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We are interested in the finite element approximation of Coulomb’s frictional unilateral contact problem in linear elasticity.
Using a mixed finite element method and an appropriate regularization, it becomes possible to prove existence and unique-
ness when the friction coefficient is less thanCε2| log(h)|−1, whereh and ε denote the discretization and regularization
parameters, respectively. This bound converging very slowly towards0 when h decreases (in comparison with the already
known results of the non-regularized case) suggests a minor dependence of the mesh size on the uniqueness conditions, at
least for practical engineering computations. Then we study the solutions of a simple finite element example in the non-
regularized case. It can be shown that one, multiple or an infinity of solutions may occur and that, for a given loading, the
number of solutions may eventually decrease when the friction coefficient increases.
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1. Introduction and Problem Set-Up

Coulomb’s friction model is currently chosen in the nu-
merical approximation of contact problems arising in
structural mechanics. From a mathematical point of view,
the study of the continuous model in elastostatics using
the associated variational formulation obtained in (Du-
vaut and Lions, 1972) leads to existence results when the
friction coefficient is sufficiently small (Eck and Jarušek,
1998; Jarušek, 1983; Kato, 1987; Nečaset al., 1980). As
regards the associated finite element model, it was proved
in (Haslinger, 1983; 1984) that it always admits a solu-
tion and that the solution is unique provided that the fric-
tion coefficient is lower than a positive value vanishing as
the discretization parameter decreases. Also in (Haslinger,
1983), a convergence result of the finite element model to-
wards the continuous model was established. Besides, in
the finite dimensional context, numerous studies and ex-
amples of non-uniqueness using truss elements were ex-
hibited, proving that the problem is in general not well
posed (Alart, 1993; Janovský, 1981; Klarbring, 1990).

Our first aim in this paper is to study the influence of
a specific regularization (i.e. the smoothing of the abso-
lute value involved in the friction model) on the unique-
ness conditions for the discrete problem. We consider a
mixed finite element method in Section 2 and, denoting
by h and ε the discretization and the regularization pa-
rameters, respectively, we show in Section 3 that the prob-
lem admits a unique solution if the friction coefficient is
less thanCε2| log(h)|−1, and we notice that a bound of

only Ch
1
2 can be obtained in the case of the exact model

(i.e. whenε = 0). As a consequence, we note that ifε is
chosen as a parameter slowly decreasing towards zero (as
h decreases), then the bound of the non-regularized case
becomes more satisfactory than the one arising from the
exact model.

Our second aim, in Section 4, is to choose a par-
ticular case of a finite dimensional problem in the non-
regularized case: a simple example using finite elements.
We study this problem and show that it may admit one,
multiple or an infinity of solutions. Such an example com-
pletes and illustrates the already known results using truss
elements, especially (Klarbring, 1990).

Let us now consider an elastic body occupying in
the initial configuration a bounded subsetΩ of R2. The
boundary∂Ω of the domainΩ is supposed to be Lips-
chitz and consists of three non-overlapping partsΓD, ΓN

and ΓC . The unit outward normal on∂Ω is denoted by
n = (n1, n2) and we sett = (n2,−n1). The body is
submitted to volume forcesf = (f1, f2) ∈ (L2(Ω))2

on Ω and to surface forcesF = (F1, F2) ∈ (L2(ΓN ))2

on ΓN . The partΓD is embedded and we suppose that
the surface measure ofΓD does not vanish. Initially, the
body is in contact with a rigid foundation on the straight
line segmentΓC .

The unilateral contact problem with Coulomb’s fric-
tion consists in finding the displacement fieldu =
(ui), 1 ≤ i ≤ 2 and the stress tensor fieldσ =
(σij), 1 ≤ i, j ≤ 2, satisfying the following condi-
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tions (1)–(4):

div σ(u) + f = 0 in Ω, σ(u)n = F onΓN ,

u = 0 onΓD,
(1)

where (div σ(u))i = σij,j , 1 ≤ i ≤ 2, the notation,j

denotes thej-th partial derivative and the summation con-
vention of repeated indices is adopted. The stress tensor
field is linked to the displacement field by the constitutive
law of linear elasticity

σij(u) = λεkk(u)δij + 2µεij(u), (2)

where λ and µ are positive Lamé coefficients and
εij(u) = (1/2)(ui,j + uj,i) denotes the linearized strain
tensor field.

