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In this work, we examine, through the observation of a class of linear distributed systems, the possibility of reducing the
effect of disturbances (pollution, etc.), by making observations within a given margin of tolerance using a control term.
This problem is called enlarged exact remediability. We show that with a convenient choice of input and output operators
(actuators and sensors, respectively), the considered control problem has a unique optimal solution, which will be given.
We also study the relationship between the notion of remediability, introduced in previous works, and that of enlarged exact
remediability.
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1. Introduction Hilbert space). The solution to (1) is given by

In this work, motivated by _environmental prqblems, we () = S(t)20 + /tS(t _ o)Bu(s)ds

study, through the observation of a class of disturbed lin- ' Jo

ear systems the possibility of reducing in finite tirtie .

the effect of a disturbance (pollution, etc.) by taking an +/S(t — 5)f(s)ds.

observation in a given region of tolerance using a control 0

term. This constitutes an extension of previous works on If we denote byy, ; the corresponding observation,

remediability (Afifi et al, 1998; 1999; 2000) or distur- then in the case wher¢g = 0 and v = 0 (normal case),
bance rejection and decoupling (Otsuka, 1991; Rabah andhe observation is given by
Malabare, 1997).

With no loss of generality, we consider a class of dis- vo.o(t) = CS()z0-
turbed linear systems described by the following equation: But if the system is disturbed by a teryf) the observation

becomes
2(t) = Az(t) + f(t) + Bu(t), 0<t<T, 1 t
2(0) = 2, D s = OSW +[ 05 —3)1(s)ds # CS(0)2,

where A generates a strongly continuous semigroup Then we introduce a control terfu in order to reduce
(s.c.5.9.) (S(t))i>0 on the spaceX, B € L(U;X), t_he ef_fect of thls_dlsturbance py taking the obs_ervatlon at
u € L*(0,T; U) is the control, X and i/ are two real  finaltime 7" within a given region of tolerancé, i.e.

Hilbert spaces. Moreover, € D(A), a dense subspace T

of X (Curtain and Zwart, 1995). The terrh (represent- Yu,r(T) = CS(T)zo +/ CS(T —s)f(s)ds

ing pollution, infection, etc.) is supposed to be unknown 0
and the system (1) is augmented by the output equation

y(t) = Cx(t), ) ,
where C is a nonempty, convex and closed subset’of
where C € L(X,Y), Y being the observation space (a such thatCS(T)z, € C. This will be called enlarged

T
+/ CS(T — s)Bu(s)ds € C, (3)
0
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exact remediability. The actuators and sensors are re-2.1. Definitions and Characterizations

spectively the input and output parameters of the system. ) o

For a disturbancef € L2(0,T;X), actuators ensuring L&t us recall the following definitions.

the existence of a contral satisfying (3) are termed-

efficient. In the particular case whetkis the closed ball ~ Definition 1. (i) We say that a disturbancé is exactly
B(CS(T)z,¢) C Y, centred atCS(T)z, andwithara-  remediable or0, T if there existsu € L?(0,T;U) such
dius ¢ > 0, these actuators are said to befficient. that

Exact remediability is a strong notion and its realiza- Yu,r (T) = CS(T)zo = 0. (7

tion is difficult. We then introduce the notion of enlarged iy we say that (1), augmented by (2), is exactly reme-
exact remediability, which is weaker and more practical. giaple on [0, 7] if any disturbancef € L2(0,T;X) is
We give its characterization, particularly in the case of a exactly remediable o, T
ball B(CS(T)zp,e) C Y. We study the optimal con-
trol problem (Lee and Marcus, 1967), and we show, under
the weak remediability hypothesis, that the cost is reduced
compared with the exact remediabilty case. Finally, we
study some patrticular situations.

