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Nonsmooth analysis, inequality constrained optimization and variational inequalities are involved in the modelling of unilat-
eral contact problems. The corresponding theoretical and algorithmic tools, which are part of the area known as nonsmooth
mechanics, are by no means classical. In general purpose software some of these tools (perhaps in a simplified way) are
currently available. Two engineering applications, a rubber-coated roller contact problem and a masonry wall, solved with
MARC, are briefly presented, together with elements of the underlying theory.
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1. Introduction

The theoretical treatment and the numerical solution of
unilateral contact problems, with or without friction, for
linearly elastic and for more complicated nonlinear elastic
or nonelastic media require novel tools from nondifferen-
tiable (nonsmooth) analysis and optimization. Thanks to
the work of pioneers in mechanics and mathematics, see,
among others, (Antes and Panagiotopoulos, 1992; Chaud-
hary and Bathe, 1986; Hlavaceket al., 1988; Kikuchi and
Oden, 1988; Klarbring, 1999; Moreauet al., 1988; Pana-
giotopoulos, 1988) and the references given therein, we
now understand that the corresponding mechanical prob-
lems have the weak form of a (elliptic or parabolic) vari-
ational (or quasivariational, or even hemivariational) in-
equality, that under certain assumptions they can be writ-
ten as energy optimization problems (generally, critical
points) for nonsmooth potentials and that, perhaps after
using some reformulations, they can be expressed as linear
or nonlinear variational inequality problems. The applica-
tion of nonsmooth tools characterises the whole branch of
nonsmooth mechanics (Gaoet al., 2001; Moreauet al.,
1988).

Besides the very important theoretical consequences
of all these correct formulations of the nonsmooth me-
chanical problems, one recognizes common mathemat-
ical problems which have been studied and solved nu-
merically in other branches of science and technology.

In fact, mathematical programming and numerical opti-
mization provide a number of stable and effective algo-
rithms for the solution of complicated engineering prob-
lems (see, among others, the expositions on complemen-
tarity problems in engineering and economics (Ferris and
Pang, 1997) and on nonconvex and nonsmooth mechan-
ics (Mistakidis and Stavroulakis, 1998)). A number of
these developments have already been included in recent
versions of general purpose engineering software (e.g. the
programs based on the finite element method). Neverthe-
less, one cannot say that these complicated tools can be
used as black-boxes. Maybe we will never see this kind
of user-friendly intelligent software which would allow
the production of useful results without theoretical knowl-
edge. A minimum of theoretical background allows the
effective application of the available computational tools,
which means that less time is spent on computer mod-
elling, and the production of accurate results with fewer
iterations (convergent procedures). In the worst case one
recognizes. The limits of the available tools and modifies
analogously the design tasks.

In this contribution the above thoughts are briefly
discussed by means of two industrial applications of con-
tact mechanics. First, the appropriate formulations of the
frictional contact problems are outlined and the available
classes of solution algorithms are mentioned. In the next
sections the solutions of two applications, one from the
modelling of a roller abrasion test machine in mechani-
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cal engineering and the other from the area of earthquake
engineering of monuments, are briefly presented. All nu-
merical results have been produced by appropriate use of
the general purpose program MARC. Since the scope of
this contribution does not allow us to discuss all theoret-
ical, numerical and practical aspects in detail, a number
of references where more information can be found is in-
cluded in appropriate parts of this text.

2. Elements of Contact Mechanics

The basic unilateral contact law is completely described
by the following set of inequalities and the nonlinear com-
plementarity relation:

[u]N−g ≤ 0, −SN ≥ 0, −SN ([u]N − g) = 0. (1)

Here [u]N is the distance between two parts coming in
contact along the direction of their common normal,g
is the initial opening andSN is the corresponding con-
tact stress. The first relation is the nonpenetration relation,
the second represents the fact that only compressive con-
tact stresses are allowed, and the complementarity relation
says that either contact is realized, with possibly nonva-
nishing stress, or a separation, with zero contact stress,
occurs. Relation (1) holds for every couple of nodes ly-
ing on opposite surfaces which come in potential contact.
The node-to-node representation of the contact effect and
the requirement of a common normal direction are con-
sistent with a geometrically linear theory (small displace-
ments and deformations). More general considerations
are captured by node-to-surface techniques, which will
not be discussed here (see, for instance, (MARC, 1996)).
Equivalently, (1) is expressed by the multivalued, mono-
tone contact law (see Fig. 1(a)):

−SN =

{
0, for [u]N ≤ g,

[0,+∞] , for [u]N = g.
(2)

In turn, the last law is produced by subdifferentiating the
nonsmooth, convex superpotential (see Fig. 1(b)):

ΦN

(
[u]N

)
=IUad

(
[u]N

)
=

{
0, for [u]N ≤g,

+∞, for [u]N =g,
(3)

where Uad =
{
[u]N ∈ R1, [u]N − g ≤ 0

}
stands for the

set of kinematically admissible displacements andIUad

signifies the indicator function.