On the boundary∂Ω, we write σ(u)n = σn(u)n+
σt(u)t and u = unn + utt. Let F > 0 stand for the
friction coefficient onΓC . The conditions on the contact
zoneΓC are as follows:

un ≤ 0, σn(u) ≤ 0, σn(u) un = 0, (3)

|σt(u)| ≤ F|σn(u)|,
(
|σt(u)| − F|σn(u)|

)
ut = 0,

σt(u) ut ≤ 0. (4)

Conditions (3) express unilateral contact and condi-
tions (4) represent Coulomb’s friction. The closed convex
cone K of admissible displacements is a subset in the
Sobolev space(H1(Ω))2 of the displacement fields sat-
isfying the embedding and the non-penetration conditions

K =
{

v = (v1, v2) ∈ V , vn ≤ 0 onΓC

}
, (5)

where

V =
{

v = (v1, v2) ∈
(
H1(Ω)

)2
, v = 0 onΓD

}
.

As is done in (Něcaset al., 1980), we consider the map-
ping Φ : M → M with

M =
{

α ∈ H− 1
2 (ΓC), α ≥ 0

}
,

defined for all g ∈ M as Φ(g) = −σn(u(g)), where
u(g) ∈ K is the unique solution of the variational in-
equality

u(g) ∈ K,

∫
Ω

σij

(
u(g)

)
εij

(
v − u(g)

)
dΩ

+ 〈Fg, |vt| − |ut(g)|〉ΓC

≥
∫

Ω

fi

(
vi − ui(g)

)
dΩ

+
∫

ΓN

Fi

(
vi−ui(g)

)
dΓ, ∀v ∈ K, (6)

where 〈·, ·〉ΓC
denotes the duality pairing between the

fractional Sobolev spaceH
1
2 (ΓC) (Adams, 1975) and

its dual spaceH− 1
2 (ΓC). Following (Něcaset al., 1980;

Haslingeret al., 1996), a weak solution of the unilateral
contact problem with Coulomb’s friction is a pair(u, γ),
where γ is a fixed point ofΦ and u is the unique solu-
tion of the problem (6) withg = γ.

The first existence result for the unilateral contact
problem with Coulomb’s friction in the case of a suffi-
ciently small friction coefficientF was proved in (Něcas
et al., 1980). Generalizations and/or improvements were
established in (Eck and Jarušek, 1998; Jarušek, 1983;
Kato, 1987). The uniqueness seems to remain an open
problem.

2. The Discrete Problem

We discretize the domainΩ with a family of triangula-
tions (Th)h, where the notationh > 0 stands for the dis-
cretization parameter representing the greatest diameter of
a triangle inTh. The chosen space of finite elements of
degree one is

V h =
{

vh; vh ∈
(
C (Ω)

)2
, vh|T ∈ (P1(T ))2

∀T ∈ Th, vh = 0 onΓD

}
,

where C (Ω) and P1(T ) denote the space of continuous
functions onΩ and the space of polynomial functions of
degree one onT , respectively. We assume that the fam-
ilies of monodimensional traces of triangulations onΓC

are quasi-uniform in order to use inverse inequalities (Cia-
rlet, 1991). LetWh be the range ofV h by the normal
trace operator onΓC :

Wh =
{

µh; µh = vh|ΓC
· n, vh ∈ V h

}
.

Clearly, the spaceWh involves functions which are con-
tinuous and piecewise of degree one. We defineMh as
the closed convex cone of Lagrange multipliers express-
ing non-negativity:

Mh =
{

µh ∈ Wh, µh ≥ 0
}

.

For anyu and v in (H1(Ω))2, define

a(u,v) =
∫

Ω

σ(u) : ε(v) dΩ,

L(v) =
∫

Ω

f · v dΩ +
∫

ΓN

F · v dΓ.

Finally, let us mention that we still keep the notationvh =
vhnn + vhtt on the boundary∂Ω, for any vh ∈ V h.
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To approximate Coulomb’s frictional contact prob-
lem, we choose a mixed finite element method with a non-
negative parameterε regularizing the absolute value (the
caseε = 0 corresponds to the non-regularized problem).
As in the continuous framework (6), the approximated
problem requires the introduction of an intermediate set-
ting with a given slip limitgh ∈ Mh. It consists infinding
uh ∈ V h and λh ∈ Mh such that

a(uh,vh − uh) +
∫

ΓC

λh(vhn − uhn) dΓ

+
∫

ΓC

Fgh

(√
v2

ht + ε2 −
√

u2
ht + ε2

)
dΓ

≥ L(vh − uh), ∀vh ∈ V h,∫
ΓC

(µh − λh)uhn dΓ ≤ 0, ∀µh ∈ Mh.

(7)

In what follows, the problem (7) will be denoted by
Pε(gh).

Remark 1. It can be checked that if (uh, λh) solves (7),
then uh is also a solution of the variational inequality
which consists in findinguh ∈ Kh satisfying

a(uh,vh − uh)

+
∫

ΓC

Fgh

(√
v2

ht+ε2 −
√

u2
ht+ε2

)
dΓ ≥ L(vh − uh)

for all vh ∈ Kh. Here Kh stands for a finite dimen-
sional approximation ofK defined in (5):

Kh =
{

vh ∈ V h,

∫
ΓC

µhvhn dΓ ≤ 0, ∀µh ∈ Mh

}
.