This paper is organized as follows. In Section 2, we Y, £ (T) — CS(T) 2] < e. (8)
briefly recall the notions of remediability and efficient ac-
tuators, and we give the principal results, which will be (ii) The system (1), augmented by (2), is said to be weakly
used later in this work. In Section 3, we define and char- remediable or{0, T if any disturbancef € L2(0,T; X)
acterize the notion of enlarged exact remediability, define is weakly remediable o0, 7).
C-efficient actuators and give their characterization par- Let B*, R*, §*(-) and C* be the adjoint operators

ticularly in the case Whgreﬁ B(CS(T)ZO.’ e). We of B, R, S and C, respectively. Furthermore, lex’,
also study the relationship between the notions of reme-_, y
S . U’ and Y’ be the dual spaces of, ¢/ and Y, respec-
diability and enlarged exact remediability, and hence be- _. e
tively. The operatorR* is given by

tween efficient actuators ar@efficient actuators. In Sec-

Definition 2. (i) A disturbance f is called weakly re-
mediable on[0, 7] if for any ¢ > 0 there existsu €
L?(0,T;U) such that

Fion 4 WelsFudy the probler_n of enlarged.exact remediabil— Y — L2(0,T; X"),
ity with minimal energy, using an extension of the Hilbert R : 9)
Uniqueness Method (H.U.M.) (Lions, 1988). Finally, in 0 — R*G=S5*(T—-)C0.
Section 5, we examine particular situations related to the ] o
choice ofC. We have the following characterization.
. L Proposition 1. (i) A disturbancef is exactly remediable
2. The Notion of Remediability on [0, 77 if and only if
In this part, we recall the notions of exact and weak reme- Rf € Im(CH). (10)

diabilities and efficient actuators, as well as the principal

characterization results (Aflbt al., 1998, 1999, 2000) (||) The system (1), augmented by (2), is exacﬂy remedia-

We consider the system described by (1), augmented byple on [0, 7] if and only if there existsy > 0 such that
the output equation (2). Lel/ and R be the linear oper-

ators defined by |R*0| 20, 7:x7) < YIB*R*0| 20,7500y, VO €Y'
(11)
L%(0,T;U) — X,
H: w — Hu— /TS(T s)Bu(s) ds For weak remediability, we have the following result.
0

) Proposition 2. (i) A disturbancef is weakly remediable
on [0,77] if and only if
L*(0,T;X) — Y, _

and

R: T Rf € Im(CH). (12)
f — Rf :/ CS(T —s)f(s)ds.
0 (5) (ii) The system (1), augmented by (2), is weakly remedia-
ble on [0, 7] if and only if
We have

Yu,f(T) = CS(T)20 + CHu+ Rf. (6) ker(B*R*) = ker(R"). (13)
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2.2. Efficient Actuators

Let 2 be an open and bounded subsefdf, with a suf-
ficiently regular boundary® = 992, 2 being the geomet-

G

0q)"" € RY.

and

q
C*Q:Ze)mi for 6= (6y,...,

i=1

rical support of the analysed system (1). We assume that

the spaceX = L?(Q2) has an orthonormal basis of eigen-
functions {¢,,;} for n > 1 and j = 1,7, of A such
that

n>1

Onj = Anpn; fOr j=1,...,ry,

with A, N\, —oco. The semigroudS(t)).>o generated by
A is defined by

Ant
Z_Ze Z {2, 0nj) -

n>1

(14)

This is the case ifA is a selfadjoint operator oiX with
compact resolvents/ — A)~*

In the case ofp actuators(Q;,g;)i=1, We have
U = RP, and the operatoB3 is defined by (Curtain and
Pritchard, 1978; El Jai and Pritchard, 1988)

RP — L2%(Q),
B:
u(t) — Buft Zgzul
where u = (u1,...,u,)" € L?(0,T;RP) and g; €

L2(;) with ©; = supp(g;) € Q for i = 1,p and
2 NQ; =0 for i # j. We have

((gl,z>7 o <gp,z>)tr

where in the general casel*" is the transpose o/ and
(-,"yx = (-, ) isthe inner product orX . If the support of
k€ X is D = supp(k), we have(k,-)x = (k,")r2(D)-

B*z = for z ¢ X/,

In the case of actuators(;,g;)i=1,, S€Nsors
(Dy, hi)i=1,4 and the s.c.s.g. given by (14), the charac-
terization of efficient actuators is given by the following
proposition.

Proposition 3. Actuators(€;, g;):=1,p, are efficient if and
only if

() ker(M,G%) = {0} (15)
n>1
with
M (<gza<)0n_]>)L=1 P Gn = (<hza§0n]>) i=1,
Let us note that if there exists, such that
rank(MnOG:fO) =gq, (16)

then the actuator$();, g;);=1,, are efficient.

