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We consider dynamic problems which describe frictional contact between a body and a foundation. The constitutive law is
viscoelastic or elastic and the frictional contact is modelled by a general subdifferential condition on the velocity, including
the normal damped responses. We derive weak formulations for the models and prove existence and uniqueness results.
The proofs are based on the theory of second-order evolution variational inequalities. We show that the solutions of the
viscoelastic problems converge to the solution of the corresponding elastic problem as the viscosity tensor tends to zero and
when the frictional potential function converges to the corresponding function in the elastic problem.
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1. Introduction Further examples and detailed explanations concerning

the boundary conditions of this form can be found in the
Contact problems arise in many situations, for instance, monograph by Panagiotopoulos (1985) and more recently
in crack and impact mechanics, or in earthquake phenom-in (Chauet al,, 2001b). Here, the study of viscoelastic or
ena. Despite the importance of their practical applications elastic materials in dynamic processes with subdifferential
and the considerable literature devoted to these topicsboundary conditions leads to a non-standard new mathe-
many problems involving contact phenomena still re- matical model, implying nonlinear second-order evolution
main open. equations.

A number of papers investigating quasistatic fric- We prove the existence and uniqueness of weak solu-
tional contact problems with viscoelastic materials have tions to the mechanical problems. We also show the con-
recently been published (see, e.g., Agbal, 2000; Chau  tinuous dependence of these solutions on the viscosity and
et al, 2001a; 2001b; Han and Sofonea, 2000; 2001). frictional potential function, both of which may vary be-

In (Chauet al, 2001b) frictional contact was modelled cause of simultaneous changes in the viscosity of the body
by a general velocity-dependent dissipation functional, in and in the roughness of the surface.

(Chauet al., 2001a) a bilateral contact with Tresca'’s fric-
tion law was analysed, while in (Han and Sofonea, 2001)
frictional contact with normal compliance was studied
and in (Awbiet al, 2000; Han and Sofonea, 2000) fric-
tional contact with normal damped response was consid-
ered. Dynamic contact problems with normal compliance

were considered in (Andreves al, 1997a; 1997b; Kuttler an existence and uniqueness result. The proof is based

and Shillor, 1999; Martins and Oden, 1987). on second-order evolutionary inequalities with maximal

This paper constitutes a contribution to the study monotone operators. In Section 4 we prove a convergence
of second-order evolution contact problems. Our aim is result which shows that the solutions to the viscoelastic
to give versions of the results obtained in (Chetual., problems converge to the solution to the elastic problem
2001b) to a dynamic process. We investigate models forwhen the viscosity tends to zero and when the frictional
dynamic frictional contact between a body and an ob- potential function converges to the corresponding one in
stacle, in which Kelvin-Voigt viscoelastic or elastic con- the elastic problem. Finally, in Section 5 we provide some
stitutive laws are considered. The frictional contact is examples of specific subdifferential conditions to which
modelled by a general subdifferential boundary condition. our results apply.

The outline of the paper is as follows. In Section 2
we introduce the notation and a preliminary material. In
' Section 3 we formulate the dynamic mechanical problems
with a subdifferential frictional contact condition. Then,
after specifying the assumptions on the data, we derive
variational formulations for the problems, and we prove
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2. Notation and Preliminaries

Let H[. be the dual ofHr and let (-,-) stand for the
pairing betweenH{. and Hr. For everyo € H;, there

Let Sy be the space of second-order symmetric tensors onexists an element, denoted lay € HY., such that

R? (d = 2,3), and denote the inner product and the Eu-

clidean norm onR? and S; by ‘-’ and | - |, respectively.
Thus,

u-v = u;v;, |v\:(v-v)1/2, Vu,v € R,

1/2
K

o-T =0Ty, |T|=(1-T) Vo,T € Sa.

Here and below, the indices and j run betweenl

(ov,yv) = (0,e(v))y+(Diveo,v)y, Yve Hy. (1)

In addition, if o is regular enough (e.g. of clags!), we
have

<au,'yv>:/au-vda, Yv € Hy. (2)
r

and d, the summation convention over repeated indices Relations (1) and (2) imply the following Green formula:

is adopted and the index that follows a comma indicates a

partial derivative with respect to the corresponding com- (o, e(v))y + (Diveo,v)y = / ov-vda, Yv € H.
T

ponent of the independent variable.

