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In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version
of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special
purpose implementations of these procedures are included and have been used in the solution of a set of test problems.
The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare
favourably with the path-following PATH and the active-set MINOS codes of the commercial GAMS collection.
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1. Introduction

In this paper we investigate the solution of a contact
problem that describes the equilibrium of a thin elastic
clamped plate which may come into contact with a rigid
obstacle by the action of forces. The formulation and
the existence of a solution to this problem have been dis-
cussed elsewhere (Haslingeret al., 1996; Kikuchi and
Oden, 1988). In this paper we only address the geometri-
cally linear plate which corresponds to the hypothesis of
small strain and originates a linear model, as described in
(Haslingeret al., 1996).

The linear obstacle plate problem, whose unknown is
the deflection of the middle plane of the plate, has a unique
solution, since its variational formulation corresponds to
an elliptic variational inequality (Haslingeret al., 1996).
In spite of the knowledge of the existence of a solution,
its exact analytical expression is in general impossible to
determine, due to the complexity of the model. Therefore,
there is a need to use approximate and numerical meth-
ods in order to obtain an approximate solution. In this
paper, we use the finite element method to define the dis-
crete optimization model that determines the approximate
solution.

Since the differential operator governing the linear
obstacle plate problem is of fourth order, we choose the
Bogner-Fox-Schmit rectangle (Ciarlet, 1991), which is a
finite element of classC1, to obtain the discrete problem.

Then, the resulting discrete variational inequality can be
reformulated as a minimization problem with inequality
constraints. In the literature, the most commonly used nu-
merical methods chosen to solve this minimization prob-
lem are the penalty or the Lagrangian multiplier approach
methods (Haslingeret al., 1996; Kikuchi and Oden, 1988;
Ohtakeet al., 1980), with the inherent drawbacks of ill
conditioning, penalty sensitivity and lack of robustness.
In this work, we investigate the efficiency of other solu-
tion methods that are not based on this type of approach.

An interior-point algorithm (Wright, 1997) and a
block principal pivoting method (Júdice and Pires, 1994)
have been conveniently implemented and investigated on
the solution of a set of test problems. To gain a better
idea of their efficiency in these cases, we have also solved
these problems by using the path-following PATH (Dirkse
and Ferris, 1995) and the active-set MINOS methods
that are available in the commercial optimization collec-
tion GAMS (General Algebraic Modeling System) (Brook
et al., 1992). These experiments have shown that the
interior-point and block-pivoting algorithms are quite ef-
ficient when dealing with the finite-dimensional obstacle
problem studied and compare much favorably with those
general-purpose codes of the GAMS collection.

The structure of the paper is as follows. In Section 2
the differential and variational formulations and the fi-
nite element discretization are presented. The two com-
plementarity algorithms are described in Section 3. The
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computational experience is reported in Section 4. Finally,
some conclusions are presented in the last section of the
paper.

2. Finite Element Approximation

2.1. Differential Formulation

The differential equations, inequalities and boundary con-
ditions governing the nonlinear obstacle problem, cor-
responding to a geometrically nonlinear and thin elastic
clamped plate, can be stated in the following form:

Find (u1, u2, z) : Ω ⊂ R2 → R3 such that

Et3

12(1− ν2)
∆2z − t

[
σαβ(u, z)z,β

]
,α
≥f in Ω, (1)

z ≥ ψ in Ω, (2)(
Et3

12(1− ν2)
∆2z − t

[
σαβ(u, z)z,β

]
,α
− f

)
×(z − ψ) = 0 in Ω, (3)

σαβ,β(u, z) = 0 in Ω, (4)

u1 = u2 = z =
∂z

∂n
= 0 in ∂Ω. (5)

In (1)–(5), the setΩ = {x = (x1, x2) ∈ R2} is an
open, bounded, connected subset ofR2, with Lipschtiz
boundary∂Ω, and defines the middle plane of the plate.
The constantt represents the thickness of the plate. The
scalar functionsψ: Ω → R and f : Ω → R denote re-
spectively the obstacle and the vertical force acting on the
plate. The unknown(u1, u2)(x1, x2) denotes the hori-
zontal displacement, andz(x1, x2) denotes the vertical
displacement at the point(x1, x2) ∈ Ω. We assume that
the plate is made of a homogeneous and isotropic mate-
rial, so the constantsE and ν are respectively Young’s
modulus and Poisson’s ratio. The Greek indicesα, β, . . .
belong to the set{1, 2}; we also use the Einstein sum-
mation convention, i.e.aαbα means

∑2
α=1 aαbα; ∆2 is

the biharmonic operator,∆ is the Laplace operator and
∂z/∂n is the normal derivative ofz. The notation.,α
means the partial derivative with respect to the component
α of x and finally, σ = (σαβ) denotes the membrane
stress tensor whose definition is

σαβ(u, z) =
E

1− ν2

[
(1− ν)

(
eαβ(u) +

1
2
z,αz,β

)

+ ν
(
eγγ(u) +

1
2
z,γz,γ

)]
, (6)

whereeαβ(u) are the components of the linear strain ten-
sor defined by

eαβ(u) =
1
2

(
uα,β + uβ,α

)
. (7)

The nonlinearity of (1)–(5) is present in the definition
of the stress tensor (6) and in the nonlinear terms of (1)
and (3).

The linear obstacle plate problem, corresponding to
a geometrically linear plate, can be obtained directly from
(1)–(5) by neglecting the nonlinear terms, and takes the
following simple form:

Find z : Ω ⊂ R2 → R such that

Et3

12(1− ν2)
∆2z ≥ f in Ω, (8)

z ≥ ψ in Ω, (9)(
Et3

12(1− ν2)
∆2z − f

)
(z − ψ) = 0 in Ω, (10)

z =
∂z

∂n
= 0 in ∂Ω, (11)

where the vertical displacementz is the unknown. This
linear problem is the subject of our investigation and rep-
resents the equilibrium position for a geometrically linear
and thin elastic clamped plate that is constrained to the
action of a vertical force and touches the obstacle.

