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We consider the limit behaviour of elastic shells when the relative thickness tends to zero. We address the case when
the middle surface has principal curvatures of opposite signs and the boundary conditions ensure the geometrical rigidity.
The limit problem is hyperbolic, but enjoys peculiarities which imply singularities of unusual intensity. We study these
singularities and their propagation for several cases of loading, giving a somewhat complete description of the solution.
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1. Introduction is continuous and coercive. In fadt,,, is the completion
. ) . N of V' equipped with the normy/a,(-,-). Clearly, the
In this paper we study the propagation of singularities for 5nove considerations only make sense in the case when

the membrane system of shells in the hyperbolic case, i.e.am is the square of a norm, i.e. under the hypothesis that
when the middle surface has principal curvatures of op-

posite signs. The structure of the system is essentially veV and am(v,v) =0 = v =0. 2)
hyperbolic, but presents certain peculiarities which im-
ply singularities stronger than in ordinary hyperbolic sys-
tems. For instance, discontinuities of the first kind (i.e.
Heaviside singularities) of the normal loading may im-
ply &’-like singularities of the normal displacement. As a
consequence, the knowledge of the singularity gives most ~ Obviously, V;,, contains functions less smooth than
of the structure of the solutions, and often furnishes their those of V. As a consequence, the solutions of the
good description, both from the qualitative and quantita- Variational problem belong té” but their limit ase ™\, 0

tive viewpoints. The motivation to study this problem is is a less smooth function (i.e. containing some kind of sin-
as follows: We are interested in a singular perturbation of gularities). In fact, there is another important reason for

The order of differentiation im; is higher than in
am, SO thatas \, 0, a singular perturbation phenomenon
appears.

the variational problems of the form the presence of singularities. Indeed, @scC V,,, the
dual spaces satisfy,, C V’, so that the dataf which
Forgiven f € V', find v* € V satisfying are in V'’ are admissible for the variational problem with

e > 0, but it may happen, and often does happen in appli-
am (u%,v) +%ay (u,v) = (f,v), YoeV (1)  cations (see Section 2), thit¢ V' . As a consequence,
the limit problem does not make sense as a variational one
in V,,,. The corresponding solution of the limit problem, if
it exists, is out ofV,,,. In the sequel, we shall consider the
case when the limit problem is hyperbolic and such that
there is a unique solution satisfying the boundary condi-
tions even whenf ¢ V.. .

involving two positive and symmetric energy forms
am(u,v) ande?ay(u,v), which are called the membrane
and the flexion forms, respectively, because of the me-
chanical application to shell theory, as we shall see in
Section 2. The factoe? in the second form is a small
parameter. Foe > 0, the energy spac& is such that
am + €%ay is continuous and coercive on it, whereas the The case off € V,,, will be called classical. In that
limit problem for ¢ = 0 involves a new energy spadg, situation, a well-known theorem, see, e.g., (Lions, 1973),
(membrane energy space) for which the bilinear fargn asserts that:® converges tou in the strong topology of
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Vim, Wherew® and u® are the solutions of the variational Obviously, the system (4)—(5) has six equations and
problems fore > 0 and e = 0, respectively. six unknowns. Neverthelesg,'? is immediately given

In the case off ¢ V., even if the solution:® ofthe ~ PY (4k and uz only appears in the last equation (5),
limit problem exists out oft/;,,, to our knowledge there is  Which can be con3|dered as a definition of. Then the
no theorem regarding the convergenceudfto u°. As- unknowns are essentiall§f'!, 722, u, uo; the first two
suming that this convergence holds true, the correspond-€duations of (4) only involvel™! and 7' and consti-
ing topology is weaker than the one bf,. Moreover, for tute a first-order hyperbolic system for them with the sim-

the energy of the solution®, we have ple characteristicy/' = Const and y> = Const. As-
suming that the boundary conditions allow us to deter-

am (u,u®) +e%ay (uf,uf) — +o0 ase \, 0 (3) mine T'' and 722, the right-hand side of (5) is known
and the first two equations of (5) form again a first-order