Let QO c R? be a bounded domain with a Lipschitz
boundaryT". We shall use the notation

H=L*(Q)% = {u=(u) | u € L*(Q)},
H={o = (0j) | 0ij = 0js € L*(Q)},
Hi={u=(u;)|u € H(Q)},
Hi={o € H|o0i;; € L*(Q)}.

The spacesH, H, H; and H; are real Hilbert spaces
endowed with the inner products given by

(uw)H:/ u;v; d,
Q

(O',T)H :/ O’Z‘jTl‘j CL’L‘7
Q

(w,v)m, = (u,v)n + (e(u), e(v))n,

(0-7 T)H1 = (0-’ T)’H + (D'V g, D|V 7')]{7

respectively, where : H; — H and Div: H; — H
are thedeformationand thedivergenceoperators, respec-
tively, defined by

1
gij(u) = 5 (wij +ujqi),

(u) = (=3;(w), :

Dive = (Uij,j)~

We denote the norms on the spadds H, H; and H;
by (|- &, (|- 7 I+ [, @and || - [, respectively.

Let Hr = H'Y?(T)¢, ~ : H, — Hr be the trace
map andv be the outer unit normal oi’. For every
elementv € H; we still write v for the traceyv of
v on I', and we denote by, and v, thenormaland
tangentialcomponents ofv on the boundary” given by

Uy =V-V, Vr=0V—U,l.

3)

In a similar manner, th@ormal and tangentialcompo-
nents ofo are defined by

o, =(ov) v, o,=0v—o0,V.

Finally, for every real Hilbert spaceX we use

the classical notation for the spacd¥’(0,7; X) and
WkP(0,T;X), 1 < p < +oo, k = 1,2,..., and we
denote byC([0,T]; X) and C'([0,T7]; X) the spaces of
continuous and continuously differentiable functions from
[0,7] to X, respectively. We recall now an existence and
uniqueness result concerning evolution problems, taken
from (Barbu, 1976, p. 268).

Theorem 1. Let V and H be two real Hilbert spaces
such thatV ¢ H and the inclusion mapping of into
H is continuous and densely defined. We suppose that
V is endowed with the nornjj - || induced by the inner
product (-,-) and H is endowed with the norm- |. We
denote byl the dual space o/, by (-, -}y xv the du-
ality pairing between an element &f and an element of
V’,and H is identified with its own duaH’. We assume
that M is a maximal monotone setivi x V' and A isa
linear, continuous and symmetric operator frdmto V'
satisfying the following coerciveness condition:

YueV, (4)

where « € R and w > 0. Let g be given in
W0, H) and ug, vo be given with

(Au, u)y v + afu® > w|ulf?,

ug €V, wvo€ DM), {Aug+MvotnH #0. (5)

Then there exists a unique solutian to the following
problem;

2
CY L Aut M <f;:> S g(t) ae.on(0,7)

u
'LL(O) = Uy, E(O) = o,
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which satisfies function. The initial displacement field, and the initial
velocity field vy are given.

To summarize, the frictional mechanical problem can
be formulated as follows.

We use Theorem 1 in Section 3 to prove the exis- Problem P ¢: Find a displacement fields : 2 x[0, 7] —
tence and the uniqueness of the solution to the variationalR? and a stress fieldr : Q x [0,7] — S; such that
problem associated with our mechanical model.

w € WHe(0,T; V)N W>(0,T; H).

pu=Dive + f, in Qx(0,T), (6)

3. Problem Statement. Existence o = cAe(@) +Ge(u) in @x (0.7),  (7)
and Unigueness Result u=0onT;x(0,T), (8)
ov=Ff, onTyx(0,7), 9)

In this section we describe the mechanical contact prob-
lem, derive its variational formulation and prove an exis-

tence and uniqueness result. wel, o) —p()2-ov-(v—u),

The physical setting is the following: We consider a YveU on T3 x(0,7), (20)
body that occupies a bounded domd&nc R¢ with a . _
Lipschitz continuous boundary divided into three disjoint u(0) =uo, u(0)=wvo in Q. (11)

measurable part¥';, I'; and I'; such that the measure

of I'1, denoted byiT'; |, is positive. LetT > 0 and [0, T ) o )
be the time interval of interest. Lei: O — R. be the To obtain the variational formulation of Problef¥,

mass density of the body anfl, : © x (0,7) — R? the W consider the set

volume force density acting if2 x (0,7"). The body is _ _

clamped onI'; x (0,7") and therefore the displacement V={vefijv=0onT}n0 (12)
field vanishes there. A surface traction of densjty : Let us define the functiongl : V' — R U {+oc} by