2.2. Variational Formulation

In order to describe the finite element approximation,
we first define the variational formulation corresponding
to the problem (8)–(11). To this end we introduce the
Sobolev space

H2
0 (Ω) =

{
z ∈ H2(Ω) : z|∂Ω = 0 =

∂z

∂n |∂Ω

}
(12)

and the constraint set defined by the obstacle

K = {z ∈ H2
0 (Ω) : z ≥ ψ in Ω}. (13)

Then the variational formulation of the problem (8)–(11)
takes the following form:

Find z ∈ K such that

A(z, w − z) ≥ F (w − z), ∀ ω ∈ K. (14)
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The forms appearing in (14) are defined byA : H2
0 (Ω)×H2

0 (Ω) → R,

A(z, w)=D̂
∫

Ω

{ν∆z∆ω+(1−ν)∂αβw∂αβz}dΩ,
(15)

F : H2
0 (Ω) → R,

F (w) =
∫

Ω

fw dΩ,
(16)

where

D̂ =
Et3

12(1− ν2)
. (17)

For the justification of the variational formulation
(14), its relation with the differential formulation and the
proof of existence and uniqueness of a solution of this
model, we refer the reader to (Haslingeret al., 1996;
Kikuchi and Oden, 1988).

2.3. Discrete Problem

We assume that the domainΩ is a rectangular domain
and is partitioned into a mesh ofm = n1n2 rectan-
gles Ωe = [xe

1, y
e
1] × [xe

2, y
e
2], n1 being the number

of sub-intervals in thex1 direction andn2 being the
number of sub-intervals in thex2 direction. The ampli-
tudes of [xe

1, y
e
1] and [xe

2, y
e
2] are he

1 = ye
1 − xe

1 and
he

2 = ye
2 − xe

2, respectively. Moreover, we suppose that
the mesh{Ωe}e=1,...,m is affine equivalent to the refer-
ence element̂Ω = [−1,+1]× [−1,+1]. The affine trans-
formations are defined by the mapping

F e : Ωe −→ Ω̂ = [−1,+1]× [−1,+1]

(x1, x2) −→ (ξ, η)

=
( 2
he

1

(x1 − xe
c),

2
he

2

(x2 − ye
c)
)
,(18)

where xe
c and ye

c are the middle points of[xe
1, y

e
1] and

[xe
2, y

e
2], respectively, and(ξ, η) is a generic element of̂Ω.
The Bogner-Fox-Schmit finite element (Ciarlet,

1991) is used for the approximation of the vertical dis-
placementz. The 16 degrees of freedom characterizing
this element are the values ofz, z,1, z,2 and z,12 at
each vertex ofΩe. The analytical expressions of the local
shape functions, defined in the reference elementΩ̂, are
stated below:

N1
1 (ξ, η) = ψ0

1(ξ)ψ0
1(η),

N2
1 (ξ, η) = ψ1

1(ξ)ψ0
1(η),

N3
1 (ξ, η) = ψ0

1(ξ)ψ1
1(η),

N4
1 (ξ, η) = ψ1

1(ξ)ψ1
1(η),

N1
2 (ξ, η) = ψ0

2(ξ)ψ0
1(η),

N2
2 (ξ, η) = ψ1

2(ξ)ψ0
1(η),

N3
2 (ξ, η) = ψ0

2(ξ)ψ1
1(η),

N4
2 (ξ, η) = ψ1

2(ξ)ψ1
1(η),

N1
3 (ξ, η) = ψ0

2(ξ)ψ0
2(η),

N2
3 (ξ, η) = ψ1

2(ξ)ψ0
2(η),

N3
3 (ξ, η) = ψ0

2(ξ)ψ1
2(η),

N4
3 (ξ, η) = ψ1

2(ξ)ψ1
2(η),

N1
4 (ξ, η) = ψ0

1(ξ)ψ0
2(η),

N2
4 (ξ, η) = ψ1

1(ξ)ψ0
2(η),

N3
4 (ξ, η) = ψ0

1(ξ)ψ1
2(η),

N4
4 (ξ, η) = ψ1

1(ξ)ψ1
2(η),

(19)

for any (η, ξ) ∈ [−1,+1]2, whereψ0
1 , ψ1

1 , ψ0
2 and ψ1

2
are the cubic Hermite polynomials defined on[−1,+1]
by

ψ0
1(ξ)=

1

4
(ξ−1)2(ξ+2), ψ0

2(ξ)=
1

4
(ξ+1)2(2−ξ),

ψ1
1(ξ)=

1

4
(ξ−1)2(ξ+1), ψ1

2(ξ)=
1

4
(ξ+1)2(ξ−1).

(20)

At each finite elementΩe the vertical displacementz is
approximated byzh which satisfies

zh(x1, x2) =
4∑

i=1

(
z1
iN

1
i + z2

i

he
1

2
N2

i + z3
i

he
2

2
N3

i

+ z4
i

he
1h

e
2

4
N4

i

)
◦ F e(x1, x2), (21)

where the unknownszj
i , for j = 1, . . . , 4 are the approx-

imation values ofz, z,1, z,2 and z,12, respectively, at
node i of Ωe.

