Int. J. Appl. Math. Comput. Sci., 2002, Vol.12, No.1, 41-50 ‘ ames

ON FINITE ELEMENT UNIQUENESS STUDIES FOR
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We are interested in the finite element approximation of Coulomb’s frictional unilateral contact problem in linear elasticity.
Using a mixed finite element method and an appropriate regularization, it becomes possible to prove existence and unique-
ness when the friction coefficient is less thak?|log(h)|~*, where h and ¢ denote the discretization and regularization
parameters, respectively. This bound converging very slowly tow@ardéien i decreases (in comparison with the already

known results of the non-regularized case) suggests a minor dependence of the mesh size on the uniqueness conditions, at
least for practical engineering computations. Then we study the solutions of a simple finite element example in the non-
regularized case. It can be shown that one, multiple or an infinity of solutions may occur and that, for a given loading, the
number of solutions may eventually decrease when the friction coefficient increases.
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1. Introduction and Problem Set-Up only Chz can be obtained in the case of the exact model
(i.e. whene = 0). As a consequence, we note thatifis
Coulomb’s friction model is currently chosen in the nu- chosen as a parameter slowly decreasing towards zero (as
merical approximation of contact problems arising in h decreases), then the bound of the non-regularized case
structural mechanics. From a mathematical point of view, becomes more satisfactory than the one arising from the
the study of the continuous model in elastostatics using exact model.
the associated variational formulation obtained in (Du-
vaut and Lions, 1972) leads to existence results when the,. - . : .
ticular case of a finite dimensional problem in the non-

friction coefficient is sufficiently small (Eck and Jarusek, . o T
regularized case: a simple example using finite elements.

1998; Jarusek, 19.83; Ka.‘t(.)’ 1987, ddset al, 1980)' As We study this problem and show that it may admit one,
regards the associated finite element model, it was proved

in (Haslinger, 1983; 1984) that it always admits a solu- rr:ultiple 0(; GIIP infinity orf]sollutiogs.kSuch an exlamplg com-
tion and that the solution is unique provided that the fric- pletes and | ustrgtest € aready Known resu 1S using truss
. L " L elements, especially (Klarbring, 1990).

tion coefficient is lower than a positive value vanishing as

the discretization parameter decreases. Also in (Haslinger, Let us now consider an elastic body occupying in
1983), a convergence result of the finite element model to- the initial configuration a bounded subgetof R2. The
wards the continuous model was established. Besides, ifboundary 92 of the domain{? is supposed to be Lips-
the finite dimensional context, numerous studies and ex-chitz and consists of three non-overlapping patts I'y
amples of non-uniqueness using truss elements were exand I'c. The unit outward normal o2 is denoted by
hibited, proving that the problem is in general not well n = (n1,n2) and we sett = (n2,—n4). The body is
posed (Alart, 1993; Janovsky, 1981; Klarbring, 1990).  submitted to volume forces = (fi, f2) € (L*(Q))?

on  and to surface force¥ = (F1, Fy) € (L*(T'y))?

on I'y. The partI'p is embedded and we suppose that
the surface measure @fp, does not vanish. Initially, the
body is in contact with a rigid foundation on the straight
line segmentl’' .

Our second aim, in Section 4, is to choose a par-

Our first aim in this paper is to study the influence of
a specific regularization (i.e. the smoothing of the abso-
lute value involved in the friction model) on the unique-
ness conditions for the discrete problem. We consider a
mixed finite element method in Section 2 and, denoting
by h and e the discretization and the regularization pa- The unilateral contact problem with Coulomb’s fric-
rameters, respectively, we show in Section 3 that the prob-tion consists in finding the displacement field =
lem admits a unique solution if the friction coefficientis (u;), 1 < ¢ < 2 and the stress tensor field =
less thanC=?|log(h)| ™!, and we notice that a bound of (oy;), 1 < 4,5 < 2, satisfying the following condi-
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tions (1)—(4): where (-,-)pr, denotes the duality pairing between the
fractional Sobolev spacéfz(I'c) (Adams, 1975) and