I'y, — R? assumed to be time-independent actsIon

On T'3 x (0,T) the body may come in contact with an / o) da if  (v) e LY(Ty),
obstacle, the so-called foundation, and we suppose thatthe j(v) = T3 (13)
contact condition may be described by a subdifferential- +00 otherwise.

type inequality.

We denote byu = (u;) : Q x [0,7] — R? the  Inthe sequel, we suppose that:
displacement field, byo = (oy;) : @ x [0,T] — Sy
the stress field, and(u) = (¢;;(u)) represents the lin-
earized strain tensor. Moreover, dots above a function will is dense infl and containd(Q)?%;  (14)
represent the derivative with respect to the time variable,
i.e. 4 =du/dt or @t = d?u/dt?.

We now describe the mechanical model for the pro-
cess of frictional contact between the body and the obsta-
cle. We use a Kelvin-Voigt constitutive law of the form

V is a closed linear subspacelff,

j is a proper, convex and lower

semicontinuous functional ovi. (15)

Since |T'1| > 0, Korn's inequality implies that there
o = cAe(it) + Ge(u), exists a constan€'x > 0, depending only orf2 and Iy,
such that
where A is the viscosity operatolG = (g;;x»), the elas-
ticity tensor, ¢ > 0 is the viscosity coefficient. Whea is le()ln = Cxllvllg,, YveV. (16)
positive, the body exhibits a viscoelastic behavior, while
for ¢ = 0 the body is elastic. We model the frictional
contact with a subdifferential boundary condition by
of the form

A proof of Korn’s inequality can be found in (Mas and
Hlavatek, 1981, p. 79). We consider the inner product on
V' given by

wel, o) —pl@)>—ov (v—mu), Yoel, (w0)y = (e(w). e, VwoeV,  (10)

and let|| - ||y be the norm associated with the inner prod-
where U C H, represents the set of contact admissible ¢t (17), j.e.
test functions,ov denotes the Cauchy stress vector on
the contact boundary ang : I's; x R — R is a given lvllv = lle(v)]|n, YveV. (18)
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From (16) it follows that|| - ||z, and |- ||y are equivalent
norms onV. Therefore, by (14),(V,| - ||v) is a real
Hilbert space. Moreover, by combining Sobolev’s trace
theorem and (16), there exists a constéigt depending
only on Q, I'; andI's, such that

||’U||L2(F3)d < C'QH’UHV7 Yv e V. (19)

We suppose that the viscosity operatér Q2 xSy —
S, satisfies the following conditions:

(i1) A(z,-) is monotone onSy, i.e.
(Az,71) = Az, 72)) - (T1 — 72) 20,
V711,72 €Sy, a.e.x e
(i) there existr € L*>°(Q) and s € L?(Q2) such that
Az, 7)| < 7(z)|7] + s(2),

V1T esS, ae. xe

(i3) A(z,-) is continuous onSy, a.e.x € ;
(i4) A(-, T) is Lebesgue measurable frfor all = € S;.

The elasticity tensolG : Q2 x S; — S; is assumed to
satisfy the usual properties of ellipticity and symmetry, i.e.

(j1) there exists a constamtg > 0 such that

G, 7)-T>mg|T]?, VT€S,;, ae xcQ;
(j2) G(z,7)-0 =T1-G(2,0), V7,0 €Sy, a€. x€Q;
(43) gijiu € L>(Q) forall 4,7, k,1.
We suppose that the mass density satisfies

p € L>(Q) and there exists* > 0

such thap(z) > p* a.e.x € Q. (20)

In the sequel, we define a new inner product Bn
given by

((U’?v))H = (pu7v)H7 V’UJ,’U € H7 (21)
and let||| - |||z be the associated norm, i.e.
ol = (pv, )%, YveH  (22)

