v3) ,
1
eap(V) = 5 (9pva + Javp)

1
eﬁaﬂ(e, 0;v) = 3 (@-varm(s) + &-vlgrm(a)).

In a similar way, we obtain
1
Pas(e)(v) = —€Ga(v) +eei(e.0:v),  (19)
1
ers(v) = eqs(v) — 58(19831)3,
1
ea3(v) = 3 (030 + 0avs),
1
eis(s, 0;v) = 3 (0500040 + O;v3Tia(€) + O3var33())

+

% (0yvary3(€)).

We know thatés ;(ve) = é5,(v°), so we have

Poale)(v) = 2fa(¥) + ek (e, 0:v), (20)

whereel,, (v) = €25(v), e3a(v) = eas(v), ega(s,e;v)
= ei3(5,9; V).

We also have
1
P33(€)(V) = §83U3 + &yvg@,yﬁ + 33’037"33(6)
+ 52623(6, 0;v), (21)

whereed; (v) =e33(v) =303, 62,3 (€,0;v)=0yv3r3(€).
We can clearly see that there exists a constarinh-
dependent ok, such that

Hili}X ‘egj(aﬁ;v)’oﬂ < C|vlh.a-
Similarly,
Qij(e)(w,v)

thus obtain

we can find the expressions for
after the change of variables. We

Qape)(w,v) = (Jqws — 0o,003w3)(03v3 — 03005v3)
+ 2 (e, 0w, V), (22)
and also
Qas(e)(w,v) = %(%wg — 0,005w3)03v3
+eqhsle, 0, w,v). (23)

From (17), it is clear thatQsz.(e)(w,v) =
Qa3(e)(v,w), and then we have

1
an(E)(W,V) = gag,’wg(aa’vg - 8a683v3)

+egho (5,0, w,v), (24)

where qga(s,e; w,v) = qig(s, 0;v,w).
Finally, we also have

Q33(e)(w,v) = éagw?,agvs + 03w, 030,
+ O3ws3 (030,08 + O3v3733(¢))
+ O3v3 (angave + Ozwsrss (5))
+ 52q§3(5, 0, w,v). (25)
For the remainderqu, we have the following bound:

# .
H}%X }qij (e,0;w,v) ’079 < C||W||W1»4(Q) ||VHW114(Q)'
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We are now able to proceed as in (11), but QA
instead of @. For that purpose, let us introduce the fol-
lowing expressions:

bap(W,v) = o 5(V)
+(8aw3 — 8a983w3)(8ﬂv3 - 8[30831)3),

bas(W, V) = €03(V) + (Oaws — 0ab03w3)Dsvs,  (26)
bsp(w,v) = ega(") + O3ws3(0pvs — Jpt03v3),
b33(W, V) = 03v3 + J3w30303.
We also introduce
dgj(a;w,v) = egj(a, 0;v)+ qu(g, o;w,v), (27)

and
C33 (6; w, V) = 0,030,0 + O3v3733 (E) + 83wp83vp
+ Osws (anv38n9 + O3v3733 (E))

+ 631)3 (&ng&ﬁ + 531037’33 (6)) (28)

Remark 1. If 93v3 = 0, then cs3(e; w,v) does not de-
pend one, and we have
cs3(e;w,v) = cig(w,v)

= 030,60 + ag’wpa;ﬂ)p + 83’11}3(977’[}38779.

Now we can proceed as in (11). Using the last ex-
pressions and hypothesis (6), we obtain

4 / _
Q-0

=e"7'B (u(e), v),

where

5 (uey) = [

{XEE;p(ﬁf)aij + 2;16E§j(a€)} é5,(v°) d&°
{XEE;p(ﬁf)aij 24 E (ff)} dr s o o5, dx°

(29)

{;\BS (%u(s), u(e)) Bj(u(e),v)

*

+24B;; (%u(s), u(e))B;

ij

(u(e),v) }
x (1+e%ra(e)) dx (30)
with

1
Bj(w,v) = §b33(w7v) + c33(e; W, V) + baa (W, V)
+ 52d§,p(5; w, V),

Bzﬁ(W,V) = baﬁ(“’?V) + 52d§)¢5(€; W,V)7

1
Bs(w,v) = gbas(w, V) + edfw(e;w,v)7

&

1
Bss(w,v) = gbg,ﬁ(W,V) + adgﬁ(e;w,v),

1
B3s(w,v) = ;Qbss(wav) + e33(85 W, v)

+e2diy(e;w, v).

