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The dynamic evolution with frictional contact of a viscoelastic body is considered. The assumptions on the functions used
in modelling the contact are broad enough to include both the normal compliance and the Tresca models. The friction law
uses a friction coefficient which is a non-monotone function of the slip. The existence and uniqueness of the solution are
proved in the general three-dimensional case.
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1. Introduction eterich, 1994; Perriet al, 1995; Rice and Ruina, 1983;
Ruina, 1983). Though it tries to accommodate both slip
Duvaut and Lions (1976) obtained the first existence andand slip rate dependences, the qualitative behaviour of
uniqueness results for contact problems with friction in the solution is very close to the slip rate friction model
elastodynamics. Some years later, the non-penetrability of(Favreatet al,, 1999b).
mass was relaxed by Martins and Oden (1987) by consid-  The physical model of slip-dependent friction was in-
ering the normal compliance model of contact with fric-  troduced by Rabinowicz (1951) in the geophysical con-
tion. In order to obtain existence and uniqueness resultsiext of earthquakes’ modelling to explain the stick-slip
they considered only the viscous case (see also Kutller,nphenomenon. Generally speaking, the dependence of the
1997). friction forces upon the surface displacements is usually

All the above results involve a fixed friction coeffi- accepted when the slip is very small on laboratory scales
cient 4. In the study of many frictional processes (stick- (se€, €.g., Ohnalet al, 1987; Scholz, 1990). Ohnaled
slip motions, earthquakes modelling, etc.) the friction co- al- (1987) pointed out the good agreement of this model
efficient has to be considered variable during the slip. The with experimental data. More recently, the slip weaken-
Simp|est variation of,u is the discontinuous Jump from a ing model (i.e. the decrease of the friction force with slip)
‘static’ value Lhs down to a ‘dynamic’ or ‘kinetic’ value was intensively used in the description of earthquake ini-
1q. Three current models of such a variation are con- tiation (Campillo and lonescu, 1997; Dascatal., 2000;
sidered in mechanics and geophysics. The first one, dis-Favreauet al, 1999a; lonescu and Campillo; 1999). In-
cussed latter, corresponds to a smooth dependence of théeed, since the model is rate independent, it can describe
friction coefficient on the slipur, i.e.n = pu(|ur|). The a large variation of the slip rate during the initiation phase.
second one considers a slip rate dependence of the fric-  The first mathematical results for the slip weakening
tion coefficient (Oden and Martins, 1985; Scholz, 1990), model of friction in elastostatics were obtained by lonescu
i.e. u = p(|url]). For this model the solution of the math- and Paumier (1996). They proved the existence of a so-
ematical problem in dynamic elasticity is not uniquely de- lution and gave sufficient conditions for uniqueness and
termined and presents shocks (lonescu and Paumier, 1993tability. Moreover, they analyzed the bifurcation points
1994). However, the problem is well posed in dynamic between different branches of solutions. More recently,
viscoelasticity (lonescu, 2001; Kuttler and Shillor, 1999). the quasi-static evolution of an elastic body with slip-
The third model, called the Dieterich and Ruina model, dependent friction was studied in Cornesehal. (2001).
uses a rate- and state-dependent friction law (see, e.g., DiAn existence result for a sufficiently small friction coeffi-
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cient was proved. As far as we know, there is no existencerigid and fixed body. If there exists a normal gap.,
and unigueness result in dynamic elasticity involving slip- between the viscoelastic body and the foundation, mea-
dependent friction. sured in the undeformed configuration, thef) has to be

The aim of this paper is to study the dynamic evolu- replaced by(uy — ggap) ™.

tion of a viscoelastic body which is in frictional contact In (5) the normal stressy is a function of the pen-
with a rigid foundation. The assumptions on the functions etration u},. Two cases are often used in the literature.
used in modelling the contact are general enough to in-In the first one, the Tresca model, the normal stress is
clude both the normal compliance and the Tresca models.given, i.e. my(s) = mr(s) = Sy, hence the contact
For a constant normal stress (displacement) the friction surface is known. The second one is the normal compli-
force may exhibit a slip weakening behaviour. The main ance model often characterized by a power-law relation-
resultis the existence and uniqueness of the solution in theship, i.e.my (s) = |s|"», mr(s) = |s|"T.

general three-dimensional case. The proof, based on the

Galerkin method, is constructive.