divo(u)+f=0 inQ, o(un=F only, ) its dual spaceH —z (I'¢:). Following (Netaset al, 1980;

w=0 onTp Haslingeret al, 1996), a weak solution of the unilateral
contact problem with Coulomb’s friction is a pafit, v),
where (dive(u)); = 0455, 1 < i < 2, the notation where « is a fixed point of® and u is the unique solu-

denotes thej-th partial derivative and the summation con- tion of the problem (6) withg = ~.
vention of repeated indices is adopted. The stress tensor  The first existence result for the unilateral contact
field is linked to the displacement field by the constitutive proplem with Coulomb’s friction in the case of a suffi-
law of linear elasticity ciently small friction coefficientF was proved in (Néas
et al, 1980). Generalizations and/or improvements were

013 (1) = Acyn ()0 + 2peij (w), (2) established) in (Eck and Jarusek, 1998p; Jarusek, 1983;
where A and ;. are positive Lamé coefficients and Kato, 1987). The uniqueness seems to remain an open
eij(u) = (1/2)(u; ; + u;,;) denotes the linearized strain  problem.
tensor field.

On the boundanp, we write o (u)n = o, (u)n+
o(u)t and u = u,n + w;t. Let F > 0 stand for the
friction coefficient onI'c. The conditions on the contact e discretize the domaif2 with a family of triangula-
zonel'¢ are as follows: tions (%, ), where the notatiork > 0 stands for the dis-
cretization parameter representing the greatest diameter of

2. The Discrete Problem

un <0, on(w) <0, on(w)un=0, () 5 triangle in.,. The chosen space of finite elements of
lo¢(u)| < Flon(u)l,  (loe(w)] = Flow(w)])u: =0, degree one is
or(u) up <0. 4 Vi = {Uh; vy, € (%(ﬁ))za vplr € (P(T))?
Conditions (3) express unilateral contact and condi- VT € F,, v, =0o0n FD},

tions (4) represent Coulomb’s friction. The closed convex
cone K of admissible displacements is a subset in the
Sobolev space H'(2))? of the displacement fields sat-

isfying the embedding and the non-penetration conditions

where € (Q2) and P,(T) denote the space of continuous
functions onQ) and the space of polynomial functions of
degree one orl’, respectively. We assume that the fam-
ilies of monodimensional traces of triangulations Bp

are quasi-uniform in order to use inverse inequalities (Cia-
rlet, 1991). LetW,, be the range ofV';, by the normal
trace operator ol'c:

K:{v:(vl,vg)ev, UHSOOHFC}, (5)
where
V = {’U = (Ul,Ug) € (Hl(Q))Z, v = OOHFD}.

Wh - {/th; Hh = ’vh‘l—‘c 'n, Vh € Vh}~
As is done in (Néaset al,, 1980), we consider the map-

ping ® : M — M with Clearly, the spacéV;, involves functions which are con-
. tinuous and piecewise of degree one. We defidg as
M = {04 eH (l¢), a> 0}7 the closed convex cone of Lagrange multipliers express-
ing non-negativity:
defined for allg € M as ®(g) = —o,(u(g)), where
u(g) € K is the unique solution of the variational in- M, = {,uh W, pn > 0}.
equality

() € K. /Qmj (u(9)) 233 (0 — u(g)) 4O Foranyw andwv in (H'(Q2))*, define

a(u,v) = o(u): e(v)dQ,
+ gl = e o) = [ otw: e

> [ il =) a Lw) = [ fvaes [ Foodr
Q Q Iy

Finally, let us mention that we still keep the notatiep =
+/FFZ' (vi—ui(g)) dT', Vo € K, (6) v 4 vpet 0ON the boundanys, for any v, € V.

N
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To approximate Coulomb’s frictional contact prob- then the second argumeny, is unique andP-(gy,) ad-
lem, we choose a mixed finite element method with a non- mits a unique solution. Note that condition (8) is fulfilled
negative parameter regularizing the absolute value (the because the spadé’;, coincides with the space obtained
cases = 0 corresponds to the non-regularized problem). from V', by the normal trace operator dn.