Remark 2. If we do not consider hypothesis (6), we find
that in (30) the integral of2* is then onQ2—Qz(e). Com-
putations are then harder and we must know exactly what
is © — Qga(e) (unless terms with an integral ofis(e)

are small enough to not affect our computations). Remov-
ing hypothesis (6) would then require more complicated
computations, but yield similar results.

The last step is to perform the same change of vari-
able on the right part (the force contribution) of (2). We
must then know the asymptotic behaviour of forces (1).
Let us suppose that the mass density and the angular ve-
locity have the following global asymptotic behaviour:
6°(%%)(w?)? = e Vwp. Thatis, we are supposing large
angular velocities (larger ag grows).

Then, after the change of variables,dh we have

(1)

e2wotiz(¢).

If we perform the change of variables given én
we obtain

F&,0%) = f(e)(x,ule), f5(E,0%) =0,
f5(x5,0%) = e fa(e) (x,u(e)), (32)

with f1(e)(x, u(e)) = woz1 + 2w (—23010(a®) 712 +
’Uq(&)) and f3(€)(X,u(€)) = L«Jo(dig =+ 0(581,562) +
uz(e)) + £%wor(e,0), where we bring to mind that
(@®)~Y2 =14 %r(e,0).

Now, we must do the same study with pressgrfe
We must thus considep®(x® + 4°(%°)) and also the
surface (I + ﬁf)(fi). This surface is described by the
function Q:cl,xg) € w' =Ty — G(z1,22) €
(I +14°)(I'S), where

GS(‘T17$2) = (66 o ﬂs)(x17x27 1)

+ ﬁs((@s om®)(x1, T2, 1)) (33)
Using the scalings, we have
as, ((@E o) (a1, xa, 1)) = agua(s)(xl, X9, 1),
(34)

ﬁg((@E om®) (1, z2, 1)) = eus(e)(z1,22,1),



J.M. Rodriguez

amcs@

so we obtain G = 1 — €20 ((a®)~Y20:0) +
e201uq (¢), 0G5 = —20, ((af)_l/gaﬁ) + 201us(e),
NG5 = €010 + €01[(af)"?] 4 edyus(e), and then
01G® = (1,0,2(010 + Oruz(e)) + (a5 + ruy(e), a5 +
O1us(€),ea), where |a$| is bounded inL*(T'y). In
the same way, we obtai,G® = (0,1,e(020 +
82u3(€)) + 62(b‘i + 32u1(6),b§ + 82u2(5)75b§), where
|b| is bounded inL?(T" ).

Then the unit outward normal is
& (35 +0°(%)) = ( — e(010 + drus(e)),
— £(020 + Baus(2)), 1)
+ 2 (ema(e),ema(e), ms(e)),

where [m;(£)]o,0 < C (1 + HU(E)HLQ)‘

Consider now an arbitrary point di’i after a dis-
placement and the change of variables. kétc f‘i. We
have (recall tha(a®)~1/2 = 1 + £%r(¢, 9)):

X 405 (%°)
= (z1,m2,6(1 + 0(x1, 22) + uz(e) (w1, 22, 1)))
+e2(— Df(a1, m2) + ur (€) (1, 22, 1),
— D21, 2) + us(e) (x1, 22, 1),0)
+¢%(0,0,7(c,0) (21, 22))
+ (= 010(z1,22)7(,0) (71, 22),

— 820(56171‘2)7‘(67 0)(.%171‘2)70).

We are now going to study the asymptotic behaviour

of p°. We haveGe (1, z9) = X° + 0°(x°) on I'L, so it
is easy to see thaf¥® tends to(x1,x2,0) ase goes to

zero in a spaceX if u(e) is bounded in the same space
X. For this reason, it is useful to define a scaled pressure

onw*=T,. Let

p(e)(z1,2) = €" (p° 0 G%) (w1, 72), (35)

for (z1,x2) € w*. This definition allows us to make the
following hypothesis about the asymptotic behaviour of

p(e):
p(e)(w1,22) = p(0)(z1,22) +ev(e)(w1,22),  (36)

vcvith p(0) € L*(T'1), y(e) € L*(T'y), and |[y(e)lor, <

Then p° satisfies

P°(XE+0°(X%)) = e "p(0) (w1, x2) e~ Ty (e) (w1, 32).
@37
That is, we assume large pressures (largey axreases).