Example 1.Consider the following system:

L) = D)+ (@) + f(o,0)
in 10,1[x]0, T,

z(x,0) = zo in ]0,1],

z(z,t) = 0 on {0,1}x]0,T7,

augmented by the output equation
y=Cz=(hy,z2)

with u; € L2(O,T;R), g1 € L2(Ql), hi € L2(D1),
Q1 = supp(g1), D1 = supp(h1) C Q and f €
L?(0,T; L*(Q2)). The eigenvectors of the Laplaciah

Let us remark that in the case of pointwise actuators, are defined by

the operatorB is unbounded, but the results are analogu-

ous by replacing the state spa&eby a spacé/ such that
V' ¢ X c V, with continuous injectionsX is identified
with its dual).

Definition 3. Actuators (2;, g;)i=1,, ensuring the weak

remediability of the system (1), augmented by (2), are said supp(h) C]

to be efficient.

If the output of the system is given by sensors
(Dy, hi)i=1,4 With h; € X, D; = supp(h;) C Q for
i = 1,g and D, N D; = () for i # j (Curtain and

Pritchard, 1978; El Jai and Pritchard, 1988), the operator Hence, e.g., ifg; =

C is defined by

L2(Q) B Rqa

C: tr
z — Oz = ((hl,z>,...,<hq,z>) ,

on(£) = V2sin(nr),

and the associated eigenvalues are simple and given by

Vn > 1,

Ap = —n2772, Vn>1.

In the case of one sensofD,h), with D =
0,1[, let ny be such that(h, ¢,,,) # 0. An
actuator(Qy, g1) is efficientif (g1, pn,) # 0, Or

| 1@ sintuome) s # 0.

©noy (Q1,91) is efficient.
In the case of pointwise sensors, the operatbis

unbounded. Then the results are the same if the domain

D(C) of the output operatoC' is contained inX and
invariant by the semigrougS(t)):>o.
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2.3. Exact Remediability with Minimal Energy satisfies
. . . T)—-CS(T)z = 0. 25
For zo in X and f € L?(0,T; X), is there an optimal Yuo,.f (T) (D)o (25)
control u € L?(0,T; U) such thaty, ;(T) = CS(T)zo, Moreover,uy, is optimal and
i.e. a control which minimizes the functiofi(v) = ||v||?
on the set{v € L*(0,T; U) | yos(T) = CS(T)2}? llua, |20, u) = 107 |7 (26)

This problem can be solved using an extension of the ap-

proach H.U.M.
ForoeY' =Y, let

1
2

T
107 = /||B*S*(T—s)c*9|\;,ds , @
0

where F is a space which will be precised latdlr; || = is
a semi-norm.

If ker(C*) = {0}, then the system (1), augmented
by (2), is weakly remediable o9, T'] if and only if ||-|| =
is a norm onY. We suppose thaf - || is a norm. Let
F be the completion of the spacé with respect to the
norm || - ||=. F is denoted by

F=v"l" (18)

(F,{-,-)7) is a Hilbert space with the inner product
T
0,0)F = /<B*S*(T —5)C*0, B*S*(T — s)C*o) ds,
0

V0,0 € F. (19)

Y is contained inF with continuous injection. Lef\ be
the operator defined by

Y — Y,
A=CHH*C*: T (20)
0 — At‘):/ CS(T — s)
0
xBB*S*(T — s)C*6 ds,
for 0eY' =Y.
We have

<A9,0>y = <9,O’>_7:7

Let 7' be the dual space off. A has a unique
extension as an isomorphisft F — F’ such that

V0,0 €Y. (21)

(A0,0)y =(0,0)%, VO,0€F (22)

and
A0 7 = 116]] 7,

We have the following result.

Vo e F. (23)

Proposition 4. If the observationRf € F’, then there
exists a uniquedy € F such thatAd; = —Rf, and the
control

ug, (t) = B*S*(T — )C*0; (24)

3. Notion of Enlarged Exact Remediability
3.1. Enlarged Exact Remediability

In this part, we introduce enlarged exact remediability,
which is a more general notion than exact remediability,
and consists in studying the possibility of taking an obser-
vation at the final time, in a region of toleran€e where

C is a given closed and convex subsetof We exam-
ine the case wher€ is a closed ballB(CS(T)zo,¢),
and then we introduce and characterize the notioig-of
efficient ande-efficient actuators.