Problem Pε(gh) is also equivalent to finding a
saddle-point(uh, λh) ∈ V h ×Mh satisfying

L (uh, µh) ≤ L (uh, λh) ≤ L (vh, λh),

∀vh ∈ V h, ∀µh ∈ Mh,

where

L (vh, µh) =
1
2
a(vh,vh) +

∫
ΓC

µhvhn dΓ

+
∫

ΓC

Fgh

√
v2

ht + ε2 dΓ− L(vh).

From the results concerning saddle-point problems ob-
tained in (Haslingeret al., 1996), the existence of such
a saddle-point follows. Moreover, theV -ellipticity of
a(·, ·) implies that the first argumentuh is unique. Be-
sides, if for anyµh ∈ Wh one has∫

ΓC

µhvhn dΓ = 0, ∀vh ∈ V h =⇒ µh = 0, (8)

then the second argumentλh is unique andPε(gh) ad-
mits a unique solution. Note that condition (8) is fulfilled
because the spaceWh coincides with the space obtained
from V h by the normal trace operator onΓC .

It becomes then possible to define two maps: the first
one denoted byΨεh yielding the first component (i.e.
Ψεh(gh) = uh), and the other denoted byΦεh such that

Φεh :
Mh −→ Mh,

gh 7−→ λh,

where (uh, λh) is the solution toPε(gh). The intro-
duction of this map allows us to define a solution to
Coulomb’s discrete frictional contact problem.

Definition 1. A solution to Coulomb’s discrete regular-
ized (resp. non-regularized) frictional contact problem is
a solution toPε(λh) with ε > 0 (resp.ε = 0), where
λh ∈ Mh is a fixed point ofΦεh.

Set

Ṽ h =
{

vh ∈ V h, vht = 0 on ΓC

}
.

It is easy to check that the definition of‖ ·‖− 1
2 ,h given by

‖ν‖− 1
2 ,h = sup

vh∈
˜V h

∫
ΓC

νvhn dΓ

‖vh‖1
(9)

is a norm onWh (since the condition (8) holds). The
notation‖ · ‖1 represents the(H1(Ω))2-norm.

3. Existence and Uniqueness Studies

We are now interested in the existence and uniqueness
study for the discrete problem. In order to establish the ex-
istence, it suffices to show that the mappingΦεh admits
a fixed point in Mh by using Brouwer’s theorem. The
uniqueness is ensured if the mapping is contractive. Such
a technique was already used in the non-regularized case
with discontinuous and piecewise constant Lagrange mul-
tipliers (Haslinger, 1983; 1984). Our aim is to study the
regularized case (and also the non-regularized one) when
using Lagrange multipliers which are piecewise continu-
ous of degree one.

Theorem 1. Let ε > 0. The following results hold:

(Existence) For any positiveF , there exists a solution
to Coulomb’s discrete regularized frictional contact prob-
lem.

(Uniqueness) Assume thatΓD ∩ ΓC = ∅. If F ≤
Cε2| log(h)|−1, then the problem admits a unique solu-
tion. The positive constantC depends on neitherh
nor ε.
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Proof. Let (uh, λh) be the solution toPε(gh). Taking
vh = 0 in (7) gives

a(uh,uh) +
∫

ΓC

λhuhn dΓ

−
∫

ΓC

Fgh

(
ε−

√
u2

ht + ε2
)

dΓ ≤ L(uh). (10)

Sincegh ≥ 0, ε−
√

u2
ht + ε2 ≤ 0, and according to∫

ΓC

λhuhn dΓ = 0,

it follows from (10), theV -ellipticity of a(·, ·) and the
continuity of L(·) that

α‖uh‖2
1 ≤ a(uh,uh) ≤ L(uh) ≤ C‖uh‖1,

whereα stands for the ellipticity constant ofa(·, ·). Here,
the constantC depends on the external loadsf and F .
Therefore using the trace theorem yields

‖uht‖
H

1
2 (ΓC)

≤ C ′‖uh‖1 ≤
CC ′

α
. (11)

Besides, the equality in (7) implies

a(uh,vh) +
∫

ΓC

λhvhn dΓ = L(vh), ∀vh ∈ Ṽ h.

Denoting byM ′ the continuity constant ofa(·, ·) yields∫
ΓC

λhvhn dΓ ≤ M ′‖uh‖1 ‖vh‖1+C‖vh‖1, ∀vh ∈ Ṽ h.

As a result,

‖λh‖− 1
2 ,h ≤ M ′‖uh‖1 + C ≤

(M ′

α
+ 1
)
C.