Using assumption (20), from (22) it follows th&t - |||
and|-|| g are equivalent norms off. Moreover, by (14),
the inclusion mapping ofV, || - ||v) into (H, ||| - |||x) IS
continuous and dense. We denotel3¥ the dual space of
V. Identifying H with its own dual, we can writd” C
H C V'. We use the notationj-, -)y+« to represent the
duality pairing betweer//’ and V. We have

(w,v)vrxy = (w,v))g, YucH, YveV. (23)

We assume that the volume forces and tractions satisfy
fo € WHY(0,T; H) and f, € L*(Ty)". (24)

Let us define the functional : V' — R U {+oc0} by

J(w) =j(v) — fo-vda, VveVW.

T2

(25)

We note that by (24) the integral in (25) is well defined.
We suppose that the initial data of Problefi sat-
isfy
up €V, wvge€ D(@J), (26)
where 0J denotes the subdifferential of and D(0.J)
represents its domain.
We also assume that there exigts= H such that

(Ge(uo) + cAe(vo), e(v) — e(vo))n + J(v)

—J(vg) > ((h,v —vp))g, VYVveV. (27)

For instance, in the case when we have
(06,e(v) — €(vo))n + J(v) — J(vo)
> ((fo(0),v —vo))u, VeV,

with o§ := Ge(uo) + cAe(vp), the condition (27) is sat-
isfied.

We turn now to derive a variational formulation for
the mechanical problen®<. To this end, let us fix: > 0.
We suppose in the following thdtu, o} are regular func-
tions satisfying (6)—(11) and such thati) € L!(T3).
Let w € V with p(w) € L}(T3) andt € [0,T]. Ap-
plying (3) to o for v = w — «4(¢t) and using (6), we
get

(piit) — Folt).w
fem@»H:/

T

—u(t))n + (o(t), e(w)
o(t)v - (w — a(t)) da.
Using (8), (9), (21) and (23), we obtain
(@(t), w —ut)vxv + (ot),e(w) —e(u(t)))n
= (Fo(t), w —u(®)m + (f2,w — 0(t)) r2(r,)
+/F3 o(t)v - (w — u(t)) da. (28)
Combining (28), (10) and (13), we conclude that
(@(t), w —u(t)v v + (o(t), e(w) —e(u(t)))n
+j(w) — j(a(t))
> (Folt),w—u(t) g+ (f2 w—1(t)) L2(r,)a- (29)
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Taking into account (13), we observe that (29) remains
true for all w € V. Consequently, combining (29) and
(25), we deduce that

((t),w —a(t)vxv + (a(t), e(w) — e(u(t)))n
+J(w) = J(@(t) = (fo(t), w —u(t)n,
VweV, ae.te(0,7).

Therefore, keeping in mind (7) and (11), we are led to

the following variational formulation of the mechanical
problem P<, for eachc > 0:

Problem Py;: Find a displacement field: : [0,7] — V
and a stress fieldr : [0, 7] — H; such that

o(t) = cAe(a(t)) + Ge(u(t)) ae. te (0,T), (30)

(@(t), w —u(t)vxv + (a(t),e(w) —e(u(t)))n
+J(w) — J(a(t)) = (fo(t), w —u(t))n,

YweV, ae te(0,T), (31)

u(0) = up, u(0) =1vg in Q. (32)

We state now our existence and uniqueness result.

Theorem 2. Assume that (14), (15)41)—(i4), (j1)—(Jj3),
(20), (24), (26) and (27) hold. Then for each> 0 there
exists a unique solutiofu, o'} to Problem P{; such that

w € WhH>(0,T;V)nW2*(0,T; H), (33)

o cL*0,T;H), Dive € L>®(0,T;H). (34)

We conclude that, under the assumptions of Theo-
rem 2, ProblemP° has a unique weak solutiofu, o}
having the regularity (33), (34).

Proof. Let us fix ¢ > 0. We consider the Hilbert spaces
H = L*(Q)¢ and V given by (12). We introduce the
operatorA : V — V' defined by

(Au, v)vrxy = (Ge(u),e(v))n,

Using (18), (j2) and (j3), we see thatd € L(V, V'),
and (j;) implies that A satisfies the condition (4) with
a=0 andw = mg.