Definition 4. A disturbancef € L?(0,T;X) is called
C-remediable on[0,T] if there exists a controlu €
L?(0,T;U) such that
yu,f(T) € C. (27)
It is easy to show the following characterization re-
sult.

Proposition 5. The statments below are equivalent:
(i) f is C-remediable on[0, T7,
(ii)

Im(CH)NCy # 0,
whereC; =C — CS(T)zo — Rf.

Let us note that ifC = {CS(T)z}, we have a
problem of exact remediability, and i€'S(T")z, is an
interior point of C, then weak remediability implie§-
remediability, but the converse is not true. The following
section is focused on the case whérés a closed ball.

(28)

3.2. Case ofC=B(CS(T)z,,¢)

Definition 5. A disturbance f is B(CS(T)zo,¢)-
remediable or-remediable or{0, T if there exists a con-
trol u € L2(0,T;U) such that

|CHu + Rf|| < e. (29)

If F is a closed subspace &f and Pr is the or-
thogonal projection or¥', we have the following result.
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Proposition 6. The statments below are equivalent:
() f is e-remediable on[0, T,
(ii)

Im(CH) N B(Rf,€) # 0, (30)

(iii)

| Peer(B*r*) (Rf)|| < €. (31)

Proof. The equivalence between (i) and (ii) follows from
Definition 5. In turn, the equivalence between (ii) and (iii)
results from the fact that

(i1) <= d(Rf,Im(CH)) < ¢

as Im(CH) @ ker(H*C*) =Y.
Since

Rf = Rf1 + Rfy with Rf, € Im(CH)
and

ng = Pker(H*C*) (Rf) € ker(H*C*),

for w € Im(CH) we have
d(Rf,w)* = |w— Rf|* = |w - RAI + | Rf|.
As (w — Rf1, Rfs) = 0, we get
T 2

d(Rf,Tm(CH))

d(Rf,w)?

= inf
welm(CH)

IRf* +

inf |jw— Rf|?

welm(CH)

= |Rf2|* = | Paex(rz=c) (R)|I?

becauseRf, € Im(CH). Using H*C* = B*R*, we
have the desired conclusion. ®

Let us remark that iff is e-remediable, thenf is
¢’-remediable for anye’ > . The converse is not true.
Indeed, ifQ2; = D; =]0,1[, h = v, andg = ¢,,, with
ny # ng, thenker(B*R*) = R, and the result is true for
any f suchthats < |Rf| < &'

3.3. e-Efficient Actuators

In this section, we introduce and characterize
efficient actuators, essentially in the case whére=
B(CS(T)zo,¢€).

Definition 6. For a fixed disturbancg € L?(0,T; X),
actuators(2;, g;)i=1,, ensuring theC-remediability of f

are said to beC-efficient. If C = B(CS(T)zo,¢),
actuators are called-efficient.

In the case ofp actuators(€2;, g;);=1,, and an out-
put given byg sensorgD;, h;);=1,4, the characterization
of e-efficient actuators is given by the following resuilt.

Proposition 7. Actuators (€2;, g;)i=1,, are e-efficient for
afixed f € L?(0,T; X) if and only if

1Pr (R)] <e, (32)

where F' = (1, -, ker(M,,G})).

Proof. The result follows from Proposition 6 and the fact
that ker(B*R*) = F. ]

If the system (1), augmented by (2), is weakly reme-
diable on [0, T, then any disturbancg € L2(0,T; X)
is e-remediable on[0,7] for any ¢ > 0. Then ef-
ficient actuators arec-efficient for everye > 0 and
f € L*(0,T; X). But actuators can be-efficient for a
given f € L?(0,T; X) without being efficient. This is
illustrated by the following example.

Example 2. As in Example 1, we consider the system

%(x,t) = Az(z,t) + g1 (z)ur(t) + f(z, 1)
in ]0,1[x]0, T,

z(xz,0) = zo In ]0,1],

z(xz,t) =0 on {0,1}x]0,T7],

augmented by the output equation
y=Cz={(hy,2)

with u; € LQ(O,T;R), g1 € LQ(Ql), hi € LQ(Dl),
Q1 = supp(g1), D1 = supp(hi) C Q and f €
L?(0,T; L*(2)). Then, with the same notation and for
Oy =Dy =)0,1], h = ¢p, and g = ¢,, With n; # no,
the actuator(Q2y, ¢1) is not efficient, but forf defined by
f(,8) = elF1mAa(T=s)y (Qy,g1) is e-efficient
for a conveniento.