So, we conclude that

‖Φεh(gh)‖− 1
2 ,h ≤ C ′, ∀gh ∈ Mh, (12)

where C ′ only depends on the applied loadsf ,F , and
on the continuity and ellipticity constants ofa(·, ·).

The existence result of Theorem 1 consists now in
showing that the mappingΦεh is continuous.

Let (uh, λh) and (uh, λh) be the solutions to
Pε(gh) and Pε(gh), respectively (wheregh ∈ Mh and
gh ∈ Mh). From (7), we get

a(uh,vh) +
∫

ΓC

λhvhn dΓ = L(vh), ∀vh ∈ Ṽ h,

and

a(uh,vh) +
∫

ΓC

λhvhn dΓ = L(vh), ∀vh ∈ Ṽ h,

which implies by subtraction that∫
ΓC

(λh − λh)vhn dΓ = a(uh − uh,vh)

≤ M ′‖uh − uh‖1 ‖vh‖1, ∀vh ∈ Ṽ h,

where the continuity of the bilinear forma(·, ·) was used.
So we get the following estimate:

‖λh − λh‖− 1
2 ,h ≤ M ′‖uh − uh‖1. (13)

Next, we show thatΨεh is continuous fromMh into
V h. We consider again(uh, λh) and (uh, λh), the solu-
tions to Pε(gh) and Pε(gh), respectively. We have

a(uh,vh − uh) +
∫

ΓC

λh(vhn − uhn) dΓ

+
∫

ΓC

Fgh

(√
v2

ht + ε2 −
√

u2
ht + ε2

)
dΓ

≥ L(vh − uh), ∀vh ∈ V h,

and

a(uh,vh − uh) +
∫

ΓC

λh(vhn − uhn) dΓ

+
∫

ΓC

F gh

(√
v2

ht + ε2 −
√

u2
ht + ε2

)
dΓ

≥ L(vh − uh), ∀vh ∈ V h.

Choosingvh = uh in the first inequality andvh =
uh in the second one, from (7) we obtain

a(uh,uh−uh)+
∫

ΓC

Fgh

(√
u2

ht+ε2−
√

u2
ht+ε2

)
dΓ

≥ L(uh − uh)

and

a(uh,uh−uh)+
∫

ΓC

Fgh

(√
u2

ht+ε2−
√

u2
ht+ε2

)
dΓ

≥ L(uh − uh).

Thus

a(uh − uh,uh − uh)

≤
∫

ΓC

F(gh−gh)
(√

u2
ht+ε2 −

√
u2

ht+ε2
)

dΓ. (14)

Consequently,

α‖uh − uh‖2
1

≤ F‖gh − gh‖H−
1
2 (ΓC)

×
∥∥∥√u2

ht + ε2 −
√

u2
ht + ε2

∥∥∥
H

1
2 (ΓC)

. (15)
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The next step consists in estimating theH
1
2 -norm term

in (15). To attain our ends, we need to use two lemmas:

Lemma 1. There exists a positive constantC satisfying

‖fg‖
H

1
2 (ΓC)

≤ C
(
‖f‖

H
1
2 (ΓC)

‖g‖L∞(ΓC)

+ ‖f‖L∞(ΓC)‖g‖H
1
2 (ΓC)

)
. (16)

for all f and g in H
1
2 (ΓC) ∩ L∞(ΓC).

Proof. From the definition of theH
1
2 (ΓC)-norm (Adams,

1975), we have

‖fg‖2

H
1
2 (ΓC)

= ‖fg‖2
L2(ΓC)

+
∫

ΓC

∫
ΓC

(
f(x)g(x)− f(y)g(y)

)2
(x− y)2

dΓdΓ.

Let us begin with bounding (roughly) the first term:

‖fg‖2
L2(ΓC) =

∫
ΓC

f2(x)g2(x) dΓ

≤ ‖f‖2
L2(ΓC)‖g‖

2
L∞(ΓC). (17)

The second term is handled as follows:∫
ΓC

∫
ΓC

(f(x)(g(x)−g(y))+g(y)(f(x)−f(y)))2

(x− y)2
dΓdΓ

≤ 2
∫

ΓC

∫
ΓC

f2(x)(g(x)− g(y))2

(x− y)2

+
g2(y)

(
f(x)− f(y)

)2
(x− y)2

dΓ dΓ (18)

≤ 2
(
‖f‖2

L∞(ΓC)‖g‖
2

H
1
2 (ΓC)

+‖f‖2

H
1
2 (ΓC)

‖g‖2
L∞(ΓC)

)
.

Putting together (17) and (18) establishes (16).

Lemma 2. For any real numberp ∈ [1,∞[, the following
inequality holds:

‖f‖Lp(ΓC) ≤ C
√

p‖f‖
H

1
2 (ΓC)

, ∀f ∈ H
1
2 (ΓC), (19)

whereC is independent ofp.