We can now write the expression f@° after the
change of variables:

Ga(x7) =7 ga(e)(x),  §5(%°) = "gs(e) (%),

(38)
with g.(e)(x) = (9a0 + Baus(e))p(0) + ema(e),
g3(e)(x) = —p(0) — erng(e) and |r;(e)| bounded in

LA(Ty).

Now we can rewrite the expression on the right hand-
side of (2), which takes the form

/ feos dx® + / G505 dac
€ Fi
=[5 2 fi(e)v; dx
—|—/ eI fi(e)vid(e) dx
Q*
+/ [e713 g0 (e)va + €71 g3(e)vs] 6(2)B(e) da.
Ly

If we take into account the last equation as well as
(31), (32), (38) and (8), we conclude that

/ 205 dR° + / g; 0; das
. e
= 2 L) + 2L (8(0),9)]
478 [Lg (u(e),v) +£2L3 (=5 u(e), V)}
g [Lg(v)JrgLi’(a; v)+e2L3(e; V)} (39)
where

Lé(\?) = /@ wWo [(fl — 7’1)61 + ("33 — 7’3)’(73] di,

L((e),9)

wo [ﬂ1(€)1~)1 + ﬂg(E)@g] d)NC,

L(Q) (u(e), v) = wo [mlvl + (x3 + 0(x1,x2)

*

+ ug (E))U3] dX,

L% (8; u(e),v) = /Q wo [azlvl + (mg + 6(z1,x2)
+ uz(e))vs]ra(e) dx
- /Q wo [( — 23010(a°) M2 + g (e)) v

+ (e, 9)113] d(e) dx,
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Li(v) = — /F p(0)v3 da, 4. Asymptotic Expansion
N

We are going to suppose now, as usually in this kind

L3(e;v) = — s (e)vs da of methods, that it is possible to write the solution
n r, ST (a(e),u(e)) € V(e) as an asymptotic expansion in
Wh4(0) x W4(Q), i.e. there exist pair§u™, u™) in
Li(s;v) = / 9a(e)vad(2)B(e) da spaceW4(0) x W4(Q) such that
ry
k
+/ g3(e)vs (TA(E) +rp(e) +827“A(E)TB<E)) da. (ﬁ(g)’u(E» = Zogm(ﬁ (44)
Iy m=

Finally, we use eqns. (11), (29) and (39) to deduce ~Thesolution(u(e), u(e)) belongs to spac# (), so
that (2) is equivalent to the problem: we have (cf. (41))

Find (a(e),u(e)) € V(e) such that 0 () (6° (7°(%)) + 1) = ta(e)(x),

4—t pe (=~ S —tpe ®
et A% (a(e), v) + 7B (u(e), v) etiz(e) (67 (n°(x))+1) = us(e)(x), VxeQp. 9
— ert2 {L (V) + e*Ly(u(e), \7)] We also have the following injections:
+e LB (u(e),v) + 213 (55 u(e), v)| WiO) C C°(@), WH(Q) C U@, 49)

+e [L%(v) +eLi(e;v) + €2 Li(e; v)} ; AS (a7)7H/% = 1+ €¥r(e, ), we can write

0% (7°(x)) +r
=r+ (acl,gcg,aﬁ(xhxg)) + exg(—e0h 0, —c020,1)

Y (¥,v) e Vi), (40)

whereV (¢) is the space obtained after the change of vari-
ables fromV’¢, and then + &3 (e, 0)x3(—c016, —£D0,1). (47)

[ 14,7 147090, If we take limits in (45), keeping in mind (46)
Vie) = {(V’V) € WHH0) x WHHQ); and (47), then we obtain