(see, e.g., (Gérard and Sanchez Palencia, 2000)). Theréyperbolic system for,; and u, with the same simple
is some evidence that such a convergence actually holdsharacteristics. At this point, the high order of singularity
at least for certain examples. This evidence follows from of the solutions is easy to understand. We see that the first
formal asymptotic expansions and numerical experiments.two equations of (4) for'*! and 7?2 involve as ‘data’
The formal asymptotic expansions are concerned with the first-order derivatives of;. Moreover, the unknown
boundary layer theory for either thin shell problems or w3 in the third equation of (5) inherits singularities from
their simplified models (Karamiaet al, 2000; Karamian  the first-order derivatives of.; and us. If, as usual, we
and Sanchez-Hubert, 2002; Leguilletal., 1999). More- focus our attention on normal forceg and the normal
over, the convergence for the model problem addressed indisplacementus, we see that the singularities are by two
(Karamianet al, 2000) was proven in (Sanchez Palencia, orders stronger than in the genuine hyperbolic system.
2000). The numerical computations for smallare not

very reliable because of the clearly non-smooth character e are mainly concerned with the propagation of the
of the solutions; nevertheless, they seem to confirm theSingularities of this system. We consider the classical se-
above-mentioned convergence. guence of distributions ofR with increasing singularities

The context of this paper (which will be more ex-
plicitly explained in Section 2) is the following. We con-
sider problems for thin elastic shells the middle surface of
which is hyperbolic (i.e. the principal curvatures are eve- where Y and § denote the Heaviside function and the
rywhere different from zero and of opposite sign). Taking Dirac mass, respectively. More precisely, these distribu-
a special parametrizatiofy’, y*), where the coordinate  tions are considered as singularitieszat= 0 whereas
lines are the asymptotic curves of the middle surface, thetheir values forz # 0 are discarded; for instanc;(z)
limit problem for e = 0 (the so-called membrane prob- is considered merely as the unit jumpat= 0. In order
lem) may be written as to describe the singularity, for example, alopg= 0, we

consider expansions of the form (for instance)

caY(x),Y (2),0 (x),8 (x),..., (6)

—D1T11 _ D2T12 — fl,
—D\T'? — DT = f2, (4) w8 (P)WO () +5(P)WH )+, ()
—2b1,T"? = fs, -

where it is understood that the terms denoted by dots are

less singular than the previous onesidt= 0. Such a

Diuy = Cy105T, i o . X
B 1iaf kind of expansion is in the framework of discontinuous

Doy = CogagT?, (5) solutions, see, e.g., (Egorov and Shubin, 1992, Sec. 4.11;
1 Gérard, 1988; Sanchez Palencia, 2001). We always as-
3 (Daur + Dyug) — bigug = CraasT*? sume that the geometric data and the coefficients are

smooth, so that the sequence (7) is consistent with the sin-
gularities of the solutions provided that the singularities
of the loadings are in that sequence, which covers most of
the usual examples.

in a domain Q of the plane (y!,4%). The unknowns
are the symmetric membrane stres§e&¥’ (o, 3 = 1,2)
and the displacements; (: = 1,2,3). The symbols
D, are the covariant derivatives with respect to the vari-
ables y',y?. The coefficientsC,3,, are the compli- The very description of the singularities is given in
ance ones, given smooth functions. The coefficient Section 3. Precisions on the mechanical problem and the
(coefficient of the second fundamental form) is a given specific data will be given in Section 2. Numerical exper-
smooth function everywhere different from zero. Finally, iments exhibiting such a kind of behaviour are given in
f=(fY f2, f3) is adatum such that in genergil¢ V.. Section 4.



Non-smoothness in the asymptotics of thin shells and propagation of singularities. Hyperbolic case 6 amcs

2. Description of the Mechanical Problem It describes the variation produced by on the coeffi-
cients of the first fundamental form.