2. Problem Statement

Let @ ¢ R? (d = 2,3) be a bounded domain, repre-
senting the interior of a viscoelastic body, with a smooth
boundaryI’ = 02 divided into three disjoint part§' =

Iy UTl.UT; with meas(Iy) > 0. The mechanical
problem (MP) consists in finding the displacement field

u:[0,T] x Q — R? such that

o(t) = Ae(u(t)) + nCe(u(t)) in ©, 1)
pii(t) = diva(t) + (1) in Q )
u(t) =0 on Iy, 3)
o(tyn = F(t) on T, @)
on(t) = —mn(uy(t)) on T. (5)
ort) = —me (X Olr OV Iy
if ur(t)#0 on T,
o7 (t)] < mr(uy () p(lur(t)])
if 4r(t)=0 on T, "
w(0) = uo, in @®)
W(0) = w1 in Q, ©)

wheren > 0 is a viscosity coefficientp > 0 is the den-
sity, A, C are fourth-order tensorg; is the stress tensor,
e(u) = (1/2)(Vu+ VTu) is the small strain tensor, is
the unit outward normal vector ofi, o = on - n is the
normal stressgr = on — oyn is the tangential stress,
uy = u-n is the normal displacement,y; is its positive
part, andur = u — uyn is the tangential displacement.
Here r represents given body forces artid is the load
on Ff.
Equations (5)-(7) represent the contact with slip-

dependent friction along a potential surfate with a

Equations (6) and (7) assert that if there is con-
tact, the tangential (friction) stress is bounded by a func-
tion of the penetrationu} multiplied by the value of
the ‘friction coefficient’ u(jur(t)]). If such a limit is

not attained, sliding does not occur. Otherwise the fric-
tion stress is opposite to the slip rate and its absolute
value depends on the slip. As a matter of fact, if we
put mr(s) R(mn(s))mn(s), then we getv
lor|/lon| = R(|lon|)u(|ur|), which corresponds to a
generalization of Coulomb’s friction law. Indeed, in this
case the coefficient of friction is no more constant, and

it accommodates the dependence on the normal stress and
on the slip.

Since i is a function ofur, the friction model con-
sidered here is slip dependent. Indeed, for a constant nor-
mal stress (displacement) the friction force may have a
slip-weakening behaviour. The physical model of slip-
dependent friction was introduced in the geophysical con-
text of earthquake modelling. In this context it is usual to
suppose that the slip ratér (on the fault) has a single
direction and a single sense during the slip, i.e. there ex-
ists a tangential vectdF and a scalat/, with U > 0 (or
U < 0) such thatur = UT. Even in this case, only the
sequence ‘stick-slip-stick’ (i.d/ = 0; U > 0; U = 0)
has to be considered. Indeed, without an explicit load-
ing/unloading criterion, the slip-dependent friction model
(in the form used here) is more related to a surface po-
tential than to a friction law, except for local monotonic
loading.

3. Assumptions, Notation and Preliminaries

In the study of the problem (1)—(9) the following assump-
tions are used: A and C are symmetric and positive-
definite fourth-order tensors, i.e.

Aijii, Cijin €EL(Q), A(z)e: o= A(z)o €, (10)
C(x)e:o0=C(x)o : €,
Ja > 0 such that
(11)

A(z)e: e > ale?, C(z)e:e> ale?

aexcQ, Vi jkl=14dandforallo,eec RE
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Let us suppose that the friction coefficient T, x then from (10) we findM > 0 such that
R, — R, is differentiable with respect to the second
variable, and there exist/1, yo > 0 such that |la(u, v)| < Mlful| [|v], 1)
0<p(z,u)<p ae.xely, VYueRy (12) lc(u,v)| < Mlull[lo]l, Vu,veV.

|Oups(z,u)| < My, Vue0,+oo ae e, (13) From (11) and the Korn inequality, we deduce that there

) exists D > 0 such that
and the functionst — pu(z,u) and x — O u(x,u) are

measurable for all: € R.. As for the functionsm,, and a(v,v) > D|v||?, c(v,v) > D|v||?, YoveV. (22)
mr, We suppose that