\7:00”1_‘0, fja (@5(71—6(5'()) +I‘) :UQ(X), dg(x1+r1,x2+r2,r3) zug(m,xg,xg),

- (48)
e (67 (n°(%)) +r) =3 (), vXeQﬁ} (41) W(x) =0, VxeQ,
We must now choose values for parameters and i.e. we have
7. There are infinitely many different possibilities which 0 o
will give us different limit models. The best choice is the U0, = Uo|ogs U3, = 0. (49)

same as in the linear case (Rodriguez, 1997; 1999) , ,
We must now substitute (44) into (43) and then

n>0, t=4+4+n ~v=2+n. (42) equate the terms multiplied by the same power:oflf
we do so, we obtain
In this way we preserve the most interesting effects B ~ )
and the nonlinear model is going to remain ‘close’ to the A (u(€)7v) =Ag+cAi+e"Ar+ -
linear model. Then (40) becomes
(40) eB(u(e),v) = *B_g+e ?B_o+ -,

A (u(e),v) +eB°(u(e), v)
_ [Lg (%) + 2L (ia(e), \7)] [Lé (%) + 2L} (ia(e), \7)}
T (o)) + (o)) e[ ) + L3 ue )]
+5{ V) +eLile;v) + e Ly (e )}’ +5[Lg(v)+€L§(5;v) +€2L§(€;V)}
Y (v,

)GV( ): (43) :L0+6L1+€2L2(€)+"‘,
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where, for example, and

. 1
) N 2 0 1a.049,0
Ay = / {Aepn ()85 + 2fies; (@) fes; (9) a, (o210 [958 + 0,300 + 50500
(@]

B_3:/ {;\b33<%uo,uo)b33(uo,v)
Q

+ 2fibs3 (%uo, uo)b33 (u°, v)} dx,

+ S\[ega(uo) + %Baugaaug} =0. (55)

Now, from (52) and (54) we deduce thef, (u°) =
0, d3u3 = 0, and then

u’ € Vi (%) = {v e WH(Q); e3i(v) =0inQ*} .
Lo = [ wol(#1 —r1)d1 + (&5 — r3)03] dX. (56)
° /o o[@1 = 1)31 + (@5 — 75)1] The spaceVk 1 (£2*) can be also written in the fol-

. lowing way (Ciarlet, 1990):
We have written these terms as examples. Next,

we are going to equate the terms multiplied by the samey,., (%) = {V € W H(Q); va = 1o — 230an3,
power of ¢ and we write explicitly the terms needed in
each case (see (Rodriguez, 1997) for more detailed steps);, — 5; and 7, € Wl (w*), ns € W2’4(w*)}. (57)

B_; is the only term multiplied by:—3, so we have But from (49), u® satisfies

B_3=0, ie.
Ug = (o — 2300(3, Ug =(3 (58)
~ 1 i 1,4, % 2,40, %
/ {Ab33<§u0,u0)b33(u°,v) with ¢, € Wh#(w*), (3 € W**(w*), and
’ ) Capyr = (@15,) v+ (3 =0u(z=00n7", (59)
~ 0 .0 0 —
+ 2“b33(§“ u >b33(u ’V)} dx =0 where v = (v, 1) is the unit outward normal taw*

on ~*.

forall (v,v) in V(e). Then we have (cf. (26)) If we take terms multiplied by:?, we obtain

. 1 _
()\ + Qﬂ) / 83u§ (1 + 58311%) (1 + 83ug)83v3 dx =0 Ao + Bo = Lo, (60)
’ (50) where, after the steps done before, we have

forall v in W14(Q*). As in (Ciarlet, 1990), we can use < o o
the following result in (50): Ao = /@{)\epp(u )6ij + 2fie; (0 )}eij(V)d& (61)
Let w € L%(Q*) satisfy . wdzvdx =0 By = Qﬂ/ e (ul) [264,.(v) + Dauldsvs) dx
forall v € C*°(Q*) such thatv = 0 on v* x [—1,1]. X
+ / (5 42) (9508 + 00 + Dyu 050
Thenw = 0. (51) @
3 6 1 0 1
Accordingly, we havedsud (1+195ud) (1+d5ul) = + A (€ha(u') + 8au38au3)} Jsv3 dx, (62)
0in Q*. From (49) we deduce that = 0 on I'*, and,
if we make the hypothesi&;u? € C°(Q*), we obtain Lo = / wo [(F1 — r1)01 + (T3 — r3)03] dx. (63)
o
dzud =0 in Q. (52) Now, if we consider