Yu,v e V. (35)

Define now the set-valued operatdd.: V — V'
by

M. = B. + 8J, (36)
where B, : V. — V' is given by
<Bcuav>V'><V = C(AE(’U/),E(’U))H, Vu,v ev. (37)

&

From (37) and(4; ), we have
(Beu — Bov,u — v)yrxy
=c(Ae(u)—Ae(v),e(u)—e(v)) >0, Vu,veV,

so the operato3. is monotone. Using (37) and (18), we
have

|Bcu—Bev|ly <c|lAe(u)—Ae(v)||n, Vu,veV,
and, keeping in mindiz), (i3), (i4) and Krasnoselski's
theorem (see Kavian, 1993, p. 60), we find thiat: V' —
V' is a continuous operator. Using again (37) &id, we
find that B, is bounded.

From (15) and (25) we deduce thdtis proper, con-
vex and lower semicontinuous, which implies tiaf is
maximal monotone. Consequently, sinég is mono-
tone, bounded and hemicontinuous frovh to V’/, we
conclude (Barbu, 1976, p. 39) thadt/. = B. + 9J is
maximal monotone.

Moreover, the initial dataug, vy satisfy (5) due to
(26) and (27). Thus, all the requirements of Theorem 1,
with A defined by (35),M = M, given in (36) and
g = f,, are satisfied. By defining= by (30), it follows
that there exists a unique solutidm, o} to ProblemPg
satisfying (33).

It remains to show (34) foer. From (30), (i2), (j2),
(j3) and (33) it follows thato € L2(0,T;H). Lett €
[0,T] and+ € D(Q)%. Since J(iu(t) L) = J(u(t)) <
~+o00, choosingw = u(t) £ ¥ € V (see (14)) in (31),
using (3), (21) and (23), we obtain

Now, taking into account (33) and (24), we arrive at
Dive € L*(0,T;H), and thus (34) is satisfied. The
uniqueness of the solution follows from Theorem 1. The
proof of Theorem 2 is now complete. =

4. Convergence as Viscosity Vanishes

In this section we investigate the behaviour of the solu-
tion to the viscoelastic problen?; when the viscosity
operator converges to zero and when the frictional poten-
tial function tends to the potential of the corresponding
elastic problem. We suppose in the sequel that (1)~

(i4), (41)—(Js3), (20), (24) hold and the following addi-
tional property is satisfied:

(i5) A(z,-) is strongly monotone orby, i.e. there exists
m_4 > 0 such that

(A(z,71) — A(z,72)) - (71 — T2)

>mglT — 7'2|2, V11,72 €Sy, a.e.x €.
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We focus our attention on the convergence to fric- there existsh € H such that
tional elasticity and the continuity with respect to the fric-

tion potential function. Thus, we consider a sequence of (Ge(uo), e(v) — e(vo))n + J(v) — J(vo)
problems P obtained from Problen?y; in which we > ((hyv —vo))u, VveV: (46)

set ¢ = ¢,, where (¢,,) is a sequence of viscosity coef-

ficients such that,, — 0 asn — oo; ¢ = ¢,, where
©on : T3 x R — R are given functionsu,,o and v,,g

stand for the initial displacements and velocities, respec-
tively. We have the following variational problem, for

eachn:

Problem PJ»: Find a displacement fields,, : [0,7] —
V and a stress fieldr,, : [0,7] — H; such that

0 () = o Ae (i, (1)) +Ge (un(t)) a.e. te(0,T), (38)
(U (1), w=10n(t) v v +(on(t), e(w)—e(in(t)))n
+In(w) = Jn(tn(t)) = (fo(t), w—n(t))n,

YweV, a.e. te(0,T), (39)

Un(0) = Upng, Up(0) =v,o in Q. (40)

Here J,, is defined by (25) forj = j,,, wherej,, is given
by (13) for p = @,.

Next we consider the elastic problef’. obtained
from P¢ for ¢ = 0 and the datap : I's x R? — R, uy,
v given.

Problem PJ: Find a displacement fields : [0,7] — V
and a stress fieldr : [0, 7] — H; such that

o(t) = Ge(u(t)) ae. te (0,T), (41)

(ii(t),w — () vy + (0(1), e(w) — e(i(t)))n
+J(w) = J(u(t)) = (fo(t), w —w(t))n,
YweV, ae te(0,T), (42)

©(0) = ug, u(0)=wvp in Q. (43)

Here, the functionals/ and j are defined by (25) and
(13), respectively.

