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OF A GRANULAR INITIAL VALUE PROBLEM

ILDAR BATYRSHIN*

* Institute of Problems of Informatics, Academy of Sciences of Tatarstan
and Kazan State Technological University, K. Marx Str., 68, Kazan, 420015, Russia
e-mail:batyr@emntu.ken.ru

Perceptions about function changes are represented by ruledfliké is SMALL thenY is QUICKLY INCREASING

The consequent part of a rule describes a granule of directions of the function change&Xwisencreasing on the fuzzy

interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular
derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is
similar to Euler’s piecewise linear solution of an initial value problem. The solution method is based on a granulation of the
directions of the function change, on an extension of the initial value in directions and on a propagation of fuzzy constraints
given in antecedent parts of rules on possible function values. The proposed method is illustrated with an example.

Keywords: fuzzy differential, fuzzy granule, initial value problem, cylindrical extension

1. Introduction where the new type of rules describing the shapes of
dependencies between variables was introduced and the

In spite of the great success of crisp mathematics in the de-methods of representation of such rules by granular direc-

scription and modeling of quantitative processes, the nat-tions were discussed. The rules are often represented as

ural language has often been used for these purposes tilfollows:

now. The uncertainty in the understanding of described If Xis AthenY is B, (1)

processes, the complexity of processes and the absenc&,hereX and Y are variables and!, B are constrain-

of resources for_a detqiled description are only some Ofing fuzzy relations. The following are examples of rules

the reasons behlnq using such rough aqd qualitative tf)o'discussed in (Batyrshin and Panova, 2001):

as the language, instead of exact and fine mathematical

methods developed during the last centuries. Besides, in  R; : If TEMPERATURE is LOW then DENSITY

many real tasks it is sufficient to have a qualitative descrip-

tion of a system and a qualitative solution instead of some

crisp mathematical result. In such situations the method-

ology of computing with words tolerant for imprecision Ry : If TEMPERATURE is HIGH then DENSITY

to achieve tractability, robustness, a low solution cost and

is SLOWLY INCREASING )

better rapport with reality may be considered as an alter- is QUICKLY DECREASING )
native or additional tool with respect to traditional mathe- The rules (2) and (3) are considered as linguis-
matical methods of modeling (Zadeh, 1997; 1999). tic expressions of dependencies between variables:

Computing with words is based on a translation of DENSITY and X = TEMPERATURE, such thaty’
propositions expressed in a natural language into propo-iS @SLOWLY INCREASIN@inction of X' on the fuzzy
sitions expressed as a generalized constraint, and a fuzzjntervalLOWandY" is aQUICKLY DECREASINGunc-
graph constraint is often used for these purposes (Zadehtion of X on the fuzzy intervaHIGH. In this paper the
1999). The most important step in the explicitation of Setof rules such as (2) and (3) is translated into rule-based
generalized constraints is a fuzzy information granula- derivatives.
tion which involves a decomposition of the whole into Differential equations play an important role in math-
parts such that the resulting granules are clumps of physi-ematical modeling. But often the values of the variables
cal or mental objects drawn together by indistinguishabil- used in the problem considered are uncertain. Moreover,
ity, similarity, proximity or functionality (Zadeh, 1997). the functional dependencies between variables may be un-
This approach was used in (Batyrshin and Panova, 2001)known. In the first case the model of the process may
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be based on fuzzy differential equations, i.e. on differ- (2) and (3) may be translated in the following form:

ential equations with fuzzy parameters (Mtal, 1999;