vV = 0, Vlﬂﬁ = O, V\F* = O,
v € WH4(Q*), we have(v,v) € V(e) forall ¢ > 0
The unique term multiplied by="? is B_,, so we  and we can takév, v) € V(¢) as a test function in (60).
have B_, = 0. Using (52) we obtain(\ + 24) Taking first vs = 0, we obtaine?,(u') = 0 in Q*, and
X [q.03u303v3 dx = 0, and then (cf. (51)) with (53) this gives

dsub =0 in Q. (53) u' € Vi (). (64)
The unique term multiplied by ~! is B_;, so we have Taking now v, = 0, we obtain
B_, = 0 and then we deduce (in a similar way as before) (5\ +24) (5)3U§ + D000 + aguiagug)
that .

e 4(u°) =0, in QF, (54) + A (ha(u') + dou3daus) = 0. (65)
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Equations (64) and (65) giv&, = 0 and then (60)
becomes4, = L, forall (v,v) € V(e),i.e

/@ {S‘em’(ﬁo)‘sij + Qﬂeij(ﬁo)} eij (V) dx

= [ [0+ ] ax,
O
VveH (0), vz =0, (66)

where 0 = wy (i, —r1) and f9 = wo(is — r3).
Then we deduce thai® is the unique solution to the
linearized elasticity probler(66).

Remark 3. In (66) as a test function we have taken
in H'(O) and not in W'4(0). This is correct since
W4(0) is dense inH'(O). Now we only haved’ €
H'(O) and we suppose that’ € Wt 4((’))

Actually, if we have f?, f9 e L*(O D) (and, with our
choice, this is the case) and alébwith smooth boundary
or convex, then we hava’ € H2(0) c WhH4(0).

The terms containing the factor af give the equa-
tion

A1+ By =L, Y(Vv,v)eV(e), (67)

where
A1 = /~ {j\epp(fll)éij + Qﬂeij (ﬁl)}eij (\N’) df(, (68)
o
B1=/ {;\(63u§+eza(uo)+;Baugaaug—l—aaug@ae
S *
+= 33u083u )( (V) + 00t (Dot — 00 0B303))

N 1
+ 20 (eh5(0) + 5OaulDzu)

X (eiﬁ(v) + Dauz(9pvs — 8[3933113))

0 2y, 1 2 0, 4t Lo o 0
+(€as(u )+§83u38au3+da3<5;§u u ) €as(V)
+<€3a( Ht o Bgu 20aud+d, (5; 1u0,u0))

2
X ega(v)} } dx
+ / {z\[@gué + %&,ugagug + ¢ (u?)
S *

1
+ iﬁau}ga@ué + 00 ud (Dol — 0005u3)

+ 8au§8a0 + 83u§r33 (6) + 83U283u?)

1 1 1
—|—iagu,lﬁgu})—kiﬁgugﬁnug8n9+df)p (5; §u0, uoﬂ
1
+ 20|y + 50330513 + 00300 + guiras(e)

+33u083u + 33u183u + 83u§8 U Bnﬂ

1
# . 24,0 .0
+ds, (5, 2u ,u )} }83113 dx, (69)
L1 :/ wo [1’1’01 —+ (1'3 —+ 9 —+ ’ug)’l}g} dX
— / p(0)vs da. (70)
ry

Using in (67) a test functioriv, v) € V(e) such that
v =0 andv € Wh*(Q*) with v. =0, we obtain

By =1Ly, YveW"(Q"); vir- =0. (71)

If we also takev in Vi, (Q2*), use (55) and define

1
Yag(u”) = egs(u) + S Bauzdpus, (72)

- 2)\u
miﬁ(uo) = {

ey 0 (u )5aﬁ+2ﬂ72ﬁ(u0)}a (73)

then (71) becomes

e

= [ [ 0o+ (49 + woudea) ax
Q*

ﬁ(v) + Oau30gv3) dx

- / p(0)vsda, Vv e Vip(2); vip- =0, (74)
r

+

where f{ = woz; and f9 = wo(z3 + 0).