As in the continuous framework (6), the approximated It becomes then possible to define two maps: the first
problem requires the introduction of an intermediate set- one denoted by¥., yielding the first component (i.e.

ting with a given slip limitg;, € Mj,. It consists irfinding W.n(gn) = uy), and the other denoted by.,, such that
up € Vi, and A\, € Mj, such that

(I) . Mh — Mh7
CL(’LL}L, Uy — uh) + . )\h (U}Ln - uhn) dr ch gn +H— )\h,
C
+/ J—'gh( vi, +e?— \/u,%t + 52) dr where (up, Ap) is the solution to P.(g). The intro-
I'e (7) duction of this map allows us to define a solution to
> L(vn —up), Vop € Vi, Coulomb’s discrete frictional contact problem.
Definition 1. A solution to Coulomb’s discrete regular-
s — Ap)Up, Al <0, Yup € My, . . - .
/FC (pa n)ur, i h ized (resp. non-regularized) frictional contact problem is

a solution to P-(\;,) with ¢ > 0 (resp.e = 0), where

In what follows, the problem (7) will be denoted by A € M, is a fixed point of®.,.

P.(gn)
. Set
Remark 1. It can be checked that itq,, ;) solves (7), )
then w;, is also a solution of the variational inequality Vi = {'vh €V, vpe =0 0On Fc}.

which consists in findingu;, € K, satisfying
It is easy to check that the definition ¢f ||7%’h given by

/ Vg, dI’
|¥e}

[onlh

a(wp, vy — up)

+ /I‘CJ:gh(\/U%t+€2 - \/u,%t—l—€2) dl' > L(v, — up)

for all v, € K. Here K, stands for a finite dimen-
sional approximation o defined in (5): is a norm onW;, (since the condition (8) holds). The
notation || - ||; represents th¢ H'(2))2-norm.

9)

Wiy, = sup
v,eV,

K, = {’Uh S Vh, / HhUnn dI' < 0, V/Jh c Mh}
te 3. Existence and Uniqueness Studies

Problem P.(g,) is also equivalent to finding a

saddle-point(un, An) € V', x M, satisfying We are now interested in the existence and uniqueness

study for the discrete problem. In order to establish the ex-
Llun, ) < L(un, \) < ZL(vn, \n), istence, it suffices to show that the mappihg;, admits
a fixed point in M;,, by using Brouwer’s theorem. The
Yoy € Vi, Yup € My, uniqueness is ensured if the mapping is contractive. Such
a technique was already used in the non-regularized case
where with discontinuous and piecewise constant Lagrange mul-
1 tipliers (Haslinger, 1983; 1984). Our aim is to study the
Z(Vn, n) = 5“(”’“ vp) +/ funVnp AT regularized case (and also the non-regularized one) when
using Lagrange multipliers which are piecewise continu-

T'c
+/ th\/m dr — L(vp,). ous of degree one.
|6}

' ' Theorem 1. Let € > 0. The following results hold:
From the results concerning saddle-point problems ob- (Existence) For any positiveF, there exists a solution

tained in (Haslingeet al, 1996), the existence of such 4 coylomb's discrete regularized frictional contact prob-
a saddle-point follows. Moreover, th& -ellipticity of lem.

gi(agg |i|;r}glszs;1;2at;ha/ﬁrs(;tnaer%:r;wemh IS unique. Be- (Uniqueness) Assume thdtp, NTe = 0. If F <
' h h Ce?|log(h)|~1, then the problem admits a unique solu-

tion. The positive constanC depends on neitheh

AC HhUnn dI' = 0, Yo, € Vy, = Up = 0, (8) nor «.
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Proof. Let (up, An) be the solution toP.(g,). Taking which implies by subtraction that
vy, = 0 in (7) gives _
/ (An = An)Vhn AT = a(@y — wp,vp)
a(uh, uh) + A Upy AL Te
1'\ _ ~
‘ < M'||up, — @yl |vnlli,  Yon € Vi,