Nieto, 1999; Park and Han, 2000; Song and Wu, 2000; R; :If X is LOW thenlY/dX is POSITIVE SMALL
\Vorobiev and Seikkala, 2002). In the second case the (4)
model of the process may be based on a qualitative de-

scription which uses the signs of derivatives instead of

the derivatives or, equivalently, the labels “increasing”, 2 : If X is HIGH thendY/dX is NEGATIVE LARGE
“steady” and “decreasing” (De Kleer and Brawn 1984, (5)
Forbus 1984, Kuipers 1984). If the first approach requires  Since the value of the derivative is equal to the slope
a crisp description of quantitative dependencies betweenof the tangent line to the curve of a function, the linguistic
Variab'eS, the second approach uses very poor informajabels in the Consequent partS of rules may be considered
tion about the dependencies. Fuzzy differentiation basedalso as linguistic evaluations of this slope or parameter

on the extension principle was considered by Dubois andin the equation of the tangent ling = pz + ¢. A gran-
Prade (1982). ular direction of the function change defined by the tan-

gent will be represented by a fuzzy clump of directions.

The rule-based approach to representation of deriva-From another point of view, the granule of directions de-
tives considered here occupies an intermediate positionfines fuzzy sets of differential value$y corresponding
between the two approaches considered above. The probtg given crisp values of incremenkz as dY = PAx,
lem of the reconstruction of a function based on the setwhere P is a granu|ar S|0pe value defined by a rule. We
of rules considered and on the initial value given by a will suppose that the range of crisp values of increment
rule such as “If X is APPROXIMATELY5 then Y is Az (or differential dz) is defined by the antecedent part
APPROXIMATELY10" is considered here as a granular of the corresponding rule. As a result, the granular differ-
initial-value problem. The method of solving the prob- ential Y may be considered as a fuzzy function of the
lem discussed in this paper may be considered as a grancrisp argumentAz. For example, the rule (5) will define a
ular generalization of Euler's method of solving an initial - fuzzy differential as a fuzzy functiody = PAz, where
value prOblem for an Ordinary differential equation. Pisa fuzzy set Corresponding to the |inguistic taiBG-

In Section 2, we translate the consequent parts 0](ATIVE LARGEand Az takes values in the fuzzy interval

rules (2) and (3) into linguistic values of derivatives. defined by the terrhlGH.
These values are also considered as evaluations of slopes ~ For explicitation of rules it is necessary to define lin-
of the tangent line to the curve of the function. The meth- guistic scales for linguistic variables used in the rules, to
ods of the fuzzy granulation of such slopes are discusseddefine a granulation of possible slope values and to estab-
and granular differentials defined by these slopes are condish a correspondence between the grades of scales and
sidered. The solution of the initial-value problem based slope values.
on the examined type of rules is discussed in Section 3. The explicitation of consequent parts of rules can be
This procedure is based on the reconstruction of a func-pased on perceptions about the graphical representation of
tion from rule to rule starting from an initial value similar - dependencies between linguistic variables (Batyrshin and
to Euler's method. The procedures considered are illus- Panova, 2001). Such perceptions may arise as a result of a
trated with an example. In conclusions, we discuss possi-visual analysis of graphics representing the dependencies
ble applications and extensions of the proposed approachetween the variables, and may denote the directions of
to the modeling of complex processes. the change of the variablE with the change of the vari-
able X. In this case, instead of the granulation of slope
values, granulation of angles of the directions of func-
tion changes or granulation of arctangent of slopes may
2. Granular Differentials be used.

Suppose that the domain of slope values is equal to
The linguistic labelSLOWLY INCREASIN® the conse-  the interval[—10, 10], and seven granules of slopes are
quent part of rule (2) may be interpreted as a linguistic defined by fuzzy sets with central modal valugs : =
evaluation of the speed of the change of the varidble: 1,...,7. The possible linguistic scales and centers of
DENSITY when the variableX = TEMPERATURE membership functions corresponding to linguistic grades
is increasing within the fuzzy intervdlOW. Since the  of the scales are shown in Table 1. Each grade of the scale
speed of the function change is related to the derivative represents some fuzzy granule of directions that is a fuzzy
of the function, the consequent part of this rule may be clump of similar directions.
also considered as a linguistic evaluation of the derivative We consider two methods of construction of granu-
dY/dX on this interval. In terms of derivatives the rules lar directions. The first method is called thmportional
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Table 1. Linguistic scales of slope values.