Analogously, the components of the second funda-
mental form vary along

We give here the elements of shell theory which are nec-
essary for understanding the sequel of the paper. More
explicit descriptions of shells can be found in shell trea-
tises (Bernadou, 1994; Ciarlet ,2000; Goldenveizer, 1962; Pap = Oadpus — F?yﬁaw?» - bébwuf&
Sanchez-Hubert and Sanchez Palencia, 1997). N N
Let us denote by a bounded and connected domain + Da (bgux) + b3 Dsux-
of the (y',y?)-plane (the parameter plane). The middle Then the classical (Love Kirchhoff or Koiter) theory of
surfaceS of the shell is defined by a smooth functieh thin shells is described in terms of the two bilinear forms
le. a., and E2af of membrane and flexion energies which
Q> (y',y?) — 7y, y?) e R (8) are given by
At any point of S we define the tangent vectors

. . : .5 = | BesA 7 §
(@1,d@») being the local covariant basis of the tangent ay (0%, 0) = /SB Foau (0°) pap (0)dS,  (13)
plane.

The first fundamental form which defines the dis-
tances on the surface is given by

am (1%, T) = /S AP () Yap () dS,  (12)

respectively, whereA*?* and B*%** are the coeffi-
cients of membrane and flexion rigidities which satisfy
usual conditions of symmetry and positivity.

ds® = anp dy® dy®, (10) Here 2¢ denotes the relative thickness of the shell
) ) (equal to the ratio of the thickness to any other character-

where a,3 = do - @g. The corresponding contravariant stic length of the shell). Obviously, the facte? in front
basisa® is defined bya® -ds = d7. We also considerthe  of the form a; accounts for the fact that the flexion rigid-
unit normal vectora® = d@s. We note that, when changing ity is asymptotically small with respect to the membrane
the parametrizationgs is invariant up to the orientation,  rigidity. Obviously, as the forma; contains derivatives
so that normal components behave essentially as scalars.of higher orders tham,,,, the asymptotic process \, 0

We recall that the Christoffel symbols are is a singular perturbation.

The stress membrane componefit® are related
to the strains by

and tha_t the coefficients of the second fundamental form B (i) = APy ().
describing the curvatures are "

)5 = Opdy - @

(14)

Conversely, the strains can be expressed in terms of the

bap = bga = ~0pd3 - da- stresses as

. We also. recall that a point of is said to be ellip- Yo (@) = CMWT“B (@), (15)
tic, hyperbolic or parabolic when the second fundamen- 7 ) o
tal form is definite, indefinite or degenerate, respectively. Where theC .. 5’s are the compliance coefficients.

This is equivalent to saying that the product of the prin- The energy spaceV of vectors ¢ satisfying
cipal curvatures is more than, equal to, or less than zero,the kinematic boundary conditions (bound. cond. for
respectively. brevity) is
In contrast to ordinary differentiatiofl,, the covari- V = {7 = (v, v2,v5) € H' (Q) x H' (Q) x H?(Q);
ant differentiation is denoted bp,,. Its action on vectors
and tensors is bound. cond;. (16)
Dyug = Oqug — rgﬁuM Typical kinematic boundary conditions are either fixed
s b L e B 8 man (11)  conditions:
D\TP = o\T~ —s—FMT +F/\HT . 7=0,
Let @ be the displacement af for its deformation. ~ or clamped conditions:
Specifically, we consider that changes into” + « and L
we linearize for smalli. Then the strain tensor is given 1()9_ 0, (17)
by the components % -0
n

1
Yap = 5 (Doug + Dguyg) . on a partl’y of the boundary.
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Under the hypothesis that the surface is geometri- in 2 and
cally rigid or inhibited in the terminology of (Sanchez- T“%B =0 (23)
Hubert and Sanchez Palencia, 1997), i.e. that (2) holds
true, and thus has to be checked in each casgy, 0)
is the square of a norm off and we may construct the
spaceV,, as the completion of” with this norm. Obvi-
ously, because of the positivity of the coefficient§
this norm is equivalent to

on the free partl’; of the boundary.