In order to describe the discrete problems corre-
sponding to (14), we must introduce some notations. Let
n be the number of global nodes of the mesh, and as-
sume that the coefficientszj

i , for i = 1, . . . , n and
j = 1, . . . , 4, have been ordered in a linear numbering, so
that {zj

i }(i,j) may be identified with a vectorz ∈ R4n.
Moreover, we introduce the following subsets of indices:

J1, J2, J3, J4, J=J1∪J2∪J3∪J4⊂{1, 2, . . . , 4n},
L1, L2, L3, L=L1∪L2∪L3⊂{1, 2, . . . , 4n},

(22)

whereJk and Lk represent the sets of indices related to
the typek of global degrees of freedom and attached to
the interior or boundary nodes of the mesh. The subscript
k = 1 refers to the displacement,k = 2 to the first deriva-
tive of the displacement with respect tox1, k = 3 to
the first derivative of the displacement with respect tox2,
and, finally, k = 4 refers to the second mixed derivative
of the displacement. The subsetL refers to the degrees
of freedom related to the boundary conditions (11) of the
problem. If R and S are two sets of indices,z ∈ R4n

andW is a matrix, we denote byzR andWRS the sub-
vector of z and the submatrix ofW , respectively, whose
components have the indices inR and S. We remark
that the submatrixWRS has dimension|R| × |S|, where
|R| and |S| are the cardinals of the setsR and S, re-
spectively. We also define the vectorψ of dimensionn,
which approximates the obstacleψ(·, ·) by

ψ = (ψ1, ψ2, . . . , ψn)

=
(
ψ(x1

1, x
1
2), ψ(x2

1, x
2
2), . . . , ψ(xn

1 , x
n
2 )
)
, (23)

where (xi
1, x

i
2) are the coordinates of the global nodei

of the mesh, withi ∈ {1, . . . , n}.
The approximate problem is obtained directly

from (14) by replacingz with the approximationzh
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defined in (21). Based on the choice of the finite ele-
ments described before and using the notation introduced
in (22)–(23), the discrete problem associated with (14)
takes the following form:

Find z ∈ R4n such that

zJ1 ≥ ψ, zL1 = zL2 = zL3 = 0,
(w − z)T

[
Cz − F

]
≥ 0,

∀ w ∈ R4n, wJ1 ≥ ψ,

wL1 = wL2 = wL3 = 0,

(24)

where the matrixC is a constant sparse matrix of order
4n, independent ofz, and F is a vector of dimension
4n, associated with the forces.C andF are obtained by
assembling the corresponding element matrix and element
vector. In order to give the exact expressions forC and
F , we first define the vector of local shape functionsNi,
associated with the local nodei (i = 1, 2, 3, 4) of the
Bogner-Fox-Schmit finite element

Ni =
[
N1

i N2
i N3

i N4
i

]
(25)

and the associated vectors

Ne
i =

[
N1

i

he
1

2
N2

i

he
2

2
N3

i

he
1h

e
2

4
N4

i

]
,

Ne =
[
Ne

1 Ne
2 Ne

3 Ne
4

]
,

(26)

whereNe is a vector of order16. Then the definitions of
C andF at the element level are discussed below:

• The element matrix ofC, denoted byCe, is a
16×16 symmetric matrix, and it is the usual stiffness
matrix for linear plate bending:

Ce =
he

1h
e
2

4

[∫
Ω̂

t2

12
Se

i
TDSe

j dΩ̂

]
i,j=1,2,3,4

(27)

with

D =
tE

(1− ν2)


1 ν 0
ν 1 0

0 0
1− ν

2


3×3

and Se
i =



4
he

1h
e
1

Ne
i,11

4
he

2h
e
2

Ne
i,22

2
4

he
1h

e
2

Ne
i,12


3×4

.

(28)

• The element vector ofF is a vector of dimension 16,
denoted byF e and such that

F e =
he

1h
e
2

4

∫
Ω̂

f̂NeT dΩ̂, (29)

where the scalar function̂f is the forcef defined
on Ω̂.

We refer to (Haslingeret al., 1996) for the proof of conver-
gence of the finite element solutions of (24) to the solution
of (14).

3. Algorithms for the Discrete Problem

Consider again the finite-dimensional problem (24). It fol-
lows from the bilinear formA(·, ·) of (15) that C is a
symmetric matrix. Considering the following partitions
of the matrixC and vectorsF and z:

C=

CJJ CJL

CLJ CLL

, F =

FJ

FL

, z=

 zJ

zL

, (30)

where J = J1 ∪ J2 ∪ J3 ∪ J4 and L = L1 ∪ L2 ∪ L3,
we havezL = 0 because of the boundary conditions, and
the problem (24) corresponds to a stationary point of the
following quadratic program:

min
{1

2
zT
J CJJzJ − FT

J zJ

}
subject to{z ∈ R|J| : zJ1 ≥ ψ}.

(31)

Furthermore, as
√
A(·, ·), defined in (15), is a norm in

H2
0 (ω), equivalent to the usual norm ofH2

0 (ω), the sub-
matrix CJJ of C is positive definite (PD). This implies
that a stationary pointzJ is unique and is exactly the
unique global minimum of the quadratic program (31).
Moreover, z = (zJ , 0) is the unique solution of the dis-
crete problem (24).

It follows from this introduction that the solution of
the discrete problem reduces to a strictly convex quadratic
problem with |J | = 4(n1−1)(n2−1)+2(n1 +n2) vari-
ables and|J1| = (n1 − 1)(n2 − 1) lower bounds, where
n1n2 = m is the number of finite elements of the mesh,
defined in Section 2. It is well known that this value of
m should be large in order for the optimal solution of the
quadratic problem (31) to be a good approximation for the
continuous variational problem (14) under consideration.