L Linguistic description of the speed.inguistic value of |
¢ of the function change the derivative (slopé)pz
7 QUICKLY INCREASING POSITIVE LARGE| 9
6 INCREASING POSITIVE MIDDLE| 6
5 SLOWLY INCREASING POSITIVE SMALL| 3
4 CONSTANT ZERO 0
3 SLOWLY DECREASING | NEGATIVE SMALL -3
2 DECREASING NEGATIVE MIDDLE—6
1 QUICKLY DECREASING | NEGATIVE LARGE—-9

extension in direction Suppose thatP; is a fuzzy slope

value, e.g. a fuzzy set defined on the domain of slope val-

ues p. For each valueAz > 0 from the domain of in-
crementsDom(Ax), the corresponding fuzzy sefY; of
differential valuesdy associated with the directioh is
defined by the extension principle of fuzzy logic from the
equationdY = P;Ax as follows:

prop
Hay;,

(6)

wherep = dy/Axz. The corresponding fuzzy relation is
defined as follows:

(dy) = pp, (p),

dy

pp, P (Az, dy) = pp, <A$> : (7

If fuzzy sets are defined by generalized bell member-
ship functions (GBMF) (Jangt al,, 1997), then from (6)
we obtain the following definition of the granular differ-

ential:

1y, (dy)

(8)

1
- —ps |20
p—p; |20

L+ 5

whereq; is the width of the fuzzy set on the level 0.5 and

G

dy = 0 and D;p(dy) = 0 for all other values ofdy.
These fuzzy setd);, defined for Az = 0 will be called
starting sets for proportional extensions of the directjon

The “width” of proportional differentialsdY” is an
extending value with the increasing of the increment value
Az. If the extending “width” of the fuzzy differentialY’
is not desirable, then we can useydindrical extension in
direction (Zadeh, 1966; 1997) and, correspondingly, the
cylindrical differential

uSN Az, dy) = pay, (dy), ©)

where dy = pAxzx (for all Az > 0) and dY; is a given
fuzzy set of differential values in the directidn For ex-
ample, the cylindrical extension of generalized bell mem-
bership functions for each valuAz > 0 will be defined

as

(10)

cyl ( 1
Hay; 2b;

dy—dy;
1 + | a;

dy) =

where dy; = p;Az. The fuzzy value of the cylindri-
cal differential will have a constant cross-section. Exam-
ples of cylindrical differentials constructed by means of
GBMF and trapezoidal membership functions are shown
in Figs. 1(c), (d).

For Az = 0 we define D' by (9) with dy; =
0, which will be called a starting set for the cylindrical
extension of the direction.

3. Solution of the Granular Initial-Value
Problem

The total set of rules with granular derivatives in the con-
sequent parts of rules may be considered as a granular de-
scription of the derivativelY/dX = F(X) of a function

Y piecewise defined on the domain of the variabile

b; is the steepness of the membership function. ExamplesEach rule defines some piece of the derivative on the fuzzy

of fuzzy clumps of proportional extensions of directions

interval corresponding to the value &f in the antecedent

based on GBMF and trapezoidal membership functions part of a rule. The use of linguistic values &f in the an-

are shown in Figs. 1(a), (b). The parametéssb, c, d)

of the trapezoidal membership function (Jat@l., 1997)
are defined by means of the central slope valpesas
follows: a = p; —wy, b=p;, —ws, c=p; +ws, d=
pi + w1, wherew; > wsy > 0.

tecedent parts of rules implies that the set of terms of the
linguistic variableX is defined (Zadeh, 1975). This set of
terms can include the label&RY SMALL, SMALL, MID-
DLE, LARGE, VERY LARGE, APPROXIMATENY BE-
TWEEN N AND M, GREATER THANN, etc., where