Proof. see (Ben Belgacem, 2000).

Proof of Theorem 1 (continued).We consider theH
1
2 -

norm term in (15). Employing the estimate (16) gives∥∥∥√u2
ht + ε2 −

√
u2

ht + ε2
∥∥∥

H
1
2 (ΓC)

=

∥∥∥∥∥(uht − uht)
uht + uht√

u2
ht + ε2 +

√
u2

ht + ε2

∥∥∥∥∥
H

1
2 (ΓC)

≤ C‖uht − uht‖L∞(ΓC)

×

∥∥∥∥∥ uht + uht√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
H

1
2 (ΓC)

+ C‖uht − uht‖
H

1
2 (ΓC)

×

∥∥∥∥∥ uht + uht√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
L∞(ΓC)

. (20)

In the previous estimate, we leave the third term un-
changed whereas the last one is bounded by1. It remains
then to bound the first two terms, which is performed here-
after. We begin with the first one:

‖uht − uht‖L∞(ΓC)

≤ Ch−
1
p ‖uht − uht‖Lp(ΓC)

≤ C
√

ph−
1
p ‖uht−uht‖

H
1
2 (ΓC)

, (21)

for any p ∈ [1,∞[. In (21), we used an easily recoverable
inverse inequality (Ciarlet, 1991), as well as (19). The
second term of (20) is bounded due to (16):∥∥∥∥∥ uht + uht√

u2
ht + ε2 +

√
u2

ht + ε2

∥∥∥∥∥
H

1
2 (ΓC)

≤ C‖uht + uht‖L∞(ΓC)

×

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
H

1
2 (ΓC)

+ C‖uht + uht‖
H

1
2 (ΓC)

×

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
L∞(ΓC)

≤ C
√

ph−
1
p ‖uht + uht‖

H
1
2 (ΓC)

×

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
H

1
2 (ΓC)

+
1
2ε
‖uht + uht‖

H
1
2 (ΓC)

, (22)
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where the firstL∞-norm term is bounded as in (21),
whereas the other is roughly bounded by1/2ε. Next, we
develop the firstH

1
2 -norm term in (22):

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
2

H
1
2 (ΓC)

=

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
2

L2(ΓC)

+
∫

ΓC

∫
ΓC

1
(y − x)2

×

(
1√

u2
ht(x) + ε2 +

√
u2

ht(x) + ε2

− 1√
u2

ht(y) + ε2 +
√

u2
ht(y) + ε2

)2

dΓdΓ.

It is easy to check that theL2-norm term is less than
meas(ΓC)/4ε2. Developing the previous integral, bound-
ing then the denominator and using the estimate(a +
b)2 ≤ 2a2 + 2b2 furnishes the following upper bound:

1
8ε4

∫
ΓC

∫
ΓC

(√
u2

ht(x) + ε2 −
√

u2
ht(y) + ε2

)2

(y − x)2

+

(√
u2

ht(x) + ε2 −
√

u2
ht(y) + ε2

)2

(y − x)2
dΓdΓ.

We use the estimate|
√

a2 + ε2 −
√

b2 + ε2| ≤ |a− b| in
the previous expression so that

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
2

H
1
2 (ΓC)

≤ meas(ΓC)
4ε2

+
1

8ε4

(
‖uht‖2

H
1
2 (ΓC)

+ ‖uht‖2

H
1
2 (ΓC)

)
.

Therefore we deduce from (11) that there exists a positive
constantC satisfying

∥∥∥∥∥ 1√
u2

ht + ε2 +
√

u2
ht + ε2

∥∥∥∥∥
H

1
2 (ΓC)

≤ C
(1

ε
+

1
ε2

)
. (23)

Applying (23) to (22) and using (11) and (20), we get∥∥∥√u2
ht + ε2 −

√
u2

ht + ε2
∥∥∥

H
1
2 (ΓC)

≤ C‖uht − uht‖
H

1
2 (ΓC)

×

(
1 +

√
ph−

1
p

(1
ε

+
√

ph−
1
p

(1
ε

+
1
ε2

)))
.

Choosingp = − log(h) (h is assumed to be sufficiently
small) in the previous estimate, we obtain∥∥∥√u2

ht + ε2 −
√

u2
ht + ε2

∥∥∥
H

1
2 (ΓC)

≤ C‖uht − uht‖
H

1
2 (ΓC)

×

(
1 +

√
− log h

ε
+
− log h

ε
+
− log h

ε2

)
. (24)

Inequality (15) together with (24) and the trace theorem
becomes

‖uh − uh‖1

≤ CF‖gh − gh‖H−
1
2 (ΓC)

×

(
1 +

√
− log h

ε
+
− log h

ε
+
− log h

ε2

)
, (25)

which proves that the mappingΨεh is continuous. This,
together with (13), implies thatΦεh is continuous. Then,
from (12) and the Brouwer fixed point theorem, we con-
clude the existence of at least one solution to Coulomb’s
discrete regularized frictional contact problem.