There are a number of algorithms for solving strictly
convex quadratic programs with simple lower bounds
(Bertsekas, 1995; Nocedal and Wright, 1999). Among
them, the so-called active-set method (Nocedal and
Wright, 1999) is a robust technique that searches for the
unique global minimum by performing changes in a work-
ing active-set associated with each iterate. This algorithm
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possesses finite termination under a nondegeneracy pri-
mal assumption and can be implemented for large-scale
quadratic programs by exploiting efficient techniques for
updatingLDLT decompositions in the sparse case. The
code MINOS of the GAMS collection (Brooket al., 1992)
is considered to be an efficient implementation and has
been used in the experiments reported in Section 4 of the
paper. The finiteness of the algorithm is only assured if the
working set changes in exactly one element in each itera-
tion. This characteristic of the active-set method is a draw-
back in practice, as the algorithm may use too many itera-
tions for problems where the initial and the optimal active
sets are quite different. This was the reason of our rec-
ommendation concerning other algorithms that are based
on different philosophies. As is discussed in (Fernandes
et al., 1996), block pivoting and interior-point algorithms
have been shown to process convex quadratic programs
with a structure similar to that of the discrete problem
(31). In the present paper we investigate the efficiency
of these algorithms in this case.

Both the interior-point and block pivoting algo-
rithms search for the global minimum of the strictly con-
vex quadratic program in a primal-dual way, by solv-
ing the following mixed linear complementarity problem
(MLCP):

Find (z, ω) ∈ R|J| × R|J|,

wJ = CJJzJ − FJ , (32)

wJ2 = wJ3 = wJ4 = 0, (33)

(zJ1 − ψ)TwJ1 = 0, (34)

zJ1 ≥ ψ, wJ1 ≥ 0, (35)

which corresponds to the Kuhn-Tucker necessary and suf-
ficient optimality conditions (Nocedal and Wright, 1999)
of the quadratic program (31). In this section we describe
in some detail these two algorithms and their implemen-
tations for large scale quadratic programs. In this extent,
we introduce the setJf as the set of indices of the unre-
stricted variables

Jf = J2 ∪ J3 ∪ J4 = J \ J1. (36)

3.1. Interior-Point Algorithm

In order to describe this method, we rewrite the MLCP
(32)–(35) in the following equivalent form:

Find (z, ω) ∈ R|J| × R|J| such that

CJJzJ − wJ − FJ = 0, (37)

(Z|J1| −Ψ)W|J1|e = 0, (38)

wJf
= 0, (39)

zJ1 ≥ ψ, wJ1 ≥ 0, (40)

wheree ∈ R|J1| is a vector of ones,Z|J1|, Ψ andW|J1|
are diagonal matrices whose diagonal elements are respec-
tively zi, ψi and wi, i ∈ J1. The interior-point algo-
rithm is an iterative procedure that seeks a solution of the
system (37)–(40) by maintaining (39)–(40) in each itera-
tion. Furthermore, each iterate(zk, wk) satisfies the in-
equalities (40) strictly. This is one of the special features
of this type of methods. Another is the introduction of a
central path defined by

(zi − ψi)wi = µk, for all i ∈ J1 (41)

in each iteration such that the new iterate should be forced
to follow. The so-called central parameterµk tends to
zero as the algorithm proceeds, and is usually defined by

µk = δ

∑
i∈J1

(zk
i − ψi)wk

i

|J1|
(42)

with 0 < δ < 1, a fixed constant. To define the new iter-
ate, a search direction is first found as Newton’s direction
of the following system of nonlinear equations consisting
of the linear equation and the central path nonlinear equa-
tions:

Find (z, ω) ∈ R|J| × R|J|,

CJJzJ − wJ − FJ = 0, (43)

(Z|J1| −Ψ)W|J1|e = µke, (44)

wJf
= 0. (45)

Sincewk
Jf

= 0, this search direction(u, v) satisfies
CJ1J1 CJ1Jf

−I|J1| 0

CJf J1 CJf Jf
0 0

W k
|J1| 0 Zk

|J1| −Ψ 0

0 0 0 I|Jf |




uJ1

uJf

vJ1

vJf



=


wk

J1
+ FJ1 − CJ1z

k

FJf
− CJf

zk

µke− (Zk
|J1| −Ψ)W k

|J1|e

0

 , (46)

where I|J1| and I|Jf | are the identity matrices of orders
|J1| and |Jf |, W k

|J1| and Zk
|J1| are diagonal matrices

with diagonal elementswk
i and zk

i , with i ∈ J1, respec-
tively, and CJ1 and CJf

contain the rows ofC corre-
sponding to the sets of indicesJ1 and Jf , respectively.
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Simple linear algebra manipulations lead to the fol-
lowing expressions for calculating the search direction
(u, v):CJ1J1 + (Zk

|J1| −Ψ)−1W k
|J1| CJ1Jf

CJf J1 CJf Jf

 uJ1

uJf



=

wk
J1

+ FJ1 − CJ1z
k + µk(Zk

|J1| −Ψ)−1e

FJf
− CJf

zk


vi =

µk

zk
i − ψi

− wk
i

(
1 +

ui

zk
i − ψi

)
, i ∈ J1

vj = 0, j ∈ Jf .
(47)

After finding the search direction(u, v), a stepsize
is computed to guarantee that a move along this search
direction shows some progress to reach the solution of
the MLCP. Two measures are important in this process of
computing this stepsize, namely, the complementarity gap

(zJ1 − ψ)TwJ1 =
∑
i∈J1

(zi − ψi)wi (48)

and the norm of the linear infeasibility

‖CJJzJ − FJ − wJ‖2, (49)

where‖ · ‖2 is the well-known Euclidean norm inR|J|.

In theory, the stepsize should be chosen so as to
ensure proximity to the central path and that these two
quantities (48)–(49) reduce in a proportional way (Wright,
1996). In practice, the stepsizeαk satisfies

αk = min{1, βαmax}, (50)

where0 < β < 1 is a fixed constant and

αmax = min
{

min
{
zk
i − ψi

−ui
: ui < 0

}
,

min
{
wk

i

−vi
: vi < 0

}
, i ∈ J1

}
.