The corresponding fuzzy relations are considered as/V and M are some real values or fuzzy numbers. The

granular differentials which define for a given value of in-
crementAz a fuzzy set of differential valuedY. Such

a fuzzy relation may be considered as an extending fuzzy

linear function representing granular differential values.
A granular differential obtained by (6) will also be called
a proportional differential Since Az > 0, the fuzzy
set of differentials for incrementAz = 0 is not de-
fined. Nevertheless, we can define fuzzy sBtg at the
point Az = 0 as singletons, such thd®;y(dy) = 1 for

meaning of these terms may be explicitated by the defini-
tion of the corresponding fuzzy sets defined &n

Generally, for the same rule base there may exist sev-
eral different explicitations of linguistic values of de-
pendent on some parameter or context. The role of such a
parameter or context may be played by another variable.
The explicitation of granular slopes may also depend on
the value of this parameter. In this case the rule base de-
scribes the parametric family of granular derivatives with
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Fig. 1. Proportional ((a) and (b)) and cylindrical ((c) and (d)) differentials in directionsSEQWLY DECREASINGand 4 (“CON-
STANT) based on generalized bell membership functions ((a) and (c)) and trapezoidal membership functions ((b) and (d)).

explicitation dependent on the value of this parameter. Forwith piecewise description of the derivative af. Sup-
example, the rules (4) and (5) may describe the derivativepose that all4,’s in (13) are normal and convex fuzzy
dDENSITY /[dATEMPERATURE for different values  sets defined on the domalPom(X) of X, and the set of
of the third parametetZ = PRESSUREbut the explic-  intervals A;, i = 1,...,m defines some fuzzy partition
itation of this derivative may be different and will depend of Dom(X), i.e., the following conditions are fulfilled:
on the explicitation of linguistic values ok and the ex- sup, (A; N Ag)(z) = s1, infrex (U, 4;) () = so,
plicitation of slopes defined by the value of paramefer where s; and s, belong to[0,1] such thats; < 1 and
Let us consider the way of solving the granular ordi- s2 > 0. Since the cores of the fuzzy intervals in a fuzzy

nary differential equation partition do not intersect, these fuzzy intervals may be lin-
early ordered in such a way that; < A, iff z; < x;
dY/dX = F(X) (11) for some pointsz; andz;, from the cores of4; and Ay,
respectively. We will suppose that this ordering coincides
satisfying the initial condition with the numbering of rules such that; < A;,, for all
“If X is X, thenY is Yy", az T heem , _ ,
The problem of solving the granular differential
where X, and Y, are fuzzy sets defined oX and Y, equation (11) with initial condition (12) will be called a
respectively, and (11) is given by the rule base granular initial-value problem.

i i _ With no loss of generality we will suppose that the

Ri:If X is A; thendY/dXis B, i=1,...,m, intersection of the initial valueX,, with the fuzzy interval
(13) A; from the first rule is a normal fuzzy set. The solution
of the granular initial-value problem based on cylindrical
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extension in directions defined by the slope values will 17. Find a numerical solutio* = Defuz(Y (X™))

include the following steps:

result of the defuzzification procedure.