Finally, we defineM: Vo — V{, j: Vo x Vo x Vp = R
my (z,u) > my(2,0), VueRy, ae.xel, (14)  andf: v, — V] as follows:

x — my(z,u) is measurable for all, € Ry, u — N
m;(x,u) is differentiable, and there exist;, D;, E; > 0 (M(w),v) = /FmN (s:[wy]F)vy ds, veTh, (23)
and p; > 1 such that ¢

mi(z,u)| < Ci + Dilul™, (15) :
| | J(u, v, w) = /FmT (s, [ux] ) (s, lug ), | ds,

(16) u,v,w € Vy, (24)

|mi(l',U1) —mi(ﬂfau2)’

<SE; (14 un [P+ Jug [P ) [ug — ual,
a.e.x € I',, and for all u,uy,us € Ry, with i = N (f(t),v) = (T(t)av)Jr/F(t) ~vds, veVy (25)
ori =T, Setqv = Pv +1,9r = qgr +1, ¢ = g
max{qy,qr} and suppose that Using this notation, one can easily deduce that any
g<3if d=3 (17) solution of (1)—(8) satisfies the following variational
' problem:

We also suppose that the density: L>° () is posi-
tive, i.e. there existg, such thatp(z) > po > 0. Finally, ~ (VP) Find u : [0, 7] — V4 such that
the load F' and the body forces are assumed to satisfy . ) )
(i(t), v —u(t)) + a(u(t), v — u(t))
+ne(u(t), v —a(t)) + (M(u(t),v — u(t))
+j (u(t), u(t),v) = j(u(t), ult), u(t))
> <f(t)7 Ol u(t)>a (26)
u(O,x) = uo(x)v U(O,ZL’) = U, (LE) (27)

Few" (0,1, [L*(T))V), (18)

re Wh2(0,T, [L*(Q)]V). (19)
Set H := [L?(Q)]¢ endowed with the inner product

(u,v) :=/pu~vdx, Y u,v € H,
Q

which generates an equivalent norm denoted by De-
note by | - | the norm in L4(T)) and by || - || the

norm in [F7 ()% Let Vi be the closed subspace of 4. Existence and Uniqueness of the Solution
[HY(Q)]N given by

The main result of this section is the following:

Vo i={ve[H Q] v=0 onT,}, Theorem 1. There exists a unique solution of (VP) with

the following regularity:
and suppose that

ug,uy € Vj. (20) u € Wh(0,T,V)NW?22(0,T, H). (28)

If we denote bya,c: Vo x Vo — R the following

bilinear and symmetric applications: We recall here from (lonescu, 2001) the following
lemma, which will be useful in the proof of the theorem:
a(u,v) = / Ae(u) : €(v),
Q

Lemmal.Let 2 C R? be as above and let € [2,2(d—
1)/(d-2)] if d >3 and a > 2 if d = 2. Then, for
c(u,v) := /ch(u) te(v), Vu,veV, G=da—-2)+2/2aifd>3orifd=2 anda = 2,
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andforall g €](a—1)/a, 1] if d =2 and a > 2, there
exists a constan€ = C(5) such that

[oll Loy < Cllvll ey Il ), YoEHN (). (29)

Proof of Theorem 1.(Unigueness) Letu; and us, be
two solutions of (26)—(27) with regularity (28) and write
w =: u; — ugy. If we write the variational inequality (VP)
successively for; and uy taking v = 49 (t) in the first
inequality andv = u4(t) in the second one, and add the
resulting inequalities, we obtain

((t), w(t)) + a(w(t), w(t)) + ne(w(t), w(t))
+ (M (u, (t)) = M (u,(t)), w(t))

T /F[mT ([, O] 1 (uyr (1))

— My ([U2N (t)rr)ﬂ“un (t)|)]
X UulT(t)| - ‘u2T(t)|:| ds < 0.
Since the integrand of the last integral can be majorized by
|mT([u1N (t)]+) - mT([uzz\f (t)]+) |/’L(|u1T (t)l)
+ mT([u2T (t)]+)’ M('ulT (t)|) - M(luzT (t)‘
we deduce that