For the previously introduced unilateral contact joint
the law reads as follows:

−SN ∈ ∂IUad

(
[u]

)
,
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Fig. 1. Examined cases of contact for a quarter of the rollers.

while the variational inequality takes the form

−SNδ[u]N ≤ IUad

(
[u]N + δ[u]N

)
− IUad

(
[u]N

)
, ∀δ[u]N ∈ R1, (4)

or, equivalently,

−SNδ[u]N ≤ 0, ∀δ[u]N ∈ Uad. (5)

Furthermore, let us consider a simplified static friction el-
ement, with limit frictional stress constant equal toT0,
which may be produced by the max-type nonsmooth po-
tential:

Φ
(
[u]T

)
= max

[u]T

{
T0[u]T ,−T0[u]T

}
. (6)

Let us recall here that the limit frictional stress of
Coulomb’s friction law isT0 = µ |SN | (cf. relation (18)).
The coupling between normal and tangential relations in-
troduced by this law makes the formulation of the problem
more complicated. In order to be able to give an outline of
the theory without being obliged to change the previously
introduced framework for the contact effects, a given fric-
tional limit model is assumed here. Comments on the cou-
pled model, which has been used in the numerical exam-
ples, are given in Section 3.5. Therefore, the following
subdifferential formulation of the stick-slip friction law
can be written:

−ST ∈ ∂Φ
(
[u]T

)
. (7)
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Relation (7) is, by definition, equivalent to the (local) vari-
ational inequality:

−ST δ[u]T ≤ Φ
(
[u]T + δ[u]T

)
− Φ

(
[u]T

)
, ∀[u]T , δ[u]T ∈ R1. (8)

A structural analysis problem is usually considered in the
weak or variational form, i.e. the principle of virtual work
(for compatible stresses and strains):

sT (e∗ − e) = pT (u∗ − u) + ST
N

(
[u]∗N − [u]N

)
+ ST

T

(
[u]∗T − [u]T

)
,

∀e∗,u∗, [u]∗N , [u]∗T . (9)

This relation is coupled with the local variational inequal-
ities in the normal and tangential directions of the unilat-
eral interface (cf. the contact law (4), (5) and the friction
law (8)), which can be compactly written as:

−Sa

(
[u]∗a−[u]a

)
≤Φa

(
[u]∗

)
−Φa

(
[u]

)
, a = N,T, (10)

for Φa([u]∗) < ∞ . The arising problem is a variational
inequality of the type

sT (e∗ − e)− pT (u∗ − u) + ΦN

(
[u]∗N

)
− ΦN

(
[u]N

)
+ ΦT

(
[u]∗T

)
− ΦT

(
[u]T

)
≥ 0,

∀e∗,u∗, [u]∗N , [u]∗T (11)

and it replaces the classical variational equations or non-
linear mechanics. Here,ΦN acts as a nonsmooth penalty
function that enforces the nonpenetration requirement of
the unilateral contact law. Alternativelly, one includes the
corresponding inequalities (cf. (1)) in the set of admissible
displacementsVad (cf. the local forms (4) and (5)).

One should emphasize that the set of kinematically
admissible displacementsUad is defined, in general, by
nonlinear inequalities, due to the nonlinear kinematic re-
lations involved in the definition of the relative normal
displacement[u]N . This point has both theoretical con-
sequences and practical implications. The potential en-
ergy optimization problem, like in all nonlinear elasticity
problems, becomes nonconvex. In this case the admissible
displacement set is, in general, nonconvex as well. Thus, a
potential multiplicity of the solution is possible. Further-
more, the variational inequality (11) is in fact a nonconvex
one and describes the critical points of the potential energy
function Π(u) within the setUad. In other words, one
may write the mechanical problem in the compact critical
point form

0 ∈ ∂Cl−R

(
Π(u) + IUad

)
, (12)

where ∂Cl−R is the Clarke-Rockafellar set-valued sub-
differential of nonconvex and nonsmooth analysis. Fur-
ther exploitation of this form gives rise to hemivariational
inequality problems ((Panagiotopoulos, 1988; 1993) or to
implicit variational inequality problems based on the qua-
sidifferential theory (Demyanovet al., 1996; Mistakidis
and Stavroulakis, 1998)).