We now consider the uniqueness. Under the assump-
tion that ΓD ∩ ΓC = ∅, it was proved in (Coorevitset al.,
2002) that there exists a positive constantβ (independent
of h) satisfying

β‖µh‖
H−

1
2 (ΓC)

≤ ‖µh‖− 1
2 ,h, ∀µh ∈ Wh. (26)

Assembling this result with (25) and (13) yields

‖λh − λh‖
H−

1
2 (ΓC)

≤ CF‖gh − gh‖H−
1
2 (ΓC)

×

(
1 +

√
− log h

ε
+
− log h

ε
+
− log h

ε2

)
.

Supposing thath and ε are small enough, we deduce that
the mappingΦεh is contractive if the friction coefficient
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F is less thanCε2| log(h)|−1. This completes the proof
of the theorem.

The non-regularized case (i.e.ε = 0) is handled in
the proposition that follows.

Proposition 1. Let ε = 0. The following results hold:

(Existence) For any positiveF , there exists a solution to
Coulomb’s discrete frictional contact problem.

(Uniqueness) Assume thatΓD ∩ ΓC = ∅. If F ≤ Ch
1
2 ,

then the problem admits a unique solution. The positive
constantC is independent ofh.

Proof. Estimates (12) and (13) remain still valid when
ε = 0. The starting point of the analysis is (14):

a(uh − uh,uh − uh)

≤
∫

ΓC

F(gh − gh)(|uht| − |uht|) dΓ

≤ F ‖gh − gh‖L2(ΓC)‖ |uht| − |uht| ‖L2(ΓC)

≤ CF h−
1
2 ‖gh − gh‖

H−
1
2 (ΓC)

‖uht − uht‖L2(ΓC)

≤ C ′F h−
1
2 ‖gh − gh‖

H−
1
2 (ΓC)

‖uh − uh‖1,

where an inverse inequality betweenL2(ΓC) and
H− 1

2 (ΓC) was used. From the last bound, combined
with (13) and (26), we deduce that

‖λh − λh‖
H−

1
2 (ΓC)

≤ CFh−
1
2 ‖gh − gh‖H−

1
2 (ΓC)

.

This proves the proposition.

Remark 2. 1. In the proof of Proposition 1, we are not
able to remove the mesh dependent uniqueness condition,
also when avoiding theL2(ΓC)-norms and using only
H

1
2 (ΓC)-norms andH− 1

2 (ΓC)-norms. More precisely,
there does not exist a positive constantC independent of
h such that

‖ |gh − gh| ‖
H−

1
2 (ΓC)

≤ C‖gh − gh‖
H−

1
2 (ΓC)

or

‖ |uht| − |uht| ‖
H

1
2 (ΓC)

≤ C‖uht − uht‖
H

1
2 (ΓC)

.

2. The use of inverse inequalities in the proofs of Theo-
rem 1 and Proposition 1 implies that it is not possible to
generalize the calculus to the continuous problem.

4. The Study of a Simple Finite Element
Example

We consider the triangleΩ of verticesA = (0, 0), B =
(`, 0) and C = (0, `) with ` > 0. We defineΓD =
[B,C], ΓN = [A,C], ΓC = [A,B], and {X1, X2} de-
notes the canonical orthonormal basis (see Fig. 1). We
suppose that the volume forcesf are absent and that the
surface forces denoted byF = F1X1 + F2X2 are such
that F1 and F2 are constant onΓN .

N

C

D

A B

C

n

t

X
F

X

1

2

Γ

Γ

Γ

Ω

Fig. 1. Problem setting.

We suppose thatΩ is discretized with a single finite
element of degree one. Consequently, the finite element
space becomes

V h =
{

vh = (vh1, vh2) ∈
(
P1(Ω)

)2
, vh|ΓD

= 0
}

.

In this case, we have

Mh =
{

gh ∈ P1(ΓC), gh ≥ 0, gh(B) = 0
}

.

Clearly, V h is of dimension two andMh belongs to the
spaceWh of linear functions onΓC vanishing atB,
which is of dimension one. Moreover, since (8), or equiv-
alently (9), is satisfied, it follows that the existence is en-
sured for allε ≥ 0 according to Theorem 1 and Proposi-
tion 1.