= Zlidlt_he corefz11, z12] of the fuzzy set¥o N Ay, The linguistic value of the functio” obtained as a
result of the retranslation of the fuzzy sE{ X*) = B*
2. Select a starting poink, in [z11,212], €.9., as fol- ~ may be considered as a reply to the quevyhat is the
lows: zo = (711 + 712) /2 value of Y if X is A*?".
3. Construct a fuzzy seY; in zo. Let us discuss some steps of the procedure consid-
ered. If we use fuzzy intervalgl;, with strict monotonic
4. Choose a fuzzy set| as a starting fuzzy sebD;q membership functions from both the sides of the cores,
for the direction/; determined by the slop#;. then in Step 6 each intervdky,, zx2] will contain only
5. Construct a granular extensiaR; in the direction one point.
l; based on the initial fuzzy seb;y. Setk = 2. Steps 11 and 12 can be realized by several meth-
. . . . ods. A max-min aggregation of rules is based on the in-
6. Select a starthg pOIntka,l n the interval tersection of each granular direction with the correspond-
[#k1,252] Maximizing the intersection of fuzzy sets ing cylindrical extension of the fuzzy constraint; in
Ag—1 and 4. Step 11 and the aggregation of results obtained for each
7. Cut the granular extension in the directiaBy,_, rule with the union operation in Step 12 as follows:
at the pointx;_;. The result will give a fuzzy set
Dy1-1(y) = Di—1(y, Tp—1)- _ U Dy 1 Cy (A0).
8. Construct a granular extensiadn;, based on a fuzzy k=1
set Dy,_1 and on a slope value defined . Set
k=k+1. For this method Steps 11 and 12 are reduced to
9. Repeat Steps 6-8 while < m. Riz,y) = ) HllaX (min (Dk(x,y),Ak:(x))) .
10. Construct cylindrical extensions of constraints o
A, k = 1,...,m along the Y axis, i.e. ] o
Cy (Ap)(z,y) = Ap(). A_noth_er method is based on_the weighting _of gran-
ular directions by the corresponding membership values
11. Propagate the cylindrical extensions of constraints of the cylindrical extensions of fuzzy constraint, in
Ak, k = 1,...,m on the corresponding granular Step 11 and on the averaging of results in Step 12:
directions Dy,.
12. Aggregate in overall fuzzy graph the constrained di- > (Dp(z,y)Ax(x))
rections obtained in Step 11. R(z,y) = k=1 -
As a result of the above procedure, a fuzzy relation k; Ar()

R on X x Y which will give a solutionYxg(

X) to the

granular initial-value problem will be constructed. The
calculation of the function value for a given fuzzy value
X* of the input variableX represented by a fuzzy set
A* can be performed as a result of the following steps:

13.

14.

15.

16.

Construct a cylindrical extensiofy (A*) of A*
along theY axis.

Calculate a granular solutiobig (X*) =
R.

Cy(A*)N
Find a projectionB* = Py (Yr(Xx*)) on theY
axis.

Find a linguistic retranslation of the fuzzy set
Y(X*) = B~

This method will be called a weighted-average ag-
gregation. It gives a smoother overall graph than the first
method and is illustrated in Fig. 2 with the example con-
sidered below. As it follows from the last formulas, for
both the methods it is not necessary to calculate cylindri-
cal extensions of constraint4y.

The procedure of linguistic retranslation in Step 16
can be based on linguistic approximation procedures
(Zadeh, 1975) and will not be discussed here.

If it is necessary, a defuzzification procedure in
Step 17 can be applied. Different types of such procedures
are described in (Jareg al, 1997).
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Fig. 2. Construction of the overall graph defined by the fuzzy
rule set from example: (a) The fuzzy constraints on the
variable X; (b)—(e) the propagation of constraints from
X on the corresponding granular directions defined by
fuzzy rules: (b) R1; (C) Ro; (d) Rs; () Ra; (f) the
overall fuzzy graph is obtained as weighted-average ag-
gregation of the constrained directions.