Ld [l ()] + a(w(t), w(t))] + ne(w(t), w(t))

2dt

SEN/F(IulN(t)\p"*l+Iu2N(t)|p"*1) jwy ()] [ (t)| ds

)

)

oy (01 (77)

xX[wy ()] iy (8)] ds + /(CT + Dy |uy ()[P7)

c

X|wy. (8)] [ ()] ds. (30)

The first two integrals on the right-hand side of (30)
can be majorized using the Holder inequality forf (g —
2); q; q) as follows:

/F iy (B)1P o (6)] i ()] s
<, O], (1),

[w (@Il [[@(@)]],

72
Lo (0,T;Vy)

<Ci|lu

.|

which implies

/F g (B)P oy (8)] 1 ()] s

Cs 2, My, 2
<— t - t)|~.
; @I + Sl ()]

In order to estimate the third integral, we use
. Cs .
CT/FIwT(t)I i, ()] ds < gllw(t)ll2 + 5 l@I?,

and the Hélder inequality fof(q + 1)/(q — 1); ¢ + 1;

+1)
[ @ 0 i (0] ds
FC

<lu, (DI ()]

e WO o

a+1,T,
—1 .
<Cillw, 172w )]
to obtain
D, / g (6)[P g (&) [ (8)] s
Cs 2 Ny . 2
<= t — t .
<= )P + )]

From the above inequalities and (30), we get
[l (@) +aw(t), w(t))] +ne(w(t), v (t))

< Collw(®)[* + nllw®)|.

If we integrate this inequality fron® to ¢, and use the
coercivity of the bilinear applications(-, -) et ¢(-,-) and
the initial conditionsw(0) = w(0) = 0, then

() 2+ [[w(t)]|2 < Co / (lo(r)[2+ w(r)]?) dr (31)

By using the Gronwall lemma in (31), the uniqueness fol-
lows.

(Existence) In order to prove the existence of the solu-
tion « to (VP), we shall use the Faedo-Galerkin method.
For this let us conside®; € V' as a sequence of linearly
independent functions such that = | J;._, V,,,, where
Vin = Span{¢1,q§2, .. ~7¢m}- Since ug, vg € V, let
ug', vyt € Vi, be such that

u® — uy strongly in V. (32)

ug — Uy,

If we consider the family of convex and differentiable
functions .: R¢ — R given by

U.(v) = /o +e2 e,

for all positive ¢, then we have

veR?

0< U (v) <], YveR?, (33)

WL (v)(w)| < |w|, V(v,w) € R xR, (34)

W.(v)— vl <&, VoeRL (35)
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Next we definej_: Vy x Vy x Vp — R, a family of Let us introduce the following notation:
regularized frictional functionals depending en> 0,
My (s,u) =my(s,u) —my(s,0), YuéeR,,
(o) = [m )us, [0, ) Ve w,) ds,
Yu,v,w € Vj. (s,u) /m §,)

The functional j_ is Gateaux-differentiable with respect
to the third argument and represents an approximation of m(u) = /P(s,u(s)) ds, YueL*T)
j, i.e. there exists a constaft such that Le

7. (us v, w) —j(u, v, w)| a.e.s € I.. From (14) we find that the energy associated
<Ce(1+|[[ul|”"), Yu,v,we V. (36) with the normal complianceh([u,|T) is positive, i.e.

We denote byJ_: Vj x Vy x Vy — Vj the derivative m([uy (H)]7) >0, YVue L*0,T;Vy).
of j_ with respect to the third variable given by N - T
(e (u, v, w), 2) Forall v € L?(0,T,Vj), we have
/ (5, ] i, o VW2 o) (2) s,
w2V, (M), 5(0) ~ [y (5000 (0)ds
Fc
We can introduce now the following variational prob-
lem with regularized friction in the finite-dimensional /ﬁz 1Mo, (t) da,
spaceV,,:
(VPZ") : Find u: [0,T] — Vi and after differentiation of the associated energyv),
such that we get
(i7" (1), 0) + a(ul" (1), v) + ne(i (1) v) o 0= S 010
—m(|v, (t =[] —P(s,|v,(t x
M (" (), ) e pdt
H(L (W (t), u (1), 4 (1)), v) = / m VH (v, (£))0,, (t) dz,
L,
= (f(t), ), (37)
m m em m where H(z) is the Heaviside function. Sincé (s,0)
u™(0) = ug',  w(0) =uy". (38)  _ we obtain