The proof is analogous to that of Theorem 2.3 in
(Karamianet al.,, 2000). In fact, the property that if there
isno T € L2(Q) satisfying (22) and (23) therf ¢ V/,

follows directly from the previous considerations. Indeed,
N it fe V.., then the solution to the limit problem exists
o= (Z e 1)
.8

17 (18) so that the corresponding?(ii®) exist and belong to

L?(Q) and, by virtue of (4) and (21), may be taken as
From now on we make the hypothesis that the sur- 7°7.
face S is everywhere hyperbolic. Moreover, it is de-
scribed with the special parametrization where the coordi- Example 1. Let us take f* = 0 and f3 = Y (y* -

nate lines are the asymptotic curves so that= by = 0, o) f(y"), where f is a smooth function and” denotes
bia # 0. In this context, the left-hand sides in (5) are the Heaviside function. System (22) gives
Y11, Y22 and ;. 1 9 1 9
_ The limit problem fore = 0 is as follows: For given —OTH =5 (y* —c) @ (y') +element € L* (9),
fev. find @ eV, satisfying —0,T? = element € L% (Q),
a, (@0, 7) = / TP (@) Yap () dS which is impossible withT!'! € L2(Q). Consequently,
S feve. ¢
= v VUeV,. 19 . .
(f’ v) ’ Ve (19) Example 2. It is even easier to prove thgt* = 0 and

Classical integration by parts shows that the problem (19) f3 = 6(C), whereC denotes a curve of the surface, does
is equivalent to the system (4), (5) with the boundary con- not belong toV,;,. Indeed, this follows immediately from
ditions the fact that the trace of3 is not defined forv € V,,,

q uy =ug =0 on I'y (20) cf. (18) ¢
an o
r ﬁnﬁ =0onTy, (21) In the two previous examples, obviousﬂle V.
whereT'; = 9Q\I'y is the free part of the boundary and
77 denotes the unit vector tangent & and normal to the
boundary. Kinematic boundary conditions (20) amount 3. Propagation of the Singularities
to (17) for the tangent components but the conditions for
usz disappear because they obviously do not make sensdor the sake of conciseness, let us consider a specific ex-
in V,,, cf. (18). Moreover, (20) holds true under the hy- ample of geometry, as well as boundary conditions. Let
pothesis thafl', is nowhere parallel to the characteristic ¢ be the domain shown in Figs. 1 or 2. The surfate

curves, i.e. nowhere parallel to axe$ = 0, y2 = 0. is assumed to be smooth and uniformly hyperbolic. The
For all these questions, see (Sanchez-Hubert and Sanchg@rametrization is chosen such that the asymptotic curves
Palencia, 1997, Sec. VII.2). coincide with the coordinate oneg const and y*const,

so that

Obviously, the problem foe > 0 makes sense for
any f € V' which is a product of duals of standard
Sobolev spaces. In contrast, the spdég is not clas-
sical. Let us say thal/, is “large” so that its dual is
“small”. As a result, quite “usual” loadings do not belong
to V. and will be in the non classical case mentioned in
the Introduction. Let us state this in a more precise form
as follows:

b1 = b =0, bz #0. (24)

The boundary is fixed alondy, = AB, which is
not a characteristic curve, so that the boundary conditions
are (20). The rest of the boundaty?\I'y is free. Two
cases of loading will be considered, and a wide variety of
examples may be handled in an analogous way.

Theorem 1. A necessary and sufficient condition fg?r . .
to be in V/, is that there existI'*® = T7* in L?(Q) 3.1. First Example of Loading
satisfying

—DBT(XB — f'a’
2) F= (0,08 (52 =) 8o (4) F ('), (25)

In this subsection, the loading is defined as follows:
{ —2b1,T"2 = f3
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Fig. 1. Domain € in the first case of loading (25)( and
§" indicate the type of the singularity afs).

Fig. 2. Domain €2 in the second case of loading (49)
(6" indicates the type of the singularity along
the characteristics).

where 6,1 ;1) is the characteristic function of the interval
[a',b'] and F is assumed to be a smooth function.

o

By substituting the expression f@'? in (26); into (26)
and (263, we obtain for the leading order of singularity

—O,T" — (20}, +T2,) TV — 3,722
2—5'(y2—02)<1>1 (yl) 4. ;

—0,T?? — (21“%2 + F%Q) 722 _ F%lT11 27)
=0y =) P (yh) +-oe
T2 — _§ (yz _ 02) o, (yl) ,
where ( 1) ( 1)
9 1 p1 f
1\ _ Yat,b] Yy Yy
(Pl (y ) - 2b12 (yl,cz) (28)
and
Dy (y') =011 (y'). (29)

We note thatd, contains terms if(y* —a') andd(y! —
bh).