_ /Fc Fan (5 _ W) dr < L(uy). (10)

Sinceg, > 0, € — y/u3, +¢2 < 0, and according to

/ )\huhn dl' = 0,
I'c

it follows from (10), the V-ellipticity of a(-,-) and the
continuity of L(-) that

allunll? < alwn,up) < L(ug) < Cllun,

where « stands for the ellipticity constant @f(-, -). Here,
the constantC depends on the external loagsand F'.
Therefore using the trace theorem yields

!

cc
el 3 ppy < Cllunlly < (11)

Besides, the equality in (7) implies
a(uh, ’Uh) + / AUpn dl = L(’Uh), Yoy € Vh.
T'c
Denoting by M’ the continuity constant of(-,-) yields

A Upy Al < M’||uhH1 H’uh||1—|—C||vhH1, Yoy € Vh.
e

As aresult,
Ml
IAnl_g < Mllunll +C < (= +1)C:
So, we conclude that
”(I)ah(gh)H,%ﬁ <C', Vgn € My, (12)

where C’ only depends on the applied loags F, and
on the continuity and ellipticity constants of-, -).

The existence result of Theorem 1 consists now in

showing that the mappin@.; is continuous.

Let (un,)\n) and (up,A,) be the solutions to
P.(gy) and P.(g,,), respectively (whergy, € M, and
gy, € My). From (7), we get

a(uh, vh) + ARUpy dI = L(’Uh), Yvy, € ‘7}“
Tc
and
a(ﬁh, ’Uh) +/ Xh’l)]—m dI' = L(’Uh), Yv;, € Vh,
I'e

where the continuity of the bilinear forma(-, -) was used.
So we get the following estimate:

IAn = Anll—yn < M [lup — @1 (13)

Next, we show thatv.;, is continuous fromM, into
V.. We consider agaitfuy, Ay,) and (uwy, \p), the solu-
tions to P.(g5) and P.(g,,), respectively. We have

a(uh, v — uh) + / )\h(vhn — U}m) dar

T'c
+/ ]-"gh( vl + €2 — \/u%t +62) dr
I'c
> L(vy, —up), Yo, € Vi,

and

a(ﬁh,vh — ﬂh) + / Xh(vhn - ﬂhn) dr
T'e

+/ F g \/vfbt+52f\/ﬂflt+52)dl“
I'c

Yo, € V.

> L(v, — uy),

Choosingwv;, = @y, in the first inequality andv;, =
uyp, in the second one, from (7) we obtain

a(uh,ﬁh—uh)—l—/}'gh<\/ﬂ,2n+g2_\/uit+g2) dl’
Te

> L(wp, — up)

and
a(wy,, up —uy, +/ Fg u? 4e2—1/u2, +e2)dl
( o+ Fa (Ve )
> L(up, — ).
Thus

a(up, — wp, up, — wp)

< /Fc}'(gh—gh)(\/u%t—i—ez - \/uit+52) dr. (14)

Consequently,

aflun — |}

S ‘7:th - thH*%(FC)

xH\/ﬂit+52 - u§t+a2H (15)

HZ(Te)
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The next step consists in estimating tE2 -norm term

in (15). To attain our ends, we need to use two lemmas:

Lemma 1. There exists a positive consta6t satisfying
19005 oy < C (1713 o 9l (re
I leaerlglya ) )- (26)
forall f andg in H2(I'c) N L®(T¢).

Proof. From the definition of thefl 2 (I'¢:)-norm (Adams,
1975), we have

1ol
= If9ll72(re)
(f(2)g(x) — Fy)g())®
+/FC/FC o= drdr.

Let us begin with bounding (roughly) the first term:
If9lface) = [ Fa)g?a)ar
C

<N fIZ2 ey 19l o0 (roy- (7)
The second term is handled as follows:

/ / (f(ﬂﬁ)(g(flf)aq(y))w(y)(f(ﬂﬂ)*f(y)))r"drdF
I'edTe (v — y)2

o [ LWl sy

(z —y)?