(51)

To understand why this choice of the stepsize is recom-
mended in practice, we consider the following merit func-
tion associated with the conditions (37)–(38):

g(z, w) = ‖CJJzJ − wJ − FJ‖2
2

+ ‖(Z|J1| −Ψ)W|J1|e‖
2
2. (52)

Then it is possible to show (Simantiraki and Shanno,
1995) that if αmax > 0, then there exists a0 < β < 1
such that

g(zk + αku,w
k + αkv) < g(zk, wk). (53)

Furthermore, this result usually holds for the largest pos-
sible values ofβ.

After the computation of the stepsizeαk, the new
iterate is given by

zk+1 = zk + αku, wk+1 = wk + αkv (54)

and satisfies the conditions (39) and (40) strictly. The al-
gorithm terminates with an approximate solutionzk and
wk satisfying

‖CJJz
k
J − FJ − wk

J‖2 ≤ ε1 (55)

and ∑
i∈J1

(zk
i − ψi)wk

i ≤ ε2 (56)

for some tolerancesε1 > 0 and ε2 > 0 .

It is now possible to present the steps of the algo-
rithm.

Interior-Point Algorithm

1. Let ε1 > 0 and ε2 > 0 be two positive tolerances,
k = 0 and zk, wk be vectors satisfyingwk

Jf
= 0,

wk
J1
> 0 and zk

J1
> ψ.

2. For k = 0, 1, . . .

• Computeµk by (42).

• Find (u, v) by (47).

• Compute αk by (50) and (51) with β =
0.99995.

• Updatezk+1 = zk +αku, wk+1 = wk +αkv.

• Terminate if (55) and (56) hold.

It follows from the description of the algorithm that
the main effort of each iteration is concerned with the so-
lution of the linear system (47). SinceCJJ is a sym-
metric positive definite matrix, the same holds for all the

matricesC
k

JJ of the system (47). Furthermore,CJJ and

C
k

JJ have the same sparsity pattern. These two proper-

ties of the working matrixC
k

JJ are quite important for
the design of an efficient implementation of the algorithm
capable of processing large-scale quadratic programs of
the form (31). In order to briefly describe this implemen-
tation, we recall that the solution of a large-scale linear
system with a symmetric positive definite matrixCJJ or

C
k

JJ consists of the following phases (Duffet al., 1986;
George and Liu, 1981):

• Analyse, where the so-called minimum degree algo-
rithm or one of its variants is applied to find a suit-
able ordering for the rows and columns ofCJJ (and

C
k

JJ ) that leads to a small fill-in during the factoriza-
tion.
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• Factorization, which computes theLDLT decom-
position of a principal permutation of the matrix

CJJ (or C
k

JJ ) according to the ordering achieved
in the Analyse phase.

• Solution, which computes the solution of the linear
system by processing the easy systems with matrices
L, D andLT .

It is important to add that these three phases are per-
formed separately and Analyse is the most costly proce-
dure, as it usually takes70% of the effort required to

find the solution of the system. SinceC
k

JJ has the same
sparsity pattern asCJJ , this Analyse phase is only pro-
cessed once during the whole application of the interior-
point method. This substantial saving in the computation
makes the effort of each iteration of the interior-point quite
small and facilitates the solution of quite large convex
quadratic programs. The implementation of the interior-
point method exploits the ideas presented above and uses
the subroutines MA27 from the Harwell collection (Duff
et al., 1986) for these Analyse, Factorization and Solution
phases.

As is discussed in the last section of this paper, ma-
chine memory limitations may make the solution of quite
large, strictly convex quadratic programs by using this
type of implementation impossible. In this case a pre-
conditioned conjugate-gradient algorithm (Ortega, 1988)
should be used to find the search direction in each itera-
tion. An implementation of an interior-point method for
a linear network problem based on the last methodology
was described and fully tested in (Portugalet al., 2000).
An important feature of this implementation is that the
tolerances used in the stopping criterion of the conjugate-
gradient method can be chosen to be monotone decreas-
ing with the iteration count of the interior-point algorithm.
This implies substantial savings in the process of finding
the search direction for each iteration of the procedure.
We believe that an implementation of the same type with
different preconditionings can process efficiently all these
large strictly convex quadratic programs.

As is discussed by many authors (Nocedal and
Wright, 1999; Wright, 1997), the so-called predictor-
corrector interior-point algorithm is a valid alternative
technique for processing the strictly convex quadratic pro-
gram (31). Each iteration of this algorithm essentially dif-
fers from the one for the previous interior-point method
on the existence of a predictor step that finds a new point
(zk, wk) that is used to compute the central parameterµk.
This implies that each iteration requires the solution of

two linear systems with the same matrixC
k

JJ . It is inter-
esting to note that this only duplicates the computation in
the Solution phase, which is almost meaningless when the
implementation is based on direct solvers. However, the

situation is different when an iterative solver is used to find
the search direction. Furthermore, as is shown in the last
section of this paper, the number of iterations of the sim-
ple interior-point algorithm is constantly small even for
very large values of|J |. Finally, the descent property for
the merit function of (52) does not hold any longer for the
predictor-corrector algorithm. These considerations have
led to our decision of using the simple interior-point al-
gorithm to process the strictly convex quadratic program-
ming discrete problem.