From the practical point of view, one first accepts
that most numerical algorithms are able to find one of
the many possible solutions. The numerical approxima-
tion, which is typically modelled on a load-incrementation
technique, is usually based on some local linearization
of the inherently nonlinear problem (large displacements,
large deformations). The contact mechanism must be lin-
earized analogously (approximation of the boundaries in
the setUad with linear approximations). Moreover, the
well-known point-to-point (or node-to-node) contact tech-
nique must be replaced by some more general point-to-
surface method. Consequently, a search algorithm must
be used for the determination of the points of contact and
for the solution of the nonlinear problem. Usually this
is accomplished by means of some iterative linearization
technique.

In the case of small displacements and deformations
in linear elastostatics, and for a frictionless unilateral con-
tact problem, one has a quadratic minimization problem
with linear inequality constraints: Find

arg min
u∈Vad=Rn∩{Nu−g≤0}

{
1
2
uT Ku− pT u

}
. (13)

The corresponding variational inequality is as fol-
lows: Find u ∈ Vad = Rn ∩ {Nu− g ≤ 0} such that

uT K(u∗ − u)− pT (u∗ − u) ≥ 0, ∀u∗ ∈ Vad. (14)

Finally, the exploitation of the KKT optimality conditions
of (13) or of the general form (12) leads to the well-known
linear complementarity problem formulation of the static
problem (Antes and Panagiotopoulos, 1992; Christensen
et al., 1998; Ferris and Pang, 1997; Klarbring, 1999; Mis-
takidis and Stavroulakis, 1998).

In the previous relations, the total number of effec-
tive displacement degrees of freedom in the finite ele-
ment formulation, i.e. when classical support conditions
are taken into account by neglecting the corresponding
d.o.f.s, is assumed to be equal ton. In the definition
of the admissible displacements setVad the nonpene-
tration requirement for each couple of unilateral nodes
(the first relation in (1)) is expressed in a matrix form by
means of matrixN and vectorsu and g. Furthermore,
let us consider the mechanical problem in the form of a
potential energy minimization, with subsidiary unilateral
contact inequality constraints. From the theory of opti-
mization one understands that these inequality constraints
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can be enforced by appropriate (inequality restricted) La-
grange multipliers, which have the physical meaning of
point contact forces (the second relation in (1)). More-
over, instead of an inequality restricted potential energy
optimization problem, where the only unknowns are the
displacement degrees of freedom, one may formulate sad-
dle point problems of the min-max type for a suitably de-
fined Lagrangian function, which is a mixed formulation
of the mechanical problem with displacements and con-
tact forces as unknowns, as well as dual problems in terms
of contact forces. From the mixed formulation one re-
constructs, for instance, all the three relations of (1) and
gets the mechanical problem in the form of a linear or
nonlinear complementarity problem. Details on the theo-
retical analysis of the above mentioned problems can be
found, e.g., in (Hlavaceket al., 1988; Kikuchi and Oden,
1988; Klarbring, 1999; Mijar and Arora, 2000; Mistakidis
and Stavroulakis, 1998; Panagiotopoulos, 1988). It is in-
teresting to note here that the incompressibility condition,
used in the first application of this paper, involves a re-
striction of equality type. If one introduces this restriction
using the method of Lagrange multipliers, the correspond-
ing multipliers (with the physical meaning of pressure) are
not sign-restricted.

It is clear that specialized algorithms are required
for the treatment of contact problems. They solve ei-
ther the variational inequality (cf. (11) or (14)), or one of
the other previously mentioned formulations of the prob-
lem. Algorithms which are based on smoothing tech-
niques transform, roughtly speaking, the variational in-
equalities or the complementarity relation into approxi-
mate nonlinear equations, which are then solved by some
general-purpose solver. Although the obtained accuracy,
for example, the determination of stick and slip areas in
friction, is lower, this formulation allows easier integra-
tion in general-purpose finite-element codes. In numeri-
cal examples an augmented Lagrangian multiplier method
is used for the unilateral contact conditions and a kind
of smoothing technique is used for the frictional effects.
Other possible formulations as well as a theoretical justi-
fication of this method are discussed in (Christensenet al.,
1998; Leunget al., 1998; Stavroulakis and Antes, 2000).