7)) (f(z) -
(z—y)

<2l e l9l2 o,

F)?

+ 2

drdr (18)

2 2
Iy e )-
Putting together (17) and (18) establishes (16). m

Lemma 2. For any real numbemp € [1, co|, the following
inequality holds:

||f||LP(Fc) < C\/I)HfHH%(FC)’ Vf € HE(FC% (19)
where C' is independent op.

Proof. see (Ben Belgacem, 2000). =

O c

Proof of Theorem 1 (continued)\We consider the 3-
norm term in (15). Employing the estimate (16) gives

H\/ﬂ’z‘t +e? - \/u%“t + 62“1{%(%)

Uht + Ut

(Uht — Tht) —=
Vg + €+ \/uj, + e H3(T¢)

< Cllunt = Untl| Lo (re)

v H Uht + Upt

Vg + e+ \/uj, + €2 H3(T¢)
+ Cllune = Tnell 4 1y
" ’ ul Uh; — 2 2 - (20)
\/uht +es+ \/uht t+e Loo(Te)

In the previous estimate, we leave the third term un-
changed whereas the last one is bounded by remains
then to bound the first two terms, which is performed here-
after. We begin with the first one:

lunt — Unel| Loe (o)

1 _
< Ch™7 |lune — Tnel| Lo (rey

< C\/ph™7 |[une—Tane| (21)

H2(Tc)’
forany p € [1, 00[. In (21), we used an easily recoverable
inverse inequality (Ciarlet, 1991), as well as (19). The
second term of (20) is bounded due to (16):

Upt + Ut
Vi + 2+ V/uj, + £

HZ(Ie)

< Cllunt + Tne || Lo (v o)

1
x
Vi + €2+ /uf, + 2 HE(To)
+ Cllune +8nell g 1y
y 1
VUi, +e2 +ul, + €2 Lo (T
< Cy/ph™ 7 |lup, Jrﬂht”H%(Fc)
y 1
Vg + 2+ \/uj, + €2 H2(T¢)

1
+ 2*||“ht + Upe || (22)
15

Lo
H?2 (Fc)
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where the first L>°-norm term is bounded as in (21),

whereas the other is roughly bounded bj2s. Next, we
develop the firstH z-norm term in (22):

2

1
‘ Vi, + €+ Vuf +

H2 (Do)

2
1

H VB A AN | e
NS
e JTe (y —z)?

<\/uht ) + €2 +\/uh ) + €2

2
drdr.
) + €2

1
) +e2 4+ Vui,(y)

\/u ht

It is easy to check that th&2-norm term is less than
. Developing the previous integral, bound-

meagl'c)/4e?
ing then the denominator and using the estiméiet

b)?2 < 2a% + 2b* furnishes the following upper bound:

N—
[ V)

| (V@) + & = Vi) + 22
et /rc /rc (y — )2

(\/uht +e2 — Jul,(y —|—62)2

(y — )2

drdr.

We use the estimatp/a2 + £2 —
the previous expression so that

VBT + 2| < |a—b] in

2

1
‘ \/ﬁi2115+52+ \/“}%t+52 H3 (To)
meagl'c) 1 o
< " -7
=7 4e? +854<H Wil gy + Nunilgs o, )>

Therefore we deduce from (11) that there exists a positive

constantC' satisfying

1
H \/ﬂit +e? + \/uiZLt + &2

< C(% + 6%) (23)

HZ(To)

Applying (23) to (22) and using (11) and (20), we get

H\/ﬂit +e2—

< Cllunt — Tnel|

U]Q”—FEQH 1
H2(I'c)

H2(Io)

x <1+\/;5h—é( +fh“(

)

Choosingp = —log(h) (h is assumed to be sufficiently
small) in the previous estimate, we obtain

H\/ﬂ%t +e? - \/u?n‘, +

HH%(FC)

< Cllups — Uht”H%(Fc)
V=Togh —logh  —logh
x <1+ Eog n Zg Eog ) (24)

Inequality (15) together with (24) and the trace theorem
becomes

[wn — a1
é C‘F”gh - yh”H*%(FC)
v/ —logh —logh —logh
><<1+ eog + Zg + ;g ) (25)

which proves that the mapping.; is continuous. This,
together with (13), implies thab.;, is continuous. Then,
from (12) and the Brouwer fixed point theorem, we con-
clude the existence of at least one solution to Coulomb’s
discrete regularized frictional contact problem.