Now, we are going to see that (74) is a two-

dimensional problem, using the fact that’, v ¢
Vi (92%). We have then (58), (59) and from (57) (with
vir- = 0) we also have

Vo = Na — x36a7’3a V3 = 13, with Na € W1’4(w*)ﬂ
n3 € W24 (w*) and n; = d,m3 = 0 ony*. (75)
Then we get
eap(V) = ebp() — 230013, (76)
1
where eiﬁ(n) =eqp3(n) + 5(8508an3 + 04,00873).
We also haved,, uldsvs = 0,(305n3, and
0 (1.0 6 1
Yap(0") = €45(C) — 2300sC3 + 5%@385(3- (77)

&
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Then we obtain

2)\/i 1
fngﬁ(uo) = _{5\ +Zﬂ <6;9)p(0 + zapCsapC:s) dap

+ 2 (¢4(0) + 50000002 |

2\l R }
+ T3¢ = AQ3) 0ap + 2[1005C3 - (78
3{>\+2/l( (3) 0ap + 2[10apCs - (78)

Performing the integration with respectig in (74)
and introducing the notation

0 _ AN 4.
Meas(C) = {3(5\ 20 (AG3) dap + 3M5aﬁC3},(79)
5\/\
a(Q) = T () + 321046 ) B

+ 4,[L <€iﬁ(<) + ;304C35[3C3> ) (80)

1
eiﬁ(n) = 5(%%’ + 8/@7704)

1
+ 5((9@985773 + 8ﬁ98a773)7 (81)

we prove the following result:

Theorem 1. The function¢ = (¢, ¢2,¢3) gives u’

through (58) and is a solution to the following variational

problem :
(o € WH(W"), G € W2H(W"),

(3 =0,(3 =00n~",

Capy = (aizs) by

—/ miﬁ(é)&wng dz; dzo

4 [ € (€hr) + acada) i

*

LA o ([ oo

+ [( /11 13 dx:»,) + 2wo(3 — p(O)} 773} dz; dzo,

VY (1asn3) € WH w*)? x W24 (w*);

N = 8,773 =0 On’y*.

If we take firstn, = 0, n3 € W24(w*) and then
N3 = 0, 1, € WH%(w*) in the last variational problem,
we obtain

—/ mf5(¢)Oapns dzy das
"

+/ nig(é)(c’m + 0a(3)0pn3 day dao

= [ {- ([ st as)oun

+ [( /_11 it dxg) + 2wo(3 — p(O)} 773} dx; dzs,

Vs € W2 w*); nm3 =0,m3 =00n~v*, (82)

/ ngﬂ(C)agna dz, dzo

L] ]

Ve € WH(W*); na =0o0ny*.  (83)

If the solution ¢ to the problem (82), (83) is smooth
enough (e.g.¢, € H?*(w*) and (3 € H*(w*)), we can
apply Green’s formula to these problems and obtain the
following result:

Theorem 2. If ¢ is a sufficiently smooth solution to the
variational problem (82) and (83), then it is also a solu-
tion to the strong problem

- aﬁmiﬁ(f) —0p (ngﬁ(C)aa(e +(3))

1 1
:/ fg dl‘3+61 (/ SCgf? dl’g) +2W0<3 7])(0) in w*,
1 1

~95m5(0) = / 11 J9 dwg)dar inw,

Ca\'y* = (ﬂng) [v* (3=0,(3=00n '7*7

(95m?5(0)) Va+n85(0)0a(0+Cs3)vs+0; (ml5(¢)Tavs)

1
:7(/ acgf?dxg)z/l on dw* —~*,

-1
mf5(Q)vavs =0 on dw* —~*,

ngﬁ(g)ug =0 on Jdw* —~*.

Remark 4. The last problem is a nonlinear shallow shell
problem of the same type as that found in (Ciarlet and Remark 5. Let us point out thatr = (7, 72) is the tan-
Paumier, 1986). gent on~* and that with our choice of forces we have
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Y = woz1, fY = wo(zs + 0), and then in the last theo-
rem

1 1
/ flo dl‘g = 2&)0.131, / f?? dl‘g = 2(4)09,
-1 —1

/.

We should determine nowi'. From (67) we have

l‘gf? d.Z‘g =0.