We see that the appropriate singularity expansions
for 7% in the framework of (7) are

T ~ 8 (yz _ 02) T1 (yl)
T22 ~ § (y2 _ c2) T22 (yl)
T2 = _§ (y2 — 02) D,

s (30)

The system (27) then gives the system satisfiedZBy
and 722

dTll

e + (2T} +TH) T = ¢4 (y'),

(31)
T2 113, 7" = 0.

This system is of total order one. Let us look for the
corresponding boundary condition. At the leading order
(23) givesT''n; = 0, wheren; # 0. Indeed, we have

Let us now address the propagation of the singulari- 7 ilnlal + n2a?, whereri is norm;all tody, i.e. parallel
ties along the characteristic curve which supports the load-t0 @' . The boundary condition fo7 " is then

ing.

3.1.1. Propagation of the Singularities Alongy? = c?

We first study the singularities of the componefits® in
the system (4), which is of the form

—O T — (2], +T3,) T — I, T2
= 9T + (3T}, +T%,) T2,

—0oT?% — (23, + T}y) T%* — T3, T
=T + (313, +T}) T2,

72b12T12 =0 (y2 — 02) 9[(117(,1] (yl) f (yl) .

(26)

T (0) = 0. (32)
We then have
yl yl
T (y1) = / By (1) exp [ / (2, (&,¢2)
“ v (33)

+F%2 (ga 62) )d§:| dna

TQ2 — _F%1 (yl7 02) Tll (yl) ,

and the leading order of the singularity is completely de-
termined.
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Remark 1. For 0 < y' < o', T (y') = 0 but for
bt < y! < L — %, in general, 7' (y') # 0 though
e[al’bl](yl) = 0: this manifests thehenomenon of prop-
agation of singularities

Remark 2. According to the previous results, at the lead-
ing order both boundary conditions (21) are automatically

satisfied.

Let us now examine the singularities of the displace-

ment components,;. The system (5) gives at the leading
orders

5‘1u1 - Fhul - F%1U2
~Chind (> =) TH (y') +- -,
8211,2 - F%2u1 - F%QUQ

~ Cygyd (4 — ) T (y!) + (34)

1
5 (81’11,2 + agul) - I‘%Qul - ].—‘%2”2 — b12U3

~ Cho118 (y2 _ cz) 711 (yl) e

Then the appropriate expansions of the componemnts
are
up =8 (> =) U (y') +---,

uzzé(yQ—CQ)Ug (y1)+-'- ;
ug ~ 5" (y2 —02) Us (yl) R
Substitution of (35) into (34) leads to

dU
— —ThLU; =Ciin (') T (y')

dy!
E\1’1 (yl) ’
Uy — I3oUs = Coo11 (y*,¢®) T (')
E\I’Q (yl) )

1
§U1 — b12U3 =0.

(35)

(36)

The componentd/; and U, satisfy a system of total or-
der one with the boundary condition

Uy (L-¢c*) =0 (37)

and we obtain

1 n

)= fuson)[er ( [riteac)|an

L—c2 L—c?
(38)
Uz (y') =T3,Us + 2 (') ,
1

Us (yl) :WUl (yl) .

The leading orders of the singularities of the components

u; are completely known.

Remark 3. We observe that/s (L —c?) # 0. The bound-
ary condition (20) forus (which is of an order of singu-
larity lower thanu, see (35)) is not satisfied. This pro-
vokes a new (reflected) singularity of lower order along
L = ¢2. This kind of phenomenon was considered in
(Karamian, 1998b). See also Remark 6 here after.

<

Remark 4. The componentd/; and U are different
from zero on the whole intervd) < y' < L — ¢? (prop-
agation of the singularities).