In the following proposition, we show that there
is equivalence between weak remediablity and
remediability for anyf € L2(0,T; X).

Proposition 8. The system (1), augmented by (2), is
weakly remediable orj0, 7] if and only if there exists

e > 0 such that anyf € L?(0,T; X) is e-remediable
on [0,T].

Proof. Let ¢ > 0 be such that (1), augmented by (2), is
e-remediable or{0, 7] for any f € L?(0,7; X). Then

| Peer(prey (Rf)|| <&, VfeL*0,T;X).
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ConsequentlyP.(+r+)(Im R) = {0}, sincelm(R) &
ker(R*) Y. Then, necessarilyker(B*R*) C
ker(R*), and hence we obtain weak remediability.

The converse follows immediatly from the definition
of weak remediability. =

4. Enlarged Exact Remediability with
Minimal Energy

Let C be a nonempty closed convex subsetgfzy € X
and f € L?(0,T; X). We consider the following problem
of enlarged exact remediability with minimal energy:

p>{

If the disturbancef is C-remediable, the problerfP) is

min J(u) with J(u) = ||ul]®

: (33)
subjecttoy,, ;(T) € C.

well defined and has a unique solution in the set of admis-

sible controls defined by
Uga = {u € L*(0,T5U) | yu,r(T) €C}.

The solution to(P), denoted byv*, is characterized by

J'(v*)(v—v*) >0,

Y € Ung, (34)

(50 =v") >0, Yv€&Upy.

Let us note that(P) is a generalization of the fol-
lowing exact remediability problem:

Pl){

since in this case we hawe = {C'S(T)zp}. If u* is the
solution to (P, ), we have

min ||ul|?

subjectto y, ¢(T) = CS(T)zo,

[0 |l < ™).

Hence the optimal cost of P) is reduced with respect to
Problem(P,).

Problem (P) is also a generalization ofe-
remediability one, since it is sufficient to considér=
B(CS(T)z,¢). If C; and Cy are two nonempty, closed
and convex subsets df such thatC; C C., then(C;-
remediability implie<,-remediability, and the cost is de-
creasing wherC is increasing.

Next, we will solve ProbleniP) using an extension
of the H.U.M. approach and a penalization method (Bel
Fekih, 1990; Bergounioux, 1994). First, let us show pre-
liminary results, which will be used to demonstrate the
main result of this section.

We consider the following criterion:

1
Ja(y,v) = ~llyo,s (T) = ylI* + J0]|?

a
with y € Y, v € L?(0,T;U4) and o > 0, and the
minimization problem
min J, (y,v),

) { (y,v) € C x L*(0, T;U).
We have the following existence result.

(39)

(36)

Lemma 1. (P,) admits a solution(y,,v,) € C X
L?(0,T;U) characterized by
Va(t) = B*pa(t), 0<t<T, (38)
whered,, is given by
1
do = ~[Yo = Yoo s (T)] €Y (39)
and p,, is the solution of the adjoint equation
—pl(t) = A*pa(t), 0<t<T,
Palt) = A'pa(t) 0)
pa(T) = C*d,.

Proof. Let (3, v) x>0 be a minimizing sequence, so
that

JOé (y((xk) ) v((lk)) \_4

inf
(y,v)ECXL2(0,T;U)
The sequencéJa(y((f), v
is convergent and

o)1 < Ja (s, 0 < O,

Jo(y,v) ask /' +oo.

))k>o0 is bounded because it

Vk>0.

Then (v8)>0 is bounded inL2(0, T;4). Since the
mappingv € L%(0,T;U) — y, +(T) — yo,¢(T) is lin-

ear and continuous, there exists a const@nt> 0 such
that

190, (T) = yo,p(T)|| < Callv]|, Vv e L*0,T;U).
Hence,(yv<k> f(T))kZO is bounded. Since

Hyvg’ﬁ),f(T)_yZ”2 < aly (y((xk)ﬂ ngk)) < O[Cl, Vk > 0,

(yﬁ)kzo is bounded inY. Hence there exists a subse-
guence which converges to an elemépt,, v, ). Using
the continuity of J, on Y x L?(0,T;U), we have

< liminf (k) (k)

Ja(ya7va> < lk}gigo Ja (ya 00 )

- nf o)
(ZI;U)EC>1<I},‘2(0)T;M) (y,v)

C is closed, (yq,va) € C x L?(0,T;U4) and hence

Jo(Yar Va) > Jo(y,v).