{Xepp(ﬁl)éij + Zﬂeij (ﬁl)}eij (\7) dx = L1 — Bl,

s

and (71) givesL;, — B, = 0 if v € Wh%(O), and
there existsv € W4(Q) such that(v,v) € V(e) and
vir- = 0. We cannot guarantee the existencevokat-
isfying these conditions for each, so L, — B; can be
non-zero. In this way, we cannot compui, that is in
general non-zero.

v (v,v) € V(e), (84)

5. Problem in the Original Domain

In the previous section, we found the zeroth-order prob-
lem in reference sets. We must now perform a change of

variables to the original domain to obtain a zeroth-order
problem in the original domain. Let us consider the fol-
lowing functions defined ot&<:

a5 (0)(x°) = 2ad(x), VxeO,
ug, (0)(X°) = ®uf (x), u5(0)(%°) = eug (%),
Vx e (85)
If we set

(w1, m2) = e%Calmr, 2),  (§(w1,m2) = eC3(w1, x2),

V (21, 22) € w, (86)
then we have
UZ(O)(&E) = C(i(xl’l?) - mgaaC§($17x2)7
(87)

C?f(xla xZ)-

The forces /2, f? and p(0) are only approxima-
tions of order zero of forced;(s), fi(¢) and p(e), so
when we perform the change of variables to the original
domain S¢, we do not recover the original forcg§ and

p°, and we must define

Fi(x°) = fl(%), F5(x)=0,
F5(x°) = e 5 (%),
Fi(x7) =77 f)(x), F5(x%) =0,

F5(x%) = g7t (fg(x) + woug(x)),

P*(G5 (21, 22)) = & "p(0) (21, z2).

We must also scalen? ;(¢), nf;(¢) and € 5(¢),
and we define

e 4XEAE 4

0%,/ e 3 o € ~NE €
m, 4 = —e’¢——— (A(3) dap + £ 50 ,

ap (¢%) {3()\5—1—2/15)( (3) bap 3M ﬂCa}

0° e AN jiE

ap

)=

c 1
i (e + 50n650565 )

0° € 1 € £

e 1 1
Cap(C7) = 5(00C5+05C3) + 5 (0ab05C5 +050°0a(5).

Then, using (66) and Theorem 2, and after the change
of scale, we obtain the following result:

Theorem 3. The functiona®(0) is the unique solution to
the following problem:

@ (0) € H'(0), a°(0)r, =0,
—8j {Xsepp(ﬁE(O))éij + Q[feij (ﬁE(O))} = Ff in O,

{S\EBPP (ﬁE(O))(SZ] +2ﬂ56i]’ (ﬁe(())) } n; = 0Oon 80—1—‘0,
and (¢ is a solution to the problem

—Bagmis (C7) — 0 (nl 5 (C5)a(6° + C5))

:/ ngx§+al(/
95 (¢) = ( / Ff da§ ) Sar inw”,
G = (@5(0)2,) |y=5 €5 = 0u(5 = 00N~

(aﬁmf;ﬁ(gf))ya + ngz;s(c)aa(ea + 5w

w5 Ff dag) = P in W,

+0r (M55 (CF) Tavp)

([

miza(CE)VaVﬁ =0, ni;e(ce)yﬁ =0 ondw* — ~v*.

2§ Ff dxé)yl ondw* —~*,



arms m J.M. ROdI‘IglIGZ

The forcesﬁf, F¢ and P¢ are ‘atorder zero’ equal Remark 7. As was done in (Rodriguez, 1999), we can
to forces ff and p° (i.e. the first terms of their respective ~ change the boundary conditions

asymptotic expansions are equal), so if we change in The- .« € .= (ag(o)wﬂ) s OGSy = ((5uﬂ§(0))|@5)|

orem 3 ones for the others, we obtain an approximation g

of the same order of the exact solutiari. This will al- for

low us to write a model without referring to the scalings in Gl = ([af(o) 0 ©°] |@5) Iy

e. In the same way (as we did in (Rodriguez, 1999)), we

can change the boundary conditions¢sf for conditions 03y = (au [a5(0) 0 ©°] |a;,,)| ¥

of the ‘'same order’. Then we can change the boundary 7

conditions a_n(_j then we have a m_odel of same orde_r as exposed, but
giving also the continuity of the deformation & (w).