Let vh ∈ V h and µh ∈ Mh. Then we denote
by (VT , VN ) the value ofvh(A), corresponding to the
tangential and the normal displacements at pointA, re-
spectively (in our example, we haveVT = −vh1(A) and
VN = −vh2(A)). We also denote byΘ the value ofµh

at point A. Then, for anyvh ∈ V h and µh ∈ Mh, we
obtain

ε(vh) =
1
2`

(
2VT VT + VN

VT + VN 2VN

)
and

σ(vh)=
1
`

(λ+2µ)VT +λVN µ(VT +VN )

µ(VT +VN ) (λ+2µ)VN +λVT

 .
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Therefore

a(uh,vh) =
1
2

(
(λ + 3µ)(UT VT + UNVN )

+ (λ + µ)(UT VN + UNVT )
)

and

L(vh) = −1
2
`(F1VT + F2VN ).

Besides, ∫
ΓC

µhvhn dΓ =
ΘVN`

3

and ∫
ΓC

Fµh|vht|dΓ =
FΘ|VT |`

3
.

Let (uh, λh) be a solution to the discrete unilateral con-
tact problem with Coulomb’s friction and without regular-
ization (i.e. withε = 0 in (7)). As was mentioned above,
the notation (UT , UN ) stands for the value ofuh(A)
(UT = −uh1(A) and UN = −uh2(A)). We also denote
by Λ′ the value ofλh at point A. To simplify the nota-
tion and the forthcoming calculations, we setΛ = 2Λ′/3.

The discrete unilateral contact problem with
Coulomb’s friction and without regularization issued
from (7) and Definition 1 consists then in finding
(UT , UN ,Λ) ∈ R3 such that

(λ+3µ)(UT VT +UNVN )+(λ + µ)(UT VN +UNVT )

+ Λ`VN + FΛ`|VT |

≥ −`(F1VT + F2VN ), ∀VT ∈ R, ∀VN ∈ R,

(λ + 3µ)(U2
T + U2

N ) + 2(λ + µ)(UT UN ) + FΛ`|UT |

= −`(F1UT + F2UN ),

Λ ≥ 0, UN ≤ 0, ΛUN = 0,

or equivalently,

(λ + 3µ)UN + (λ + µ)UT + Λ` = −`F2,

(λ + µ)UN + (λ + 3µ)UT + FΛ` ≥ −`F1,

(λ + µ)UN + (λ + 3µ)UT −FΛ` ≤ −`F1,

(λ + 3µ)(U2
T + U2

N ) + 2(λ + µ)(UT UN ) + FΛ`|UT |

= −`(F1UT + F2UN ),

Λ ≥ 0, UN ≤ 0, ΛUN = 0.
(27)

Let us now look for solutions to (27). Clearly, a solution
to (27) satisfies eitherUN = 0 or Λ = 0.

(i) Case 1: UN = 0. Equations (27) become

(λ + µ)UT + Λ` = −`F2,

(λ + 3µ)UT + FΛ` ≥ −`F1,

(λ + 3µ)UT −FΛ` ≤ −`F1,

(λ + 3µ)U2
T + FΛ`|UT | = −`F1UT ,

Λ ≥ 0.

• Suppose thatUT = 0. Then

Λ = −F2, F2 ≤ 0, |F1| ≤ F|F2|.

• Suppose thatUT > 0. Then
(λ + µ)UT + Λ` = −`F2,

(λ + 3µ)UT + FΛ` = −`F1,

Λ ≥ 0.

– Assume thatF 6= (λ + 3µ)/(λ + µ). Then

UT =
`(FF2 − F1)

(λ + 3µ)−F(λ + µ)
> 0,

Λ =
(λ + µ)F1 − (λ + 3µ)F2

(λ + 3µ)−F(λ + µ)
≥ 0.

– Assume thatF = (λ + 3µ)/(λ + µ). Then

∗ If F1 = FF2, the solutions are

(λ+µ)UT +Λ` = −`F2, UT > 0, Λ ≥ 0.

∗ If F1 6= FF2, then there are no solutions.

• Suppose thatUT < 0. Then
(λ + µ)UT + Λ` = −`F2,

(λ + 3µ)UT −FΛ` = −`F1,

Λ ≥ 0,

which gives

UT =
`(FF2 + F1)

−(λ + 3µ)−F(λ + µ)
< 0,

Λ =
−(λ + µ)F1 + (λ + 3µ)F2

−(λ + 3µ)−F(λ + µ)
≥ 0.
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(ii) Case 2: Λ = 0.
(λ + 3µ)UN + (λ + µ)UT = −`F2,

(λ + µ)UN + (λ + 3µ)UT = −`F1,

UN ≤ 0,

so that

UT =
`
(
(λ + µ)F2 − (λ + 3µ)F1

)
4µ(λ + 2µ)

,

UN =
`
(
(λ + µ)F1 − (λ + 3µ)F2

)
4µ(λ + 2µ)

≤ 0.