> inf
(y,0)ECX L2(0,T;U)

Consequently(y., v,) IS a solution to(P,).
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On the other hand(y,,v,) satisfies the following
necessary condition:

%J(;(yomva) : ((ym) - (ymva)) >0,
Y (y,v) € C x L*(0,T;U).

We have

Jéy(youvoz) ’ (Z/, ’U)
2

(07

(W0t (1) = Y 9o (T) = CS(T)20 — R)

~ (Youf (T) = ya,yﬂ + 2(vq, V).
Then

J!x(yaava)(y — Ya, UV — Uoc)
2

= = [t T) = 0 50s (1) = 0, s (1)

- <yva,f(T) Yo, Y — ya>}

+ 2(Va, V — Vo)

The necessary condition can be written as

1
E<yva,f(T> — Yo Yo, r (T) = Yo, (1))
1

- _Ua>207
«

<yva,f(T) —Yar Y — ya> + <'Ua7’U

Y (y,v) €C x L*(0,T;U). (41)

By replacingv andy in (41) by v, andy,, respectively,
we have the following inequalities, where the elemégnt
given by (39) appears:

1
E<ya - yva,f(T),y - ya> > O,

1
— a<ya = Yoo f (1), Y05 (T) — yva,f(T)>

Yo e L20,T;U).

VyeC,

+ (U, ¥ — V) >0, (42)

Consider the adjoint equation (40). By integration by
parts we have

(20,5 ()= Az £ (), Pa() = (20, (), =Pa ()= A"Pa())
= (20,4(T),pa(T)) = (20,1(0), pa(0))
or, equivalently,
(Bu() + f(),pal-))
= (20,4(T),Pa(T)) — (20,Pa(0)). (43)

&Y

With v = v, and by considering the difference with (43),
we have

<B(U(')_UQ('))>pa(')> = <Zv,f(T)_Zva,f(T)7pa (T)>7
Vo e L0, T;U).

Then

(B(v(-) = va("),pal))

= é<yv’f(T) - yvmf(T)7 Yo — yva,f(T)>‘

(44)
Using this relation in (42), we obtain

<da7y_ya> ZO, VyGC,

- <1) - UouB*pa('» + <va7U - va> >0,
Yv e L2(0,T;U).

The last inequality implies, (t) = B*p,(t). [ |

Lemma 2. From the sequencéy,,, v, dy)a>0, WE Can
extract a subsequence which converges to an element
(y*,v*,d*) characterized as follows:

() v* = yor £ (1),
(i) v* is the solution td P),

(iii) the sequencdJ, (Ya,va))a>o0 IS bounded and de-
creasing with a limit||v*||? and (v4)a>0 coOnverges
strongly tov* in L2(0,T;U),

(iv) the controlv* is given by

vt(t) = B*p(t), 0<t<T, (45)

where p(t) is the solution to the following adjoint
equation:

—p'(t)
p(T)

(v) the elementd* is characterized by

A*p(t),
Crd*,

0<t<T,
(46)

(d*,y = yoe 4 (T)) > 0,
Vyeln(CS(T)zo + Rf+F'). (47)

Proof. First show that the sequendg., va,do)a>0 IS
bounded. Indeed, under th&remediability hypothesis,
there existsa € L%(0,T;U) such thaty, ¢(T) € C.
By noting thaty = y. ¢(T), we have (y,4) € C x
L?(0,T;U), and hence

Jo(Wasva) < Ju(9,0) = [|a]®>, Va>0.