3.2. A Block Principal Pivoting Algorithm

Principal pivoting algorithms are direct methods that find
in a finite number of iterations the unique global min-
imum of the strictly convex quadratic program (31) by
processing its equivalent MLCP (32)–(35). In each iter-
ation, these algorithms use a complementary basis solu-
tion of the MLCP. IfR andS are subsets ofJ such that
R ∪ S = J , R ∩ S = ∅ andCRR is nonsingular, such a
solution satisfieszi = ψi for all i ∈ S and wi = 0 for
all i ∈ R, and this implies that the remaining components
are uniquely given by

CRRzR = FR − CRSψS ,

wS = −FS + CSRzR + CSSψS .
(57)

It is important to add that ifCJJ is a symmetric
positive definite matrix, there is a complementary basic
solution for each possible partition{R,S} of J . Since
wJf

= 0 in any solution of the MLCP (32)–(35), we force
Jf to be always included in the setR of any complemen-
tary basic solution that is used by the algorithm. If such a
solution z, w satisfies

zR∩J1 ≥ ψR∩J1 and wS ≥ 0, (58)

then it is said to be feasible and it is a solution of the
MLCP (32)–(35). Otherwise, the so-called set of infea-
sibilities is considered:

H={i∈R ∩ J1 : zi<ψi}∪{i∈S : wi<0}. (59)

The number of elements of this setH is called the in-
feasibility count of the complementary basic solution. We
note that0 ≤ |H| ≤ |J1| and |H| = 0 if and only if
(zR, ψS) is the unique solution of the MLCP.

Each iteration of a principal pivoting algorithm sim-
ply consists in replacing the setsR andS associated with
a complementary basic infeasible solution (H 6= ∅) by
other setsR and S corresponding to another solution of
the same type. This is done by using the following formu-
lae:

R = R \ (R ∩H1) ∪ (S ∩H1),
S = J \R,

(60)
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whereH1 ⊆ H. The algorithms differ on the choice of
the setH1. As is discussed in (Fernandeset al., 1996),
the use of

H1 =
{

min{i ∈ H}
}

(61)

in each iteration guarantees finite termination to the al-
gorithm. However, as for the active-set methods, these
modifications of one element usually lead to too many it-
erations for large-scale quadratic programs, where the ini-
tial and final partitions{R,S} are quite different. On the
other hand, the all-change modificationH1 = H usually
leads to a small number of iterations in practice (Fernan-
deset al., 1996). However, there is no theoretical guaran-
tee that an algorithm solely based on these changes pos-
sesses finite termination. As is discussed in (Fernandes
et al., 1996; Júdice and Pires, 1994), it is possible to de-
sign a principal pivoting method algorithm that combines
these two features presented before. The resulting method
performs all-changes modifications (60) withH1 = H in
general, and one-element changes (61) are only included
for assuring finite termination. The switch from one form
of iterations to the other is done by controlling the infea-
sibility count, i.e. the number of elements|H| of the set
H given by (59).

The steps of the algorithm are presented below.

Block Principal Pivoting Algorithm

1. Let R = Jf , S = J \ R, p > 0, ninf = |J | + 1
and nit = 0.

2. ComputezR and wS by (57) and the infeasibility
set H by (59). Let |H| be the number of elements
of H. Then

• If |H| = 0, terminate withz = (zR, ψS) the
unique solution of the MLCP.

• If ninf > |H|, set ninf = |H| and nit = 0.
Go to 3.

• If ninf ≤ |H| and nit ≤ p, go to 3. (if nit =
1 setR = R andH = H).

• If ninf ≤ |H| and nit ≥ p + 1, go to 4 (if
nit = p+ 1 setR = R andH = H).

3. Set R = R \ (R ∩ H) ∪ (S ∩ H), S = J \ R,
nit = nit + 1 and go to 2.

4. Let t = min{i ∈ H}. Set nit = nit + 1,

R =

{
R \ {t} if t ∈ R,
R ∪ {t} if t ∈ S,

(62)

and S = J \R and go to 2.

It follows from the description of the steps of the al-
gorithm that the integer constantp plays an important role
in the efficiency of the algorithm. This value represents
the maximum number of block iterations(H1 = H) that
are allowed to be performed without an improvement of
the infeasibility count. It is obvious that this value should
be small. However, too small values ofp may lead to the
performance of one-element modifications too often with
an increase in the number of iterations. Extensive com-
putational experience reported in (Fernandeset al., 1996)
has shown thatp = 10 is usually a good choice in practice.

The algorithm can also be implemented according to
a scheme similar to the interior-point method. As before,
the Analyse phase is performed only once for the matrix
CJJ . In each iteration, the matrixCRR is constructed
from CJJ . Once more the rows and columns with indices
i ∈ R are considered in the ordering established in the
Analyse phase. This construction may be time consuming
if the setR is quite large. After this step is finished, the
Factorization and Solution phases are performed in order
to get the vectorzR. As before, the subroutines MA27
are used to perform all the tasks.

The vectorwS is computed as follows:

wi = −Fi + Ci.

[
zR

ψS

]
, i ∈ S, (63)

whereCi. represents the rowi of the matrixCJJ .

As is discussed in the last section of this paper, this
type of implementation is quite efficient for reasonably
processing large strictly convex quadratic programs. It is
also possible to derive an implementation of this algorithm
based on the preconditioned conjugate-gradient algorithm
for processing the linear systemsCRRzR = FR that are
required in each iteration of the principal pivoting algo-
rithm. However, the computation of the infeasibilities ac-
cording to (59) prevents the use of variable monotone de-
creasing tolerances, and this makes an iterative-based im-
plementation less attractive for the block pivoting method.

4. Computational Experiments

In this section we report some numerical experiments with
the algorithms on the solutions of discrete problems asso-
ciated with a thin, elastic and clamped plate whose middle
plane is a square with side lengthl = 100 mm and thick-
nesst = 2 mm. For this plate geometry, several numerical
tests were performed with different obstacles, materials
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and forces. The following obstacles were considered:

ψ1(x, y) = −2,

ψ2(x, y) = −0.1−
( x

50
− 1
)2( y

100
− 0.5

)2

,

ψ3(x, y) = −0.5
( x

50
− 1
)2

− 0.02
( x

50
− 1
)

− 0.5
1 + 30( x

50 − 1)2

(64)

for x, y in [0, 100]. The obstacleψ1 represents a plane,
and the obstaclesψ2 and ψ3 are surfaces whose three
dimensional-plots are displayed in Figs. 1 and 2.
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Fig. 1. Obstacleψ2.
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Fig. 2. Obstacleψ3.