We now consider the uniqueness. Under the assump-
tionthatT'p NT¢ = 0, it was proved in (Coorevitst al.,
2002) that there exists a positive constan{independent
of h) satisfying

Bl oy < Inll_yn Vi € Wi (26)

Assembling this result with (25) and (13) yields

2 =Ml -4

S Cngh - gh”H*%(FC)

log h

X <1+ ”_i_ogh+ — +_1;gh>.

Supposing that and e are small enough, we deduce that

the mapping®.;, is contractive if the friction coefficient
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F is less thanCs2|log(h)|~!. This completes the proof 4. The Study of a Simple Finite Element

of the theorem. m Example
The non-regularized case (i.e.= 0) is handled i we consider the triangl€ of vertices A = (0,0), B =
the proposition that follows. (¢,0) and C = (0,¢) with ¢ > 0. We definel'p =
[B,C], Ty = [A,C], Te = [A,B], and { X3, X5} de-
Proposition 1. Let ¢ = 0. The following results hold: notes the canonical orthonormal basis (see Fig. 1). We

suppose that the volume forcgf’s are absent and that the
surface forces denoted b = F} X, + F> X, are such
that F; and I, are constant ol yy.

(Existence) For any positivéF, there exists a solution to
Coulomb’s discrete frictional contact problem.

(Uniqueness) Assume thRt, NT¢ = 0. If F < Chz,
then the problem admits a unique solution. The positive
constantC' is independent of..

Proof. Estimates (12) and (13) remain still valid when

C

\

P

¢ = 0. The starting point of the analysis is (14): \
\

\

a(up, — wp, up, — wp)

< F(gn — gn)([Tne| — |une|) dT

T'e

>

a3
S

@

< Flgn = gnllez@wey I [ane] = une| [[L2c0e)
1 Fig. 1. Problem setting.
< CFh72gn = gnll g o [0t = vnellz2rey
We suppose thaf) is discretized with a single finite
lwn — wp|1, element of degree one. Consequently, the finite element
space becomes

1, _
S CFh72gn = gnll -3
where an inverse inequality betweed?(I'c) and { 2
, Vi = v = (op1, on2) € (PLQ)), - 0}.
H-2(T¢) was used. From the last bound, combined g on = (n1, v2) € (P () vhlry
130 =Xl 3 oy < CFR 2 llgn = Tull 3 My ={gn € PiTo), gn =0, gu(B)=0}.
This proves the proposition. m Clearly, V, is _of dimensic_)n two and\/}, bglopgs to the
space W, of linear functions onI'¢ vanishing at B,
which is of dimension one. Moreover, since (8), or equiv-

Remark 2. 1. In the proof of Proposmqn 1, we are nqt_ alently (9), is satisfied, it follows that the existence is en-
able to remove the mesh dependent unigueness condition

- . > i i-
also when avoiding thel.2(T'c)-norms and using only zg;e(lj for alle > 0 according to Theorem 1 and Proposi
H?z(I'¢)-norms and H 2 (I'¢)-norms. More precisely, '

there does not exist a positive constaiitindependent of Let v, € Vi and p, € M,. Then we denote
h such that by (Vr,Vn) the value ofwv,(A), corresponding to the

tangential and the normal displacements at pointre-
spectively (in our example, we havér = —uvp1(A) and
Vn = —vp2(A)). We also denote by the value ofu,
at point A. Then, for anyv;, € V; and u, € My, we
obtain

| [ne| — unt HH%(FC) < Clan: — UhtHH%(FC)- e(vp) = 1 2Vr Vr+Vn
TN\ v vy 2uy

I 9 — gnl ”H’%(I‘c) < C|lg, — gh”H*%(FC)

or

2. The use of inverse inequalities in the proofs of Theo- 5q
rem 1 and Proposition 1 implies that it is not possible to

generalize the calculus to the continuous problem. A2)Vr+AVN  uw(Vr+Vy)