3.1.2. Propagation of the Singularities along
the Characteristic y!=a!

In the sequel, we shall study the propagation along the
characteristicy! = a!. Propagation along,' = b' is
analogous. We now have

F@)s (=)

T12 —_Y 1 1
(y a ) 213 (al, 42)

(39)

We note that (39) is merely the singularity of (26at
y! = a'. Nevertheless, the roles df (y' — a') and
5(y? — c?) are “reversed” in the study of the propagation
along y> = ¢?> (Subsection 3.1.1) and along! = o'
(now). Indeed, along/?> = ¢2, the “singularity” in the
sense of (6) or (7) was(y? — ¢?) and the “coefficient”,
4, was given by (28), which contains terms in the tan-
gential variabley®. Consequently, for studying the prop-
agation alongy! = a!, the “singularity " is Y (y! — a')
and the “coefficient” is§(y* — ¢?); it is “more singular”,
but in the tangential variable. Consequently,

f(a')o(y?—¢?)
2012 (al,c?) 7’

f (al) Y (y2 _ 02)
2b12 (a1,02) ’

T2 = —¢ (yl - al)

9T = -Y (y' —a')

and the system (5) reduces to

—OTH — (2], +T3,) TH — 3,72

f (al) N (y2 _ 02)
2b12 (Cll, 62) ’

—0,T%? — (213, +T'1,) T%* — T3, T

f(a)d(y* — <)
2b12 (al, 62)

Y =)

(40)

=3 (y' —a')
with (39). The appropriate expansion is then

THZY(yl—al)TH (y2)_,’_’
(41)
T22,.:(S(yl_al)'r22(:l/2)_’_._.7
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where T and Y22 satisfy
—T! T, T2 =,

d'r22
dy?

— (2T}, +T2,)) 122 (42)
2

_ f (a') 2_ 2
= 5 (a1,02)5 (y? — ).
The explicit solution is
T22 (yQ)

_ (a') 2 2

= by, (al’cz)y (v* =)

2

X exp (—/(QF}I (al,n) + F%Q (al,n)) dn). (43)

c2

P

I (n) = Caaaa (a',n) T2 (n). (48)
Then V; is given by (46) and V3 by (46)%, so that
the propagation of the singularity along the characteristic
y! = a' is completely determined at the leading order.

where

3.2. Second Example of Loading

We now consider another loading which is less singular
than the previous one. In order to make comparisons with
Section 3.1, we keep the same surfateand domainsQ.

The loading is

7= (0,07 (s =" Y (v ~ o)

<Y (' =y F(y'07) ), (49)

where F' is a smooth function. Clearly, we have disconti-

The corresponding system satisfied by the displace-nuities of f5 along the characteristicg' = o', y' = b’

ment components is
31u1 - Fhul - F%l’UJQ

= Cuiza (a',9%) 5 (4" —a?) T2 (42) 4 - -
82u2 - F%Q’Uq - F%QUQ

44
= Coazo (at,y?) 6 (y' —a') Y22 () + - -, “4

1
2 (Oau1 + Orus) — Tlaur — Tiyuz — bigus
= C1222 (", y?) 0 (y' —at) T2 (y2)+ - - -,

and their expansions are of the form

up =Y (yt—a') Vi (v2) + -,
sy —a) Vo () 4o, (45)
us =6 (y' —a') V5 (y2) + -+,

where the functiond/; satisfy

Vi —=T% Vo = C1227%2 (y?),

dV
d73 — T35,V = Ca222%% (y?) (46)

1
§V2 —b12V3 = 0.

Taking account of the boundary conditidn (L — ¢2) =
0, we obtain the solution

L—at

Va (y?) = {— / exp (—j I3, (a',€) d§>F (n) dn}

y2

y2

X exp (/F%2 (a*,n) dn), (47)

0

andy? = b' (see Fig. 2).

As regards the singularities along = b', the load-
ing f3 is singular inY (y? — b') instead ofd(y? — c?)
as in Section 3.1, so that the singularities of the unknowns
are studied exactly in the same manner as in Section 3.1,
but their order is lower by one. As a result, instead of (30)
and (35), we have

Tll ~94 (yQ _ bl) Tll (yl)

+...’
TQQZY(y2—b1)722(y1)+~-~7

(50)
T12 - _Y (y2 _ bl) (I)l yl)

and
up =6 (y> = b)) Uy (y') + -+,
ung(yQ—bl)Ug y1)+-~', (51)
ug =6 (y> = 0") Us (y*) +---,
respectively, where the functiori&'!, ... Uz can be de-
termined in much the same way as in Section 3.1.
As for the singularities along' = o' (resp.y' =
b'), the loading is singular i’ (y! — a') (resp.Y (b! —
y1)), i.e. of the same order as in Section 3.1.2, so that

nothing is changed in formulae (41) and (45), where
T ... V3 can be determined as in that section.