We assume that the forces acting on the plate are con-
stants with intensities

f1(x, y) = −1, f2(x, y) = −5,

f3(x, y) = −10,
(65)

(in the unit kg/mm2). Moreover, the material of the plate
may be steel, bronze or lead, with Young’s modulusE

and Poisson’s ratioν given below:

Material E (kg/mm2) ν

Steel 21× 103 0.28
Bronze 11× 103 0.31
Lead 1.8× 103 0.44

As has already been mentioned in Section 2, the dis-
cretization of the infinite dimensional problems is based
on the finite element method. We chose the Bogner-Fox-
Schmit rectangle with16 degrees of freedom in this ap-
proximation. The square[0, 100]2 is discretized succes-
sively by 4 × 4, 10 × 10, 20 × 20 and 30 × 30 finite
elements in our first experiments. Refined meshes for this
approximation with50 × 50, 70 × 70 and 90 × 90 fi-
nite elements are also considered in the other experiments.
All the experiments were performed on a gateway G520
(256Mb RAM, Pentium II processor 350 Mhz).

It follows from the description of the steps of the
interior-point method that there is a need to choose the
initial point (z0, w0) and the tolerancesε1, ε2 that are
required in the stopping criterion (55)–(56). After some
experiments and based on previous computational work
with similar problems (Fernandeset al., 1996), we made
the following choices:

z0
i = 0, i ∈ J1 ∪ Jf ,

w0
i = max{10,−Fi}, i ∈ J1,

w0
i = 0, i ∈ Jf ,

(66)

and ε1 = 10−10, ε2 = 10−8. These values usually
guarantee at least seven decimal digits of accuracy in the
unique solution of the MLCP found by the interior-point
algorithm.

Tolerances are also needed in the block pivoting
method for choosing the set of infeasibilitiesH. In our
implementation of this algorithm the following definition
of H was used:

H = {i ∈ R : zi < ψi − ε}

∪ {i ∈ S : wi < −ε}, (67)

where ε = 10−6. A scaled free version of this defini-
tion should be probably more recommended, particularly
for bad scaling MLCPs that arise when the mesh size is
quite small. However, in our experiments the definiton
(67) proved to work quite well, as the accuracy of the so-
lution of the MLCP found by this method is usually the
same as that computed by the interior-point algorithm.

Tables 1–6 report the results of solving the test
problems by the interior-point method (IP) and the block
pivoting (BP) algorithms. In these tables,ele represents
the number of finite elements that were considered in the
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Table 1. Plate of steel and obstacleψ1.

ele |J | algorithms force f1 = −1 force f2 = −5 force f3 = −10

cn it CPU cn it CPU cn it CPU

IP 23 1.75 E-2 23 1.75 E-2 24 1.95 E-2
16 52 PATH 5 7 0.03 9 11 0.03 9 11 0.03

BP 2 0.01 E-2 1 0.01 E-2 1 0.01 E-2
MINOS 95 0.30 78 0.22 72 0.31

IP 13 0.17 14 0.18 13 0.17

100 364 PATH 9 11 0.83 45 128 7.91 49 52 0.98

BP 8 0.17 3 0.05 2 0.03

MINOS 550 2.98 551 2.96 541 3.01

IP 12 1.73 12 1.74 12 1.75

400 1524 PATH 33 52 21.21 121 157 42.01 165 201 43.35

BP 11 2.82 8 1.74 6 1.20

MINOS 1992 35.36 1968 35.46 1955 35.37

Table 2. Plate of bronze and obstacleψ3.

ele |J | algorithms force f1 = −1 force f2 = −5 force f3 = −10

cn it CPU cn it CPU cn it CPU

IP 20 1.66 E-2 21 1.75 E-2 22 1.75 E-2
16 52 PATH 9 11 0.03 9 11 0.03 9 11 0.03

BP 1 0.01 E-2 1 0.01 E-2 1 0.01 E-2
MINOS 74 0.23 73 0.28 75 0.26

IP 11 0.15 12 0.16 12 0.16

100 364 PATH 42 44 0.98 75 77 1.23 81 77 1.22

BP 4 0.07 2 0.03 1 0.01

MINOS 522 2.90 487 2.90 412 2.94

IP 11 1.52 11 1.55 12 1.62

400 1524 PATH 142 192 48.27 230 279 55.28 283 333 62.14

BP 7 1.51 5 0.93 3 0.50

MINOS 1952 35.32 1943 35.41 1946 35.37

Table 3. Plate of lead and obstacleψ2.

ele |J | algorithms force f1 = −1 force f2 = −5 force f3 = −10

cn it CPU cn it CPU cn it CPU

IP 19 1.56 E-2 20 1.66 E-2 21 1.66 E-2
16 52 PATH 9 11 0.02 9 11 0.02 9 11 0.02

BP 1 0.01 E-2 1 0.01 E-2 1 0.01 E-2
MINOS 65 0.31 58 0.28 59 0.25

IP 10 0.13 11 0.14 11 0.15

100 364 PATH 81 84 1.12 81 84 1.11 81 84 0.26

BP 1 0.01 1 0.01 1 0.01

MINOS 373 2.96 361 2.96 362 2.85

IP 9 1.40 11 1.61 9 1.28

400 1524 PATH 285 320 57.09 341 376 60.72 357 392 61.29

BP 3 0.50 3 0.47 2 0.30

MINOS 1884 35.44 1750 35.46 1522 35.34
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Fig. 3. Solution for the plate of steel, with obstacleψ3, and 16, 100, 400 and 900 finite elements.