Since (u;v) — J_(u,v,v) is a locally Lips-
chitz continuous function onV,, x V,,, we deduce M ([Ux (O] H 0y (£) 0 (1) = 1y ([0, ()] )0y (1),
that (37)—(38) has a unique maximal solutiaf® <
C2([0, T™]; V). and the following equality follows:
The continuation of the proof is divided into three )
parts. We begin by proving that each problem has a unique M{(v(t)),0(t))

solution w[* for all ¢ > 0 and allm € N. To do this, d . N .

we need soma priori estimates, which will be deduced “a /m 5,0)05 (t,5)d

in the first two parts of the proof. Only after that shall we

prove that where — 0 andm — oo, the limit of u”*, v e L*(0,T; Vo).

in an appropriate sense, is the solution to (VP).
In order to simplify the notation, we shall omit the Bearing in mind that([v, (t)]*) > 0, we integrate this

indicese and m in the first two parts of the proof. equation to deduce that
(i) A priori estimates | ¢ )
. [t ar
Since (J_ (u,v,w),w) > 0 forall w,v,w € V, 0
settingv = u(t) in (37) we obtain Z/ m, (5, 0)v (4, 5) ds
d [1 1 . .
X | P+ 2a( u(t), u(t)) | +nc(a(t), a(t))

— [ my(s,0)v,(0,s)ds —m(v,(0)),
+ (M (u(t), u(t)) < (f(t),u(t)). (39) /F (5,0)vy (0, 5) (vy (0))
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forall v € L%(0,T;V;). If we integrate (39) over0,t)
and use the last inequality, then we obtain

a(t)*+Dllu()|* + 277/0 la(r)]* dr

< Juy [P+ alug, ug) + [, 1)

—|—2/m s,0)u,, ds — /m (s,0)u
(f@),u(t)) = 2(f(0), u,)
—2/0<f'(7)7u(T)> dr.

In order to estimate the normal displacement, we have

(40)

| /F (5,0 (1) ds| < C, mesT)u(t)], .

¢ D

< 5+ 2l

By using the last inequality in (40), we deduce that

() P+ ()2 + 1 / () |2 dr

< C+C’/0 (Ja(r)]? + lu(r)[?) dr.  (41)

From the Gronwall lemma we obtain that the solution
t — (u(t); 0 (t)) of (37)—(38) is bounded on its in-
terval of existence, and hende— (u™(t);4™(t)) is a
global solution, i.eT* = T'. Moreover, we have

{u™} s bounded in.>(0,T;Vp),

{al"}, .

(ii) A priori estimates Il

(42)

is bounded in..>* (0, T; H)NL2(0,T; Vy). (43)

If we let v = 4i(¢) in (37) and notice that

(. (u(t), u(t), a(t)), (1))

= | my([uy O] )p(luy
T,

()L (i (8)) (i (1)) ds

= | O a0 () Ll ()} s,
then we get

() +alu(t), i(t)) + (M (u(t)), (1))
1 ), i)

s 01t (0 g (0 ()

(f(t),i(t)).

After integration from0 to ¢, we obtain

t.. 2 - 2
i ar+ Do)

<C+ /0 a(t(r),a(r)) dr — a(u(t),u(t))

- / (M (u(t)), (1)) +(F (1), (1)) — / (f(r), i) dr
d .
= e e 1 ) 0t ()
(4)

The virtual power of the normal displacement can be
written as

H (uy (7)) (i (7))* ds dr.