3. Contact Problem for Rubber Coated
Rollers

3.1. Description of the Application

The modelling of two rubber-covered rollers (metallic
tubes) which are supported at their ends and are coming
in contact across their length is examined based on the
modelling of a Roller Abrasion Test Machine, and a para-
metric investigation on the behaviour of rubber under dif-
ferent contact conditions is the main part of this work. The

main aim was to investigate how the strain energy density
and the resulting strains and stresses are influenced by the
applied static loads (forces), considering different rubber
elasticity models. The finite-element method was used in
order to solve the static problem of two rubber-covered
rollers in contact, which is the necessary first step before
rolling contact is analysed. The main factors that influ-
ence the reliability and the accuracy of the finite-element
solution are the selection of an appropriate material model
for the rubber coating, the selection of friction properties
at the contacting surfaces and the determination of an ap-
propriate discretization of the finite-element model. For
modelling and analysis, a general-purpose finite element
code, MARC, was used (MARC, 1996; 1997). Several
finite-element meshes were also used in order to achieve
better accuracy of the results. The data for rubber mod-
elling were extracted by experimental tests. The friction
coefficient was estimated from a verification study based
on a compression analysis of a rubber-coated roller be-
tween flat platens on a static test machine (Stavroulakiet
al., 2000).
The following cases of contact were studied, see Fig. 1:

• rubber—steel: A steel roller is coming in contact
with a rubber-coated roller.

• rubber—rubber: Two rubber-coated rollers are com-
ing in contact.

3.2. Finite-Element Modelling

The Roller Abrasion Test Machine includes two rollers
with an outer diameter of steel tube equal to 105 mm; the
thickness of steel is 9 mm and the thickness of rubber of
the covered roller is 2.5 mm. One rubber layer was as-
sumed to be 2.5 mm thick. Since the length of the cylindri-
cal rollers, which is equal to 320 mm, is significantly more
extensive than their diameters, a plane strain problem was
assumed. In the present work, the interest is focused on
the contact region, so a quarter of each roller was used
for the finite-element model. This portion of the rollers
is divided into quadrilateral (four-node isoparameric) ele-
ments, as shown in Fig. 2. A finer mesh was concentrated
on the contact region, leading to a more efficient numer-
ical discretization. For the modelling of the rubber in-
compressible material, the Herrmann incompressible elas-
tic formulation was used (Herrmann, 1978). The main
core of the cylinder was considered as rigid, and triangular
isoparametric finite elements with appropriate high stiff-
ness values were used for approximate modelling. Special
care must be taken with modelling, since the changes in
element types and sizes usually influence the final results
(a change in the stiffness). Usually, a less accurate mesh
is used for the region out of contact, in order to reduce
the computational cost, but an analogy to the dimensions
must always be kept.
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Fig. 2. Details of the finite element model (the
rubber-rubber contact problem).

3.3. Material Modelling

The cover layer was a rubber material with hyper-elastic
mechanical behaviour, characterised by its elastic strain
energy function. Once the strain energy function is de-
fined, the stresses and the material tangent modulus are
evaluated for the total and updated Lagrange formulations.

Appealing to the notion of statistical mechanics and
thermodynamics principles, the simplest model of rubber
elasticity is the Neo-Hookean model represented as

W = C10(I1 − 3), (15)

where C10 = E/6, Ii denotes thei-th strain invariant
and E is the elasticity modulus.

This model exhibits a constant shear modulus, and
gives a good correlation with the experimental data up
to 40% strain in uniaxial tension and up to90% strains
in simple shear. In this application, a model with homo-
geneous, isotropic and incompressible material was used,
with only one variable (Hinge and Maniatty, 1998). This
model correlates well with experimental results according
to (MARC, 1996). For a nonlinear elastic model (hyper-
elastic) the third-order strain energy function of the gen-
eralised Rivlin type has been found to adequately charac-
terise rubber in all the three modes of deformation (sim-
ple tension, equibiaxial tension and simple shear). The
general form of the third-order deformation model for an
incompressible rubber material (I3 = 1) is given by

W = C01(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3)

+ C20(I1 − 3)2 + C30(I1 − 3)3. (16)

The Yeoh model differs from the above higher- order
models in that it involves only the first strain invariant:

W = C01(I1− 3) + C20(I1− 3)2 + C30(I1− 3)3. (17)

This model is more versatile than the previous ones, be-
cause it fits various modes of deformation using the data
obtained from a uniaxial tension test only. This leads to
reduced requirements for material testing. However, cau-
tion needs to be exercised when applying this model to de-
formations involving low strains (Yeoh, 1995; 1997). On
the other hand, the higher-order terms in the generalized
Mooney-Rivlin polynomial strain energy function require
test data from more that one test.