We assume thaj satisfies (15);

jn is a proper, convex and lower

semicontinuous function ovi for all n; (44)
there existm € [1,2) and a > 0 such that, for alln,

lon(z,y) — p(z,y)|

< ac,ly|™, VyeR? ae. xcTls; (45)

for eachn there existsh,, € H such that
(Ge(no) + cnAe(vng), e(v) — (Vo)) n
+Jn(v) = Jn(vno)
2 ((hn, v = vno))m,

and vy € D(9J), vno € D(0.J,). Finally,

Vv eV, 47

Uno — UQ in V, vn — vg in H asn — oo. (48)

Let us remark that if we have, for all, v,0 = vg
and

(om0, €(v) — €(v0))1 + Jn(v) = Ju(vo)
= ((fo(0),v —vo))m, YweV,
(00,€(v) — €(vo))n + J(v) — J(vo)
> ((fo(0),v —vo))y, YvevV,

with o,0 = Ge(uno) + cnAe(vng), oo = Ge(ug),
then the assumptions (46)—(48) are satisfied.

From Theorem 2 it follows that, for each, Prob-
lem Py has a unique solutiofw,,o,} with regu-
larity w, € W1>(0,T;V) N W2*(0,T;H), o, €
L?*(0,T;H), Dive,, € L*(0,T; H), and ProblemP_
has a unique solution{u,o} with regularity v €
Whee(0,T; V) N W2°(0,T;H), o € L*0,T;H),
Dive € L*>(0,T; H).

We are now in a position to formulate our conver-
gence result.

Theorem 3. Let (¢,,) be a sequence if0, +oo) such
that ¢, — 0 asn — oo. Suppose that (14), (15),
(i2)~(i5), (j1)~(js). (20), (24), (44)~(47) and denote by
{u,,0,}, {u,o} the unique solutions to Problenig’"
and P?, respectively. Then there exists a constant- 0,
depending ornu and on the data, but independent of
such that for alln we have

|un — ullcqorvy + s — ullcr o, m)
+llon —ollrzomm)
< C([luno — uollv + [[vno — volla + Ven)-
Consequently, if (48) holds, then as— oo,
w, —u in C([0,T;V)nC*([0,T); H),

o, — ain L*(0,T;H).



Dynamic contact problems with velocity conditions

Proof. Let ¢ € [0, 7]. Taking w = 4(t) in (39) and using
(38), we have

(i (1), w(t) — @n(t))vrxv
+ cn(Ae(n(t)), e(u(t)) — e(in(t)))n
+ (Ge(un(t)), e(u(t)) — e(dn(t)))n
+ Jn(W(t)) = Jn(@n(t))
= (fo(t), w(t) — in(t)m
+ (fo, w(t) — wn(t))L2(ry)as

and takingw = 4,,(¢) in (42), using (41), we obtain

(@(t), i (t) — a(t))vxy
+ (Ge(u(t)), e(ien(t)) — e(iv(t))n
+Jj(un(t)) = j(u(t))
= (fo(t), wn(t) — u(t))u
+ (For @n(t) — () L2(ra)e-

& ac

Using (j1), (j3) and (18), and since bgiz), (is)
and(i4) we haveAe(i) € L?(0,T;H), we deduce that

Sl t) — (o) 13
enma / liin(s) — (s) | ds
+ 29, (1) — u(®) [

1
< Slllwno = wolll7 + $))l7 ds

Cnm A

+ / lin (s) — ()3 ds

5 o = ol + [ (inls) = o)

where C is a positive constant independentiofand may
change from line to line. From the fact that, (it,,(s)) €
LY(T3), p(u(s)) € LY(T3), by using (45), it follows
that o, (iu(s)) € L1(T's), p(in,(s)) € L'(I'3). Conse-

Adding the last two inequalities, we deduce that for each guently, using (45), Young's inequality and (19), we can

te€0,77,

(i (t) — @(t), u(t) — wn(t))vrxv
+ cn(Ae(tn(t)) — Ae(a(t)), e(u(t)) — e(n(t)))n
+ cn(Ae(a(t)), e(a(t) — e(in(t)))n
+ (Ge(un(t)) — Ge(u(t)), e(@(t)) — e(in(t)))n
)

+ gn(@(t)) = jn(@n(t)) + j(Un(t)) — j(u(t)) = 0.