Fig. 2 shows the order of the singularity af along
the above-mentioned characteristics.

Remark 5. For the present loading, wheré; is dis-
tributed and does not vanish on a part of the characteristic
boundaryy? = 0, in addition to the previous singularities,
there is a strong boundary layer alopg = 0 enjoying
propagation properties (Sanchez Palencia, 2001) (see also
an analogous situation for a model problem in (Karamian
et al, 2000)).
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4. Numerical Experiments

Numerical experiments are concerned with for ¢ > 0.
As we mentioned in Section 1, whef ¢ V,,, to our
knowledge there is no proof of the convergenceusf

In this section, we present some numerical experi-
ments concerning the cases considered in Section 3 for
two different cases of loading. The numerical compu-
tations are implemented with reduced Hermite finite ele-
ments that are used for the normal displacementas

as e \, 0 in the general case. Nevertheless, a proof in \ya| as for the tangential displacemefit;, us). The

appropriate topologies after a re-scaling was given for a nymerical integration of the rigidity matrices needs six
model problem in (Sanchez Palencia, 2000). Of course, asgayss points.

we shall see in the sequel, there is “numerical evidence”

of such convergence. Clearly, far > 0 the singular-
ities become internal layers with thicknegge) \, 0.

We must emphasize that such numerical computations

are very tricky since the finite element approximation
uj; — u® is not uniform with respect te with values

in V,, orin any smaller space (Gérard and Sanchez Pa-

lencia, 2000, Prop. 4.1). Consequently, the smadlas,
the smallerh must be taken to have a good approxima-
tion. This peculiarity generates a variety of difficulties

The meshes for the domaift are generated by
using the Modulef code. The domain is covered with
right-angled triangles such that the sides opposite the hy-
potenuse of each triangle are parallel to fieand y2 co-
ordinates. This allows us to perform uniformly the mesh
refinement by respecting the asymptotic curves.

The surface is defined by the mapping (8) with

7y y?) = (v v?y'y?),

when computing thin shells (Chapelle and Bathe, 1998; g, that the surface is a hyperbolic paraboloid satisfying all
Karamian, 1998b; 1999; Sanchez-Hubert and Sanchez Pag,q required hypotheses.

lencia, 1998). Some of these difficulties are linked to

the presence of boundary layers and the correspondingYou

local locking phenomena (Pitkarangd al. (to appear);
Sanchez-Hubert and Sanchez Palencia, 2001a; 2001b).

Let us recall some elementary properties of distribu-
tions of D’'(R), which will be useful for understanding

The material is isotropic and homogeneous, with
ng’s modulus 28500 Nii? and Poisson’s ratio 0.4.
The thickness is equal tb0—*.

In both cases, the numerical experiment involves
14400 triangles, 7381 nodes and 66429 degrees of free-

the numerical experiments and, more precisely, the sec-

tions on the internal layers. It is classical that the Dirac
mass is the limit of a sequence of functions

1
<p<$>—>6(ac) asn—0
n n

provided that
/ o (x)de =1.
support

4.1. First Example of Loading

In the case of Section 3.1, we tale=4, a' =2 =1
and b? = 2 (Fig. 1) and F(y*) = 1. Below we give and
explain the behavior ofi5 in different sections.

Figure 3 showsu§ in the sectiony! = 0.5, i.e. in

the region(0 < y* < a' = 1) on the left of the loading.
We observe that this function is nearly vanishing except

More generally (Sanchez-Hubert and Sanchez Palen-

cia, 1989, Sec. VI.14), a sequence of functigsigx)
©(z/n) can be expanded in the form

2

—Lm' ()8 (x)

" (@) 2" () 0 (2) = 5

n3
+ m? ()6 (@) + -+

where the coefficients are the momentsof

)= [ ae @
support

Consequently, ifp is such that

mF (p) =0 fork=0,...,p, (52)

then
(=1)"p!