In this application, for the mild steel roller a linear
elastic material behaviour was assumed. The characteris-
tics of steel are:E = 207 GN/m2 (modulus of elasticity),
ν = 0.30 (Poisson ratio), densityρ = 7850 Kg/m3. For
rubber material with the following characteristics of rub-
ber: E = 2.5 Mpa (modulus of elasticity),ν = 0.449
(Poisson ratio) and densityρ = 1150 Kg/m3, an elastic
behaviour was considered. For the Neo-Hookean model
we haveC10 = E/6 = 0.4166 N/mm2.

A nonlinear material model was also used (the Yeoh
model of (17)) with C10 = 0.2628, C20 = −0, 0329,
C30 = 0, 0101 and Bulk modulusK = 2000 Mpa. These
values were extracted from equivalent shear stress strain
data that were converted from a lubricated compression
data (Stavroulakiet al., 2000).

3.4. Loads and Boundary Conditions

A perfect bonding between the steel roller and the rub-
ber layer was considered. Symmetry boundary conditions
were applied at the ends of the rubber-steel segment since
only a local segment of the roller was modelled. The
centre of the upper roller was set to have zero displace-
ments and the centre node of the lower steel roller was
constrained to have zero displacement in the horizontal
(X) direction. A vertical displacement (in theY direc-
tion) was applied at the centre of the lower roller in order
to realize contact between the two rollers and nip forces to
be developed. A static analysis was considered. Since the
analysis is based on the nonlinear theory, the problem is
solved incrementally. Two cases of vertical displacement
of the lower roller, 0.25 mm and 0.10 m, were used in a
parametric investigation.

More general approaches to applying forces on ini-
tially free parts (e.g. the upper roller) and considering the
corresponding rigid body motions together with the uni-
lateral effects are also possible (these are the so-called
semi-coercive problems, see, e.g., (Adly and Goeleven,
2000; Panagiotopoulos, 1988, Ch. 4; Stavroulakiset al.,
1991)).
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3.5. Analysis and Numerical Solution

In the contact analysis process it was necessary to define
the contact bodies, the contact tolerance, the area in which
the contact would occur, the contact procedure, the sepa-
ration procedure and the type of friction. These particular
definitions characterise the contact between the two bod-
ies without the unnecessary detection of contact between
them.

A Lagrange multiplier approach was used in this
work, in order to enforce the contact region, the contact-
ing surface displacements to be compatible with the target
surface displacements. The developed contact forces are
calculated directly from the external load and the nodal
point forces, equivalent to the current element stresses.
The resultant force transmitted from one surface to the
other through a point of contact is resolved into a normal
force P , acting along the common normal, which must
be compressive due to the contact condition, and a tan-
gential forceQ in the tangent plane sustained by friction.
Sliding is defined as the relative linear velocity between
the two surfaces at the point of initial contact. It consists
of the relative peripheral velocity of the surfaces at their
point of contact. The tangential traction is due to fric-
tion, which is assumed to have a bilinear dependence on
the slip velocity. In the static analysis problem, which is
considered in this section, velocities are approximated by
the incremental relative tangential displacements, so that
for the incremental problem the formulation parallels the
simplified static friction model of (6).

The region of contact is often unknown prior to the
analysis and large changes in the contact area are possi-
ble including relative sliding with the Coulomb friction or
possible separation after contact. Coulomb’s law of fric-
tion is enforced by first evaluating the distributed surface
traction from an estimate of the contact forces and then
updating the traction corresponding to the conditions of
sticking and sliding contact (cf. the algorithm proposed
by Panagiotopoulos (1988)). In the modelling of friction,
usually it is assumed that Coulomb’s law of friction is ap-
plicable with a constant coefficient of friction. This sim-
ple friction model is frequently adequate in practice since
a detailed characterisation of friction behaviour through
laboratory experiments is a very difficult task (Chaudhary
and Bathe, 1986). The type of contact that was assumed
corresponds to a law of friction of a Coulomb type. A
special type of a friction model, the one with the glue op-
tion according to the terminology used in MARC, which
imposes no relative tangential motion, was also applied
in order to solve the problem without slip. The friction
stress is based upon the coefficient of frictionµ and the
normal stress at the surface. The coefficient of friction
was considered to be equal to 1.0 for these applications.