1
o(vy)=-
E\ 0 p(Ve+ Vi) (A+20)V+AVr
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Therefore (i) Case 1: Un = 0. Equations (27) become

1
a(up,vp) = B ((/\ +3u)(UrVr + UnVnN)

+ (A @) (UrVy + Un'Vr))

and .
L('U}L) = —§£(F1VT + FQVN).
Besides,
/ HhUhn dI' = G)VNé

e 3

and
FO|Vrll
.7-',uh|vht| dl' = %
Te

Let (un, Ap) be a solution to the discrete unilateral con-
tact problem with Coulomb’s friction and without regular-
ization (i.e. withe = 0 in (7)). As was mentioned above,
the notation (U, Uy ) stands for the value ol (A)
(Ur = —up1(A) and Uy = —up2(A)). We also denote
by A’ the value of\;, at point A. To simplify the nota-
tion and the forthcoming calculations, we set= 2A’/3.

The discrete unilateral contact problem with
Coulomb’s friction and without regularization issued
from (7) and Definition 1 consists then in finding
(Ur,Un,A) € R3 such that

A+3u)(UrVr+UnVN)+ (A + 1) (Ur VN +UNV7)
+ AV + FALVy |

> —K(FlVT + FQVN), VVr eR, VVy R,

A+ 3u) (U2 +U3%) 4 2(\ + ) (UrUy) + FALU7|
= —{(FAUr + FhUy),

A>0, Ux<0, AUy=0,

or equivalently,

A4+3u) Uy + (A + p)Ur + AL = —LF5,
A+ p)UN + (A +3u)Up + FAL > —LFy,
A+ w)Un + A+ 3u)Up — FAL < —(F,

(A +3u)(UF + UR) + 2(A + ) (UrUn) + FAL U7 |
= —E(FlUT + FQUN),

A >0, Un <0, AUy =0.
(27)
Let us now look for solutions to (27). Clearly, a solution

to (27) satisfies eithet/;y =0 or A = 0.

A4+ w)Ur + A = —LFy,
()\ + 3,u)UT + FAN > —(F,
AN+ 3u)Ur — FAL < —(Fy,

(A + 3 U2 + FA|Uy| = —CF\Ur,

A>0.
e Suppose that/r = 0. Then
A= _F27

Fy <0, |Fy|<F|FR.

e Suppose that/r > 0. Then
A+ w)Ur + Al = —LF>,
(A +3u)Up + FAL = —LFy,
A>0.
— Assume thatF # (A + 3p)/(A+ p). Then

UFFy, — Fy)

Ur =080 - 70+ )

>0,

A+ F — (A +3u)Fs
(A+3p) = F(A+p)

— Assume thatF = (A + 3p)/(A + p). Then

x If F; = FFj, the solutions are
A+ p)Urp+Al = —(Fy, Ur >0, A>0.
x If Fy # FF5, then there are no solutions.
e Suppose that/r < 0. Then
A+ p)Up + Al = —UF5,
A+ 3u)Ur — FAL = —(FY,

A>0,

which gives

U(FFy + Fy)

Ur =0 s —For )

<0,

A+ p)Fr+ (A +3p)Fy
—(A+3p) = F(A+p)
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(i) Case 2: A =0.

A+3)Un + A+ p)Up = —LF3,
A+ 1) Un + (A +3p)Up = —LF,

UN§07
so that
U _ A+ wF = (A +3p)F)
g Ap(A + 2p) ’
(A Fi — (A + 3u)F:
Uy — (A +p)F1 = (A +3p) 2)<O.