All the results are reported in the proposition that fol-
lows. There are three cases which consist in compar-
ing the friction coefficientF with the critical value
(λ + 3µ)/(λ + µ) = 3 − 4ν (ν denotes Poisson’s ratio
with 0 < ν < 1/2). The results are also depicted in
Figs. 2–4.

Proposition 2. 1. If F < (λ + 3µ|/(λ + µ), then the
problem (27) admits a unique solution:

(Separation) IfF2 > ((λ + µ)/(λ + 3µ))F1, then

UT =
`
(
(λ + µ)F2 − (λ + 3µ)F1

)
4µ(λ + 2µ)

,

UN =
`
(
(λ + µ)F1 − (λ + 3µ)F2

)
4µ(λ + 2µ)

, Λ = 0.

(28)

(Stick) If |F1| ≤ F|F2| and F2 ≤ 0, then

UT = 0, UN = 0, Λ = −F2. (29)

(Right slip) If F2 ≤ ((λ + µ)/(λ + 3µ))F1, FF2+F1 >
0, then

UT =
`(FF2 + F1)

−(λ + 3µ)−F(λ + µ)
,

UN = 0, Λ =
−(λ + µ)F1 + (λ + 3µ)F2

−(λ + 3µ)−F(λ + µ)
.

(30)

(Left slip) If F2 ≤ ((λ + µ)/(λ + 3µ))F1, FF2 − F1 >
0, then

UT =
`(FF2 − F1)

(λ + 3µ)−F(λ + µ)
,

UN = 0, Λ =
(λ + µ)F1 − (λ + 3µ)F2

(λ + 3µ)−F(λ + µ)
.

(31)

F

F

Right slip

StickLeft slip

Separation

U  = 0
U  < 0

U  =0
U  =0

U  = 0
U  > 0

U  < 0N

N

NN

T

TT

1

2

Fig. 2. CaseF < λ+3µ
λ+µ

= 3 − 4ν. Problem (27)
admits a unique solution.

F

F

Separation
U  < 0N Right slip

U  = 0N

U  < 0T

Infinity of solutions
from stick to left slip

Stick

U  =0T

U  =0N

2

1

Fig. 3. CaseF = λ+3µ
λ+µ

= 3 − 4ν. Problem (27) admits
either a unique or an infinity of solutions.

F

Stick

U  =0T

U  =0N

Right slip
U  = 0
U  < 0T

N

F

2 solutions:
stick and left slip

3 solutions
stick, left slip

and separation

Separation
U  < 0N2 solutions:

 stick and separation

1

2

Fig. 4. CaseF > λ+3µ
λ+µ

= 3 − 4ν. Problem (27)
admits a unique, two or three solutions.
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2. If F = (λ + 3µ)/(λ + µ), then, depending on the
loadings, the problem (27) admits either a unique solution
or an infinity of solutions:

(Separation) IfF2 > ((λ + µ)/(λ + 3µ))F1, then the so-
lution is given by (28).

(Stick) If (−F|F2| < F1 ≤ F|F2| and F2 ≤ 0) or F1 =
F2 = 0, then the solution is given by (29).

(Right slip) If F2 ≤ ((λ + µ)/(λ + 3µ))F1, FF2+F1 >
0, then the solution is given by (30).

(From stick to left slip) IfF1 = FF2 and F2 < 0, then
there exists an infinity of solutions:

UT =
−`(F2 + β)

λ + µ
,

UN = 0, Λ = β,

for all 0 ≤ β ≤ −F2.

3. If F > (λ + 3µ)/(λ + µ), then, depending on the
loadings, the problem (27) admits one, two or three solu-
tions:

(Separation) IfF2 > ((λ + µ)/(λ + 3µ))F1 and FF2−
F1 > 0, then the solution is given by (28).

(Stick) If (−((λ + 3µ)/(λ + µ))|F2| < F1 ≤ F|F2| and
F2 ≤ 0) or F1 = F2 = 0, then the solution is given
by (29).

(Right slip) If F2 ≤ ((λ + µ)/(λ + 3µ))F1, FF2+F1 >
0, then the solution is given by (30).

(Separation and stick) IfF1 = FF2 and F2 < 0, then
there are two solutions given by (28) and (29).

(Stick and left slip) IfF1 = ((λ + 3µ)/(λ + µ))F2 and
F2 < 0, then there are two solutions given by (29)
and (31).

(Separation, stick and left slip) If−F|F2| < F1 <
−((λ + 3µ)/(λ + µ))|F2| and F2 ≤ 0 then there are
three solutions given by (28), (29) and (31).

The study of sufficient conditions of non-uniqueness
for Coulomb’s frictional contact problem in the continu-
ous framework is actually under consideration in (Hassani
et al., 2001).
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