The Coulomb friction model is given in the form

ST ≤ µ|SN |t, (18)

whereSN is the normal stress,ST is the tangential (fric-
tion) stress,µ is the friction coefficient,t is the tangential
vector in the direction of the relative velocity (it is approx-
imated by the tangential relative displacement[u]T in (6))
t = vr/|vr|, and vr is the relative sliding velocity. The
modified (smoothed) Coulomb friction model is given in
the form

ST ≤ µ|SN |
2
n

arctan
(

vr

vrc

)
t, (19)

where vrc is the value of the relative velocity when slid-
ing occurs. A very large value ofvrc results in a reduced
value of the effective friction. A very small value results
in poor convergence. It is recommended that the value of
vrc be 1% or 10% of a typical relative sliding velocity
(MARC, 1997). The procedure is actually a smoothing
approach to the treatment of the frictional stick-slip nons-
moothness. Other possible smoothing techniques are dis-
cussed in (Kikuchi and Oden, 1988, p. 276; Leunget al.,
1998) and (Stavroulakis and Antes, 2000). For theoretical
and analytical results related to quasistatic problems, for
elastodynamics or more general mechanical models, the
reader is referred to (Hlavaceket al., 1988; Ionescu and
Sofonea, 1993; Leunget al., 1998; Rochdiet al., 1998).

The algorithm implemented in the finite-element
code which has been used in this investigation solves the
unilateral contact problem exactly, by using an augmented
Lagrangian technique. This class of techniques is well
known in the mathematical optimization community (see,
e.g., (Bertsekas, 1996)) and has been used in several con-
tact mechanics investigations (see, e.g., (Mistakidis and
Stavroulakis, 1998) and the recent review article (Mijar
and Arora, 2000)). The nonsmooth relation of the fric-
tional law (cf. (7) and (18)) was regularized, see (19).
Given the higher sensitivity of the frictional mechanisms,
which was demonstrated, e.g., in (Stavroulakis and Antes,
2000), this technique seems to be a robust one for the solu-
tion of frictional contact problems. This argument justifies
its adoption by a commercial finite-element program.

3.6. Rubber-Steel and Rubber-Rubber Contact
Problems

The changing mechanical behaviour of rubber is obvious
rubber it is coming in contact with a stiff or a flexible ma-
terial. The normal and shear stresses refer to the deformed
plane at each node where they are calculated. From the
results it is clear that the strain and stress on the contact
plane and the strain energy density are useful in the es-
timation of the fatigue of the rubber. The strain energy
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(W ) helps us to localize the critical areas for possible fu-
ture failure of the material. The total strain energy den-
sity (dW/dV ) is the sum of the distortional,TD, and di-
latational components of strain energy density,TV . The
strain energy density expresses the energy stored per unit
volume of the material and is a useful design value, since
it governs, e.g., crack and damage initiation and propaga-
tion.

In Figs. 3 and 4 the total strain energy density and the
equivalent total strain are shown for the rubber-steel con-
tact problem and for displacement of the lower steel roller
equal to 0.10 and 0.25 mm, respectively. The developed
nip forces are shown in Fig. 5 for the rubber-steel contact
problem.

Fig. 3. Total strain energy density the for
rubber-steel contact (0.10 mm).

Fig. 4. Equivalent total strain for the rubber-steel
contact problem (0.25 mm).

Fig. 5. Nip forces for the rubber-steel
contact problem (0.25 mm).

Figures 6 and 7 show comparative results regarding
the developed normal and shear stresses. The values are
higher in the case of contact with rubber than those re-
ferring to steel, even though the assumptions about the
friction coefficient are the same. Indicative results about
the distribution along the length of the contact area for the
rubber-steel contact problem are given in Figs. 8 and 9.