Ap(A + 2p) -

All the results are reported in the proposition that fol-
There are three cases which consist in compar-

lows.
ing the friction coefficient 7 with the critical value
(M +3u)/(A+ ) = 3 —4v (v denotes Poisson’s ratio

with 0 < v < 1/2). The results are also depicted in

Figs. 2—4.

Proposition 2. 1. If 7 < (A + 3u|/(A+ p), then the
problem (27) admits a unique solution:

(Separation) IfF5 > (A + p) /(A + 3u))Fy, then

LA+ p)F— (A +3p)F)
Ur =

4p(X + 2p) ’
(28)
(N + )P — (A +3p)F)
Uy = , A=0.
Ap(A +2p)
(Stick) If |Fy| < F|F3| and F» < 0, then
Ur=0, Uy=0, A=-F. (29)

(Right slip) If F» < (A4 p)/ (A +3w))F1, FF+F >
0, then

Un — UFFy+ Fy)
T (3 — F +p) 0
A+ Fi + (A +3p)F
Uy =0, A= .

—(A+3p) = F(A+p)

(Left Sllp) If Iy < (()\ + M)/()\ + 3/1))F1, FF, — Fy >
0, then

Ur — UFF, — Fy)
T_()‘+3M)*f(>\+u)’ o
Un =0, A:()\—'_IU’)FI_()\‘F?)IU,)FQ

(A+3u) —F(A+p)

g
Separation
Uy<0
Right sli
g p F
U=0
U,<0
Left slip Stick
UN= 0 UN =
Up>0 U.=0

Fig. 2. CaseF < *;3: = 3 — 4v. Problem (27)
admits a unique solution.

g
Separation
Uy<0
Right slip
£
Ug=0 F
. U.<0
Stick
U =

st
Infinity of solutions
from stick to left slip

Fig. 3. CaseF = 53 — 3 — 4u. Problem (27) admits

either a unique or an infinity of solutions.

g
Separation
Uy<0
2 solutions:
stick and separation Right slip
U=0
U.<0
F
3 solutions :
stick, left slip Suik
and separation =0
. T
2 solutions:
stick and left slip

Fig. 4. CaseF > 3% — 3 — 4u. Problem (27)
admits a unique, two or three solutions.
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2. If F = (A+3u)/(A+ p), then, depending on the
loadings, the problem (27) admits either a unique solution
or an infinity of solutions:

(Separation) IfFy > (A + w)/ (A + 3w)) F1, then the so-
lution is given by (28).

(Stick) If «F|Fy| < Fy < F|Fy| and F» < 0) or Fy
Fy = 0, then the solution is given by (29).

(Right slip) If F < (A + ) /(A + 3p))Fy, FFy+Fy >
0, then the solution is given by (30).

(From stick to left slip) If £/, = FFy and F; < 0, then
there exists an infinity of solutions:

U — —U(Fy + )
= 2T P)

At p forall 0 <3< —F,.
UN:07 AZB»

3. If F > (A+3u)/(A+ p), then, depending on the
loadings, the problem (27) admits one, two or three solu-
tions:

(Separation) IfF5 > (A + ) /(A +3w))Fy and FF, —

Fy > 0, then the solution is given by (28).

(Stick) If (—((A+3u)/ (A + p))|Fo| < Fy < F|F3| and
Fy, < 0)or Fi = F», = 0, then the solution is given
by (29).

(Rightslip) If F < (A4 p)/(A+3p))Fy, FF+F; >

0, then the solution is given by (30).

(Separation and stick) Iff; = FF, and Fy < 0, then
there are two solutions given by (28) and (29).

(Stick and left slip) IfFy, = (A +3u)/(A+ u))F> and
Fy < 0, then there are two solutions given by (29)
and (31).

(Separation, stick and left slip) IEF|Fy| < Fi <

—((A+3u)/ (A4 w))|F2| and F» < 0 then there are
three solutions given by (28), (29) and (31).
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