// &

Using the above inequalities and
la(u(r), w(7))] < Cllu(m)[ [la(r)]

<2 ()P + L i),
(o), )] < [ (Cy -+ Dylu(OP)la(o)] ds

CQ+ Ju®)]*h)
U

+ 2,

we deduce from (44) that

nlla(®)* + /OIU(T)IQdT < C+C/0||d(7)ll2d7

+| /0 t/rc|uN(T)|pn—1afv () ds dr|
| [ e e

w {W (i, (7))} dsdT‘.

o, ()])

(45)

The second integral on the right-hand side of (45) can
be estimated as follows:

[0

<lu()|? 2l < ()17 [la(n)P< Ol

p—12

7)ds
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In order to estimate the last integral of (45), we re- where C(e,m,., ) is a constant independent of We

place the non-differential termu.(7)| with ¥,.(u,. (7))
(r > 0) to get

t d
m u T + UL \T -
o G T e ) 3

x (T (it (7))} ds dr

=AZ@AM

x {U. (4,

Wy o (7)) o

(1))} dsdr

+AZ&“W”“>

(ot ()] A ety

and, after integration by parts, we have

Azfam<n+

Iplur (1))

(1))} dsdr,

(s (7)) - Wit (7))} s e

ou
ou
)] dsdr.

X (W (ug (7)) Ce (. (7)) + M ([uy (T)]T)

(M)W (uy (7)) (. (7)) We (i

We now use the estimates: (12) fpr (33) for ¥,
(34) for ¥/, and (15) form,., and obtain

’/Ot/FmT([uN(T)]JF)H(‘I’T(UT(T)))(E_

X {qu(uT(T))}dsdT’

X (U, (u

<C’++C/(C + D, |u(t)|Pr) |, (t)| ds

+C’//|u )|Pr i, (7))?ds dr

Pr)|a..(7)|2ds dr.
+0/0/(0T+DTlu( )P, (7)["ds d

c

Using (35) to estimate the difference between {u?

U, (u, (7)) and |, (1), we have
\//m lplle (7)) — (ot ()]

{Ve(ir (7))} dsdr| < Cle,my, pr,

pass to the limitr- — 0 to obtain

JAAE

<C+C’/(C’ + D, |u(t)|PT)|0, ()| ds

+C//|u )|Pr i, (7))?ds dr

+C/0/FC(CT + D, |u(r)[Pr) i, (7)2ds dr.  (46)

P ull, (7)) (i (7))} ds |

If we use the Holder inequality in the second part of
(46), then the following estimates are obtained:

AMMWMﬁMBSMMQ%AMM
< Ju(®) " (o),

/m () 2ds < ()2 an)E
< Jlu() -2 i) |2

/W|%w<nw<wﬂqw<ﬂ“
< Jlu() = () 2

Since the functionsu and u are bounded in

L™ (0,T;V) and L?(0,T;V)), respectively, from the
above estimates and (45) we deduce that

t t
il + | fir)Par <c+c [ fi|ar. @)
0 0
Using the Gronwall lemma, we conclude that

{a™} is bounded in L>°(0,T;V,), (48)

{ir} .

is bounded inL2(0,T; H).  (49)

(iif) Passage to the limit inm and ¢

From (42), (43), (48), (49) we deduce that there
exists a subsequence of u™}  (again denoted by

"}....), such that
u™ = weak*in L7 (0,75 V),  (50)
@™ = weak*in L™ (0,7;Vp),  (51)

@™ = i weak*in L™ (0,T; H), (52)
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ase — 0 andm — +oo. If we write
Qpr =Q x ]O,T[,
then

{ur} . {a"} _ arebounded N (Qr).

Since the embedding of{(Qr) in L%(Qr) =
L?(0,T; H) is compact, we find that there exists a sub-
sequence ofu™} (again denoted byfu™}), such that

u™ —u strongly in L*(0,T; H), (53)

@™ — 4 strongly in L*(0,T; H). (54)

Moreover, since the trace map fronf/!(Qr)
to L2(0Qr) is a compact operator andQr
o010, T[J x {0} U x {T}, we deduce that

u™(T) —u(T) strongly in H, (55)

u™(T) —a(T) strongly in H, (56)
and from (50)—(52) we have
u™(T) — u(T) weaklyin V.

=

We only have to verify that, is the solution of (26)
and (27). Letw € L?(0,T;Vp) be fixed and letw™ €
L?(0,T;V,,) be a sequence such that

w™ — w strongly in L2(0,T; Vp).