Integrating this inequality ofj0,¢] and using (23),(j2),
(i5), (18), (40), (43), we conclude that

1. . Lo .
5l (t) = (@[ +CnmA/0 [t (5) — a(s)|[5 ds

(Ge(un(t)) — Ge(u(t)), e(un(t)) — e(u(t)))n

—_
N)M—l

< 5 lllvno — vollli

[\

/ | Ae (@ (s)) |7 ]|t(s) — tn (s)||v ds
+5 (Q(E(Uno) —€(uo)), &(uno) — €(uo))n

/ () = it (5)) 45 it (5))— (i) d.

write, for all s € [0, 77,
ljn(@(s)) — 3(0(s))| + [dn(ttn(s)) = j(in(s))|

< acp |a(s)|™ da + acy, |, (8)|™ da
I's s

<a(l+2™Ye, [ |u(s)™da
s

+wm4%/‘m4@—u@wﬂa
s

<a(l+2™Ye, |a(s)|™ da

s
/ 2—m <a2m1)22m
RN
T's 2 T
+ 5 T [ (s) - (s) ] da

< Clenlluls)l 7 (ryya + cn)
ey 7 i (5) = () [
< ClenClin(s)|I
)+ eng T Gl (s) — (o)

where 7 > 0 is a constant that will be chosen below.
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Integrating this inequality orf0, ¢] and using Holder’s in-
equality, we obtain

/0 (lgn(@(5)) = F(@()] + Gn(in(s)) = G (@n(s))]) ds
< Con+enty T%cg/o len (5) — ()| ds

t
< Cont et [ finls) — wlo)lfds, (60
0

for 7 chosen such thatm/2)7%/™C2 < m.4/3. Com-
bining (49) with (50) and using the equivalence of the
norms||| - |||z and] - ||z on H, we infer that

t

([ (8) — @ ()[|7 + Cn/o @ (s) — a(s)7 ds
+ Jlun () — w3

< C([Jvno — 'U0||2H + [|wno — UOH%/ +cn)-

From the continuity of the embedding c H, it follows
that

||un — ’u’Hé([O,T];V) + Hun - u||2Cl([O,T];H)
—‘rCnH'an - uH%Q(O,T;V)

< C(”vnO - vOH%I + ”unO - 'U'OH%/ + Cn)~ (51)

It remains to prove that for alh we have

lon — 0'||L2(0,T;H)
< C([luno — uollv + [[vno — volla +V/cn). (52)
From (38) and (41) we deduce that
lon(t) — o ()3 < 263 || Ae(in ()%
+2(|Ge(ua(t)) — Ge(u(t))|l3,
a.e.t € (0,7). Condition (i) implies that there exist

two positive constants$; and d, such that||Ar|3, <
61]| 7|3, + 62, VT € H. It follows that

lon = allZ207:20)

< 2072151“1.1’71”%2(0,T;V) + 2T52Ci

T
+2A\deﬁDdeU®W%ﬁ-

Using again(js) and (18), we deduce that

lon — o ll720.07)
< Ac by |lien — alZ2 (0 7.y

+ 403151Hu”2L2(0,T;V) +2Té5¢;,

T
20 [ fualt) ~ u(®)} at.
0
Keeping in mind (51), we arrive at
lon — 0'||2LQ(07T;H) < Clen + 1) ([[wno — uoll3
+ |[vno — vol|3 + cn) + CE2,

so, sincec, — 0 asn — oo, we obtain (52). This
completes the proof. m

We conclude by Theorem 3 that the weak solution
to the frictional elastic problemP® can be approached
by the weak solution to the frictional viscoelastic problem
P<~ when the coefficient of viscosity is small enough and
the corresponding friction potential functions satisfy (45).
In addition to the mathematical interest in the convergence
properties proved in Theorem 3, this is of importance from
the mechanical point of view, because the frictional elas-
ticity appears as a limit case of frictional viscoelasticity.