Carrr = (@ (0)i2,) |y G5 =05 = 00077,

for 6. Stress Approximation

Gl = (A5(0)105) jyer 0uCSlye = ((auﬂi(o))mﬁ)w , We shall use Hooke's law to compute the stresses:

where v is the unit outward normal to* on ~*. 05;(X°) = {XEE; (G)d;; + 2/fE5 (”f)} (%%). (88)

Following these considerations, we can introduce the

. We are going to use asymptotic expansion to obtain
following model: going ymp p

the stresses, so we shall need a scaling of the same type as
in (Ciarlet, 1990):
65(%°) = 2755(e) (%), Vxe€O, (89)

)

Proposed model:

*aj{A epp( ())&JJFQN e”( ())}:ff inO

a°(0) = 0 onT Gep(X°) = &8 oap(e) (%), 655(X°) = ¥ Poas(e) (%),
u = 0

654(%°) = et togs(e)(x), VxeQ. 90
{)\ epp (0°(0)) 65 +20%¢;; (u (0))} n; =00n00 — T, 3(%) 3()(x) } (%0)
We haveu(e) = a° +ea! +e%a% +--- in O and
u(e) = u’ + cul +2u? + .-+ in Q. From (88)—(90)

agmaﬁ “(¢°) — 0a(n Zﬁ’s(g‘f)aa(eE +¢)) and (3), (16), (17), we obtain
e € R &ij(E) :&z(')j —|—€5'i1j +52&i2j+"' in @,
fedas +al(/ 25 fe dxg) ~ 5 inwt,
—e —e oap(e) = agﬁ—&—saéﬁ—l—n- in €,
1>
*aﬂniés(&) = ( i d$§)5a1 inw*, oa3(e) = 6_103?31 + 033 + 6053 4+ in Q,
B 33(e) = e 2052 + e Lot + ol + o INQL

G e = (A5(0)105) s OuCSpye = ((3uﬁ§(0))\@5)| Using expressions (18)—(25), (52)-(54) and (64), we

obtain (see (Rodriguez, 1997) for details)

6Z0J - )\epp( )6’Lj + 2/1461]( ) |n (7)7

’Y*’

(D (C)) v + nlg® (CF) (0 + C5)va 1
0 _ 0
+0r (" (¢*)avs) oos = Mas(0) +

1 -2 _ _—1 _ 0 O
Op3 = O35 =033 =0 in Q.

3 PR
§x3miﬁ(0 inQ~,

:—(/ ngfdxg)l/l onow* —~*,

e ~ Now we must return to the original domair@® and
Q¢, where we propose the following approximations:

55,(0)(%°) =60 (%), %€O,

misﬁ’e(g“s)l/auﬁ =0, ni;’a((s)yﬁ =0 ondw”™ — " .
Remark 6. The proposed model is a 3D model of linear
elasticity in solid O and a nonlinear model of shallow 5= (0)(x°) = £2%60 ;(x), x€ Q*

. « " . « af ) ’
shells in w*, where boundary conditions are determined
by adlsplacement of junction i®. This nonlinear m.odell 0%4(0)(%°) = e300 (x), 054(0)(X°) = 4 ~toly(x),
of shallow shells is of the same type as that found in (Cia-
rlet and Paumier, 1986). x €0,
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i.e. we have
55,(0) = {Xep, (5°(0) 815 + 205, (°(0)) |, (@D)
e 1 95,5 £ 3 5 0575 e
068(0) = 52 o () + 52373 (%) (92)

Remark 8. The zeroth-order approximation of stress in
O of (91) is a linear approximation. Equation (92) is a
classic equation for plane stress (Ciarlet, 1990), where
n%5°(¢) and mf ;°(¢%) are the stress resultants and
bending moments, respectively. We also have

€

/

nli@) = [

r3055(0) das.
—&

e
ap

g
€

%57 (¢%) = (0) das,

As regardsoZ;(0) and o54(0), we only know that
they are negligible with respect to? ;(0) (because
05,3(0) is of order O(e*~*) and o5;3(0), 055(0) are of
ordersO(e3~%) and O(s*~t), respectively).
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