4. Example

Consider the following rule base describing the depen-
dency between the variablé$ and X:

R; : If X is SMALL thenY is SLOWLY INCREASING

Ry : If X is MIDDLE thenY is QUICKLY INCREASING

Rs : If X is SLIGHTLY GREATER THAN MIDDLE
thenY is CONSTANT

Ry : If X is LARGE thert is QUICKLY DECREASING

given by the rule

Rs : If X is APPROXIMATELYO
thenY is APPROXIMATELMO,

with an appropriate definition of the fuzzy sé{®PROX-
IMATELY 0 and APPROXIMATELY10. Figure 2 illus-
trates the solution to the initial-value problem given by
this example based on some explicitation of the member-
ship functions used in the model. In all constructions gen-
eralized bell membership functions were used. In the rule
R the parameters; are equal to 0 and 10 for GBMF
X, andYj, respectively. The pointzy,y1) = (0,10) is
used as the starting point for construction of a granular di-
rection in the ruleR;. The parameters of; are used as
parameters of the cylindrical extension of granular direc-
tions. The weighted average method of aggregation was
used. For each rule the corresponding granular directions
weighted by fuzzy sets given in the antecedent parts of
rules are shown in Figs. 2(b)—(e). The overall fuzzy graph
is shown in Fig. 2(f).

The calculation of a reply to the query
Q : What is the value ot if X is VERY LARGE?

is based on Steps 13-17 described above and illustrated in
Fig. 3.

Query:
1

X=VERY LARGE Y = MIDDLE \

08
y=16.38
04

02

10 0 02 04 06 08 1

This rule base gives a context-insensitive initial data fig. 3. calculation of a reply to a query: (a) fuzzy graph de-

set (IDS). For the explicitation of this IDS we should
define the corresponding fuzzy sets for the variallle
and granular directions for the variablé. Moreover, we
should also define an initial fuzzy poiiy, Y;) that will
define the starting point for the process of the reconstruc-
tion of the functionY. Suppose that the initial point is

fined by the fuzzy rule base; (c) constraint a in a
query: “X is VERY LARGE (b) result of intersection
of a fuzzy graph with cylindrical extension of a con-
straint on X; (d) projection of the result onto th&
axis with possible retranslatiory™ is MIDDLE” or with
defuzzification resulty = 16.38.
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The retranslation of the resulting fuzzy sg{ X*) with several inputs and outputs when the description of
on Y in the linguistic form “Y" is MIDDLE” was ob- dependencies between input and output parameters may
tained as a result of linguistic approximation. The real be given in the form of rules considered in this paper. An
value y from the fuzzy setY’ (X*) was obtained as the example of fuzzy expert system modeling such a process

mean of the modal values af (X ™). with another type of rules describing similar dependen-
The answer to the query cies between variables was considered in (Batyrsha,

1994). It would be interesting to combine the proposed

@2 : What is a maximal value of ? approach with the methods developed in qualitative rea-

_ ) ) soning about processes and systems based on the use of
is considered for a general case in (Zadeh, 1997). For ourye signs of derivatives (De Kleer and Brawn, 1984; For-
rule base, as the maximal value Bf the projection ofthe ;5 1984: Kuipers, 1984).

constrained granular direction corresponding to the rule The rules containing some specific features of the
R3 (see Fig. 2(d)) on thé” axis can be used. shape of the output variable in consequent parts can be
used for granular shape analysis. The granular models
with the rules of type (2) and (3) can be also more suit-
able for representing the knowledge base invariant to the

The methods of translating perceptions about function change of parameters of some problem area or insensitive
changes into rule based derivatives, and the methods of© the context (Batyrshin and Fatkullina, 1995). For ex-
constructing granular derivatives and granular directions @mple, such models may describe the parametric family
of function changes have been discussed. The problem oPf the fuzzy graphsy”(X) when the value of some vari-
function reconstruction from a rule-based derivative and able Z is considered as a (perhaps hidden) parameter.
the initial value given by the rule is called the granular
initial-value problem. The solution of this problem is
based on a sequential rule by rule reconstruction of the

function starting from a given initial value. The method The author would like to thank A. Panova and M. Wa-
can be considered as a generalization of Euler's methodgenknecht for useful discussions, and the referees for their

of pieceWise linear solution to the CI’iSp initial-value prOb- valuable comments. The research was part'y Supported by
lem for ordinary differential equations. The method uses the REBR Grant 02—01—00092.
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