In Tabs. 1 and 2, results concerning the width of the
contact area and the nip forces for various cases of the
contact and the final finite-element model are given. The
displacements and the equivalent total strain for an exter-
nal initial displacement of 0.25 mm and the rubber-rubber
contact problem are shown in Figs. 10 and 11, respec-
tively. Figures 12 and 13 show comparative results regard-
ing the developed normal and shear stresses for the rubber-
rubber contact problem and for the final finite-element
models.
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Fig. 6. Normal stresses for the rubber-steel and rubber-rubber
contact problems (initial displacement 0.1 mm).
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Fig. 7. Shear stresses for the rubber-steel and rubber-rubber
contact problems (initial displacement 0.1 mm).
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Fig. 8. Normal stresses for the rubber-steel contact
problem and different loads.
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Fig. 9. Shear stresses for the rubber-steel contact
problem and different loads.

3.7. Conclusions

In general, many factors are involved in the solution of
contact problems by the finite-element method. These per-
tain to the way of contact modelling and the method of
numerical analysis. In commercial finite-element codes
attention must be given to the selection of proper factors.
Special care must be taken with modelling using the finite-
element method since the type of elements, their size and,

Table 1. Nip width (mm)∗ for the rubber-steel and the rubber-
rubber contact problems (final finite-element model,
linear and nonlinear material model for rubber).

rubber-steel rubber- rubber
Load case R (LINEAR) R (LINEAR) R (nonlinear

vs. material model)

0.25 mm 7.69 8.31 8.31
0.10 mm 4.82 5.70 5.70

Table 2. Nip force (N/mm roller length).

rubber-steel rubber- rubber
Load case R (LINEAR) R (LINEAR) R (nonlinear

vs. material model)

0.25 mm 2.43 1.35 1.70
0.10 mm 0.61 0.41 0.52

Fig. 10. Displacement distribution for an ex-
ternal initial displacement of 0.25 mm
in the rubber-rubber contact problem.

in general, the loads and boundary assumptions influence
the final results. A comparison with experimental data can
lead to a verification of the finite-element model.

With respect to the material modelling, an acceptable
accuracy was achieved since the loads were low. The lin-
ear and nonlinear models gave almost the same results.
For applications with higher loads, another material model
may be necessary (Stavroulakiet al., 2000). For this
model more experimental data are required. Especially
for the model with higher-order functions in the strain en-
ergy function more tests must be used in order to calculate
the constants of the function.

* The length of the contact area refers to the deformed rubber con-
dition. In the adjacent figures ofXY , the arc length refers to the
undeformed position of the nodes.
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Fig. 11. Equivalent total strain for an external displacement of
0.25 mm in the rubber-rubber contact problem.
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Fig. 12. Normal stresses for the rubber-rubber contact problem.
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Fig. 13. Shear stresses for the rubber-rubber contact problem.

The distribution of stresses and strains across the
length of the contact area indicate the conditions under
which the rubber is deformed.

4. Contact Interaction Between Concrete Re-
inforcement and Masonry Walls

A masonry wall including reinforcing elements from re-
inforced concrete material over the door or window open-
ings is shown in Fig. 14. The nonlinear behaviour of the

(a)

(b)

Fig. 14. Deformed instance of the masonry wall
demonstrating the unilateral interactions be-
tween the wall and the reinforcing elements.

masonry is modelled by means of appropriately modified
elastoplastic laws. The unilateral contact interaction, in-
cluding friction, follows the lines of the previous applica-
tion. Finally, a dynamic analysis is performed by intro-
ducing a suitable, earthquake-like base excitation of the
wall. An appropriately choosen time increment, which
clearly demonstrates the unilateral effect (i.e. partial sep-
aration) between the wall and the reinforcing elements, is
graphically depicted in Fig. 14. On the same plot the ar-
eas of plastification/cracking around the reinforcement are
shown with isolines of the plastic work. A detailed para-
metric investigation shows that the reinforcement drasti-
cally reduces the areas of plastification and cracking. The
results and application of this methodology to strengthen-
ing design of masonry monuments will be presented else-
where.
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In conclusion, let us mention that contact analysis
is now a well-established part of nonlinear computational
mechanics. This ability is present in an increasing num-
ber of general-purpose programs. Extensions to frictional
problems or, more general, problems studied within the
area of nonsmooth mechanics are partially covered by the
currently available programs. Since the required theoret-
ical and algorithmic background does not belong to the
material provided for an average student of engineering
(or even of mathematics), special care must be taken with
the effective use of these tools.
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