P ()¢ (@) 5P ().

(53)
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Fig. 3. The first example of loading, Sec. 3.1. The
graph ofus for ' = 1.5 manifesting a prop-
agated”’-like singularity aty? = 1.
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in the neighbourhood of?> = ¢? = 1, where it manifests

a behaviour analogous to (53) with = 2. Indeed, the
momentsm® and m! with respect tox = y2 — 1 are
clearly small andms # 0. This perfectly agrees with the
structure of the singularity in” of u3 in (35). Of course,
as the section is on the left of the loading, the singularity
is propagated in the sense of Remark 4.

Figure 4 showsu§ in the sectiony! = 1.5, which

cuts the support of the loading. The behaviour is exactly

the same as in Fig. 3 but quantitatively larger.

| ——
L |— U3hx=15y) ||

0.5

U_3h

Graph of

-0.5

0.5 1 1.5 2.5

Cross section along x=1.5

Fig. 4. The first example of loading, Sec. 3.1. The
graph of uz for y* = 1.5 manifesting a non-
propagated singularity aj*> = 1.

Figure 5 showsu§ in the sectiony? = 0.5, which
cuts the characteristicg' = o' = 1 andy' = b' = 2
bearing the propagated singularities dfy cf. (45). We

observe that the function manifests in the neighbourhoods

of y! = 1 and y' = 2 a behaviour analogous to (53)
with p = 1. Indeed, the moment:° is clearly small and
m! # 0.

Remark 6. Figure 5 also shows &’ singularity in the
vicinity of y' = 3. According to Fig. 1, with¢? =

1, this corresponds to the section of the characteristic
y! = 3, which bears the “pseudo-reflected” singularity
of that alongy? = 1 (Karamian, 1998b). Indeed, th#'-
singularity alongy? = 1 intersects the non-characteristic
boundary AB at the point(3,1) so that a singularity of
the order lower by one, i.e. i, appears along' = 3.

4.2. Second Example of Loading
In the case of Section 3.2, we take= 4, o' = 1 and
b? =2 (Fig. 2) and F(y',3?) = 1.

Figure 6 showsu§ in the sectiony! = 0.5, i.e. in
the region (0 < y* < a* = 1) on the left of the loading.

o

r \ — U3_h(xy=0.5) ||

0.05

=

Graph of U_3h

-0.05

|
|
\

-0.1

0 0.5 1 15 2 2.5 3 35

Cross section along y=0.5

Fig. 5. The first example of loading, Sec. 3.1. The graph.ef
for 4> = 0.5 manifesting propagated -like singular-

iiesaty! =1 nady' = 2.
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Fig. 6. The second example of loading, Sec. 3.2. The
graph uz for y* = 0.5 manifesting a propa-
gatedd’-like singularity aty? = 2 and a prop-
agated boundary layer af = 0.

As has been explained in Section 3.2, the singularity along
y? = 2 isin &' for us. Its section byy' = 0.5 clearly
appears in the figure, which also shows in the vicinity of
y! = 0 the boundary layer mentioned in Remark 5. Both
singularities are propagated from the suppory?of

Figure 7 shows the sectiop? = 0.5 and manifests
&' singularities aty' = 1 and y' = 2. This perfectly
agrees with the description given in Section 3.2. The
graph is analogous to that of Fig. 5 except for the pseudo-
reflected singularities along' = 3, which do not exist in
the present case (cf. Remark 5). It should be noticed that
the singularities in Fig. 5 are propagated, whereas those in
Fig. 7 are not. Nevertheless, the shapes are closely simi-
lar. The fact that there is a loading betwegh= 1 and
y! = 2 inFig. 7 is not relevant. Only the discontinuities at
the extremities of its support yield significant singularities.
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Fig. 7. The second example of loading, Sec. 3.2. The
graph of us for y> = 0.5 manifesting two
propagated’-like singularities aty' = 1 and

1
Yy = 2.
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