If we let v = w™(t) — 4" (t) in (37) and use the
inequality

jg(u,v,w) _js (u,v,z) > <J5(u,v, z),w - Z>7

Yu,v,w,z € Vp,

after integration of (37) fron? to 7', we have

/0 (™ (1), w™ (1) — 47 (8) +alu™ (£), w™ (£) — ™ (1))

+ ne(@l (t), w™ (t) — 4l (t))

(M (6)), W™ (£) — ()} b
+ / [ (u (8), (1), w™ (1))
— (), um™ (), @ (1)) e

T
> [0 i) ar

If we use the estimate (36), after some algebra we
obtain

T
cer e, )+ [ o)

T

1 1
= Lamay 2+ / a(u™ (£), w™) dt
2 2 £ O £

T

+a(u,,u,) + 77/ c(u:”(t)7wm) dt
0

T
+/O (™ (£), um (), w™)
), (), i (1)t

T
+/0<M(u:"(t)),wm> dt

T
+ / (F(E),w™ (1) — @™ (£)) . (57)
0

Now let us verify the convergence of the terms of the
left-hand side of (57). First, we prove that fon — +oo
and ¢ — 0 we have

T
/ Jum™ (8, um (1), (1)) dt

0

T
- / J(u(t), u(t), (1)) dt.

(58)
Indeed, after some algebra, we get
(1), w™ (8), 5 () = (), u(t), (1))
<O [(lur @172 + @) ) = (o)l

. -1
xfar @)+ (1l

X ul"(t) —u()] | fal ()]

q+1,T;

b (1 o) ey o), .

a+1,T,

If we use now Lemma 1 for

3(g—1)+2

<1lif d=3
2(qg+1)

B=
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and for q
el——, 1] if d=2,
pel -l
we obtain
() = ()], |

X m 7
N o L RN it
@ () — @)l .
< Clam™(t) — a(t)|*
x (||la™ L o
(lla IILOO(O,TW el )

From the last three inequalities we deduce that
T
[l 0.0 0,870 = o). w0 a

<c [um B P [ } ,

L2(0,T;H) L2(0,T;H)

and, by using (53) asn — +oco and ¢ — 0, we obtain
(58). In a similar way, we conclude that

[t o). wm@)ae— [ or),we)
0 0

and therefore
i ([u (T)]7) — m([uy (T)]7F)

as m — +oo and € — 0.

Indeed, we have the estimate

é/(\UZ”(T)\q’WIU(T)Iq’I) u(T) = u(T)|ds.

c

Using the Holder inequality and Lemma 1, we deduce that

/F ™ (T)[4 u™(T) — u(T)|ds

< Jum )
€ L (0,1;v)

() — (™)),

< Ol —u(T)|*P

L (0,T;V)

u(T)

x ([|u™ g
(HUE HLOC(OVT;W + ||u||L°°(0,T;V)) ’

&g o

and from (55) we get the strong convergence of the asso-
ciated energy.

If we pass to the limit in (57) asn — +o0o and
e — 0, and we bear in mind the strong convergence
proved above, we obtain

T 1
/0 (i(t), w(t))dt + glul 2 = S|a(T)? + alu,, u,)

+/0 a(u(t),w(t))dt+77/0 c(u(t), w(t)) dt

T
+/ [ (u(t), u(®), w(t)) — j(u(t), u(t), u(t))] dt
0

T
+ / (M (u(t), w(t)) dt +1in([uy (T)]7)

0
—(fu 1T — [ m.(s U —u S
([un] ) dt /FCN<,0>[N<T> Wld

> liminf
m——+o00,e—0

(). (1)

+ n/o c(di”(t),u:”(t))dt} —i—/O(f(t),w(t) () dt

> a(u(T),u(D)) +n [ eli(t) a(0) d

—i—/()(f(t)w(t) —u(t)) dt.

Finally, for all w € L2(0,T;V,) we have

/O[W(t)» w(t) —au(t) + a(u(t), w(t) — a(t))
+ne(a(t), v —a(t)) + (M(u(t), v —u(t))

(), ult), w(t)) — j(u(t), u(t), a(t)] dt
T .
> / (), w(t) — at)) dt,

and the pointwise inequality (26) follows. =
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