Remark 1. A similar argument to the one used in the
proof of Theorem 3 shows that Theorem 3 remains true
when we replace the condition (45) with the following
property: there exist an integeg > 1 and numbers
mi,....,mp € [1,2), ai1,...,a, > 0 such that for ev-
ery n one has

p
on (@, y) — (@, y)| < 0 Y aslyl™,
=1

VyeRY ae. xeTls  (53)

5. Examples of Subdifferential Contact
Condition

In this section we present some examples of contact fric-
tion laws which lead to an inequality of the form (10) and
for which (14) and (15) hold. Using Theorem 2, we con-
clude that the boundary value problefi§ corresponding

to each of the examples below has a unique weak solution.
Moreover, the convergence result given in Theorem 3 is
applicable in all the concrete examples below.

Example 1. We consider the bilateral contact with
Tresca’s friction law. This contact condition can be found
in (Duvaut and Lions, 1976; Panagiotopoulos, 1985) and,



Dynamic contact problems with velocity conditions

more recently, in (Amassaet al, (1999); Chauet al.,
2001b). We use the following boundary condition:
Uy = 07 |UT‘ é 9,
lor| <g = 4, =0,
lor| =9 = @, = —Xo,, forsome\ >0,

onT's x (0,7).

Here g represents the friction bound, i.e. the magnitude
of the limiting friction traction at which slip begins. We
assume thay € L>(I's), g > 0 a.e.onI's.

We setU = {v € H;|v, = 0onI's} and deduce
from (12) that

V={veH |lv=0o0nTy, v, =00nT3}.
We see that (10) holds with the choice

go(x,y) :g(x)‘yT(J,)L \V/Z‘Grg, yERd7

Where y. ) == ¥ = Yu(@)¥(2), Yu(z) = ¥y - v(z), With
v(x) as the unit normal at: € I's. In the convergence
result, denote by the friction bound for the elastic prob-
lem P and by g,, the one for the viscoelastic problem

Py If the functionsg,,, g € L>(I'3) satisfy, for all»,

gn — gllLo=(rs) < acn,

for some o > 0, the assumption (45) is satisfied with
m = 1. ¢

Example 2. We model the bilateral contact with a vis-
cous friction condition defined by a tangential damped re-
sponse. We use the following boundary condition:

u, =0, o, =—pli, |7, on T3 x(0,7T),

where0 < ¢ <1 andp € L>*(I's), p >0 a.e.onl's.
We letU = {v € H; |v, = 00nT3}, and then

V={veH |v=0o0nTy, v, =00nT3}.

Thus (10) is satisfied with

1

q+1 )‘Q+1

@(I,y) = ‘u(l’) ‘y'r("c ) Vo e F37 RS Rd'

In the convergence result denote pythe coefficient of
friction for the elastic problemP? and by s, the one
for the viscoelastic problen#;" . If the positive functions

tn, o € L°(T'3) satisfy, for alln,

l1n — pill oo (ry) < g + 1)cn,

for some o > 0, the assumption (45) is satisfied with
m=q+ 1. ¢

o

Example 3. We consider a model of damped response
contact with Tresca’s friction law (see, e.g., JaruSek and
Eck, 1999; Rochdi and Shillor, 2001c). We use the fol-
lowing boundary condition:

_Uu:k‘ﬂu|q71uw |0"r| <9,
lo-|<g = 4, =0,
lo| =9 = 4, =—-Xo,, forsomei >0,

onT5 x (0,T). Here0 < ¢ < 1 and g,k € L*>®(T3),
g,k >0.

We haveU = H'(Q2)¢ and
V={ve H Q) v=0 onT}.

Thus (10) is satisfied with

@(l‘ay) k}(l‘) |yu(x)|q+1 +9(I)|y7(x)‘7

:m

Ve eTy, yeRL

In the convergence result denote lgyk the parame-
ters for the elastic problenP8 and by g, k,, those for
the viscoelastic problenP;". If the positive functions
Gns kn, g,k € L°(T'3) satisfy, for alln,

| kr — k’HLoo(Fg) <ai(g+1)ey,
Hg’ﬂ - gHLW(F;;) S OéQCn,

for some oy, as > 0, then (53) is satisfied witlp = 2,
mi=q+1, my=1. ¢
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