Table 4. Plate of steel and obstacleψ3.

ele |J | |J1| alg. force f1 = −1 force f2 = −5 force f3 = −10

cn it CPU cn it CPU cn it CPU

IP 20 1.66 E-2 21 1.66 E-2 22 1.85 E-2
16 52 9 BP 9 1 0.01 E-2 9 1 0.01 E-2 9 1 0.01 E-2

IP 12 0.16 13 0.17 13 0.17

100 364 81 BP 38 4 0.07 61 3 0.05 75 2 0.03

IP 13 1.77 12 1.62 11 1.47

400 1524 361 BP 89 9 2.19 204 5 0.97 230 5 0.92

IP 16 11.38 12 8.31 14 9.69

900 3484 841 BP 135 14 18.23 406 8 7.72 518 9 7.89

IP 19 104.92 16 86.43 17 91.38

2500 9804 2401 BP 362 22 238.49 1014 15 133.63 1248 13 107.22

IP 21 336.10 18 285.74 17 268.23

4900 19324 4761 BP 666 31 1236.72 1920 22 711.62 2370 18 540.48

IP 24 1127.97 20 933.32 20 933.21

8100 32044 7921 BP 1037 43 2679.86 3039 35 2180.55 3850 29 1815.73

Table 5. Plate of bronze, obstacleψ1, |J | = 1524.

Algorithms force f1 = −1 force f2 = −5 force f3 = −10
cn it CPU cn it CPU cn it CPU

IP 77 12 1.68 165 12 1.78 221 12 1.78
BP 9 2.15 6 1.20 5 0.94
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mesh, |J | the corresponding number of variables of the
problem (31) and|J1| the number of lower bounds. Fur-
thermore,cn denotes the number of variableszi, i ∈ J1,
that attain the lower boundψi in the optimal solution of
the quadratic program, i.e. the number of nodes at which
there is contact between the plate and the obstacle. Fi-
nally, the performance of each of the algorithms was re-
ported in terms of the number of iterations (it) and CPU
time in seconds (CPU).

In order to obtain a better indication of the efficiency
of these methodologies, we also solved some problems by
the active-set MINOS (Version 5) and the path-following
PATH (Version 4.4a) codes that are available in the GAMS
collection. It is important to add that for the PATH algo-
rithm it represents the sum of the so-called inner and crash
iterations. The results are displayed in Tabs. 1–3.

It follows from the results in Tabs. 1–3 that both the
interior-point and block pivoting algorithms are quite ef-
ficient for the solution of all the test problems. More-
over, these two algorithms proved to perform much bet-
ter in terms of iterations and CPU time than the other
two GAMS general purpose algorithms, and the gap in-
creased much with an increase in the number of elements.
It is interesting to note that the number of iterations of
the interior-point method does not indicate an increase in
the number of elements and, consequently, the dimension
|J | of the problem. On the other hand, there is a slight
increase in the number of iterations for the block pivoting
method. These conclusions become more evident with the
results displayed in Table 4.

Table 4 shows the performance of the interior-point
and block pivoting algorithms for a particular choice of
the material, force and obstacle, when the number of el-
ements increases. The importance of the increase in the
number of elements is the accuracy of the approximate
solution as illustrated in Fig. 3.

So we recommend the use of the interior-point algo-
rithm when the number of elements used to construct the
discrete problem is quite large. It is important to add that
memory machine limitations make the solution of a dis-
crete problem with an even larger number of elements im-
possible. As stated in Section 3, an implementation based
on a preconditioned conjugate-gradient method should be
employed to process the discrete model in these cases.

In the next experiment, we tested the influence of the
intensity of the force on the contact with the obstacle. To
do this, we fixed a particular material (bronze), the num-
ber of finite elements (ele = 400) and the obstacleψ1.
Then for these particular instances, we processed three
convex quadratic programs that differ on the intensity of
the force, namelyf1 = −1, f2 = −5 and f3 = −10.
The results are displayed in Figs. 4–6 and Table 5, and
confirm the physical belief that an increase in the inten-
sity of the force augments the contact.
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In the last experiment, we tested the influence of the
material on the contact with the obstacle. To do this, this
time we fixed the intensity of the forcef1 = −1, the
number of elements (ele=400) and the obstacleψ2. We
considered three instances that differ from each other on
the choice of the material (steel, bronze and lead). The
results are illustrated in Figs. 7–9 and Table 6, and con-
firm that the contact increases with an increase in Young’s
modulus.
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Table 6. Forcef1 = −1, obstacleψ2, |J | = 1524.

Material Interior-Point Block Pivoting

cn it CPU it CPU

Steel 181 11 1.56 7 1.40

Bronze 221 10 1.37 5 0.92

Lead 285 9 1.40 3 0

5

10

15

20

5

10

15

20

-0.1

-0.05

0

5

10

15

20

Fig. 7. Plate of steel.
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5. Conclusion

In this paper we introduced an obstacle plate model. The
linear version of this problem was studied. The discrete

problem that arises by using an appropriate finite ele-
ment discretization reduces to a strictly convex quadratic
program that has a unique global solution. An interior-
point and a block principal pivoting primal-dual algo-
rithms were shown to be quite efficient to process this
quadratic program and to perform much better than two
general purpose codes MINOS and PATH of the GAMS
collection. Unfortunately, the two primal-dual techniques
discussed in this paper can no longer be useful for process-
ing the nonlinear version of this model (corresponding to
a geometrically nonlinear plate), as the resulting discrete
problem can be shown to be a nonconvex nonlinear opti-
mization problem (Kikuchi and Oden, 1988) that is quite
difficult to tackle. Some experiments with the PATH algo-
rithm demonstrated that this method was able to process
some special instances of this model, but it fails in general.
The study of this discrete nonlinear problem is a subject
of our current investigation.
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