L. Afifi et al.

Hyva,f(T) - ya||2 < aJa(ya>va)

< ady(@,a) = afal?, Ya>o0.
Consequently, lim,—q |yv..r(T) — yall = 0 and
(Ja(yaava>)a>0 is bounded.
If 8 < a,then J,(y,v) < Jg(y,v), V(y,v) €

C x L?(0,T;U), and hence
Ja(youva) < Ja(yﬁavﬂ) < Jﬁ<y57vﬂ) (48)
(va)a>o is then bounded, since

lvall? < Ja(ya, va) < Ja(g,a) = >

The mapv € L?(0,T;U) — y, ¢(T) € Y is affine and

continuous. We have

140,£(T) = CS(T)z0 — Rf|| < K]jv],

Yo e L*(0,T;U), K >0. (49)

Then (y,,.r(T))a>o is bounded inY. This shows that

Yo = Yo — Yvo,f (T)) + Yo, (T) is bounded inY.

In the general caséd,,).~o IS not bounded, butitis

with respect to the nornil. || » becausep,(t) = S*(T" —
t)C*d,, and hence

lvall® = |B*S*(T = )C*da|* = ||dal%.

Accordingly, we get thatd,, is bounded inF. Finally,
(Yo, Vo, da) >0 1S bounded inY x L2(0,T;U) x F.

Now, let wus consider a subsequence
(Yo, Var da)a>0, also denoted By (Yo, Va; da)a>0
and converging to an elemefiy*, v*, d*), which will be
characterized hereafter.

(i) The weak convergence ofv,)a>0 t0 v* im-
plies the convergence @/, f(T))a>0 tO Yo+, r(T) (Us-
ing (49)). Then

y* = lim yo = lim (yo = Yo, ¢ (1)) + lim g, #(T)
a—0 a—0 a—0

= yv*’f(T)'

(ii) Since C is closed,y,~ ;(T) = lim0 Yo € C. On
the other hand, ifv € L2(0,T;U), then

[vall? < Ja(Yar va) < Ja(yo,7(T),v) = [v]|*.  (50)
As o — 0, we have
Jo*||? < limigfllvozll2 < o]

Then v* is a solution to ProbleriP).

(iif) Using (48), it is easy to see that the sequence
(Jo(Yas Vo)) a>0 IS bounded and decreasing, so it con-
verges. Using (50) withy = v*, we have

Hva||2 < liminf||vaH2 < lim Jo (Yo, va) < ||v*H2.
a—0 a—0

Then lim Jo, (Yo, va) = |v*||?>. On the other hand, the
same inequality implies

lva|I? < liminf [|vg]|? < limsup [jva]|* < [J0*]2.
a—0 a—0

Then |jv,||* converges to||v*||?, which implies, using
the weak convergence dfv,)q>0 t0 v*, that (v4)a>o0
converges strongly i.2(0, T; U).

(iv) Using (38), we have
Vo (t) = B*po(t) = B*S*(T — -)C*d,.

Then forw € L?(0,T;U), we get

T
(v0.0) = {d. / OS(T 1) Bu(1)dr)
0
= <da,yw,f(T) —CS(T)z — Rf>.
Sincey,, ¢(T) — CS(T)zy — Rf € F, the weak
convergence of, to v* in L?(0,7T;U) and that ofd,,
to d* in F imply
(v*,w) = (d*, yuw s (T) — CS(T)zo — Rf)

of

T
_ <d*7/0 CS(T — t)Buw(t) dt>
= /T<B*S*(T —t)C*d*, w(t)) dt,
0

and hence
v*(t) = B*S*(T — t)C*d* = B*p(t).
(v) Inequality (37) can be written as

<da,ya —CS(T)z — Rf>

< (da,y—CS(T)z0 — Rf), VyecC, (51)
and, using (39), we have

JaYar Vo) = (day Yo = Yo, £ (1)) + [lval*.
Then

<davya> = <da7yvmf(T)> - ||UaH2 + J(X(yomv&)' (52)



Enlarged exact compensation in distributed systems

But

<dou yva,f(T» = <don CS(T)z0 + Rf>

+ (da, /0 "CS(T — 1) Buw (1) ar

= (da,CS(T)zo + Rf)
T
+/ (B*S*(T — t)C*dg, v (t)) dt
0

= {da, OS(T)z0 + Rf) + ||val®.
By using (52) this gives
<da7yot> = <da7 CS(T)ZO + Rf> + Ja(ya,va).
Then
lim (da,yo — CS(T)20 — Rf)

= lim Jo (Yo, Vo) = ||U*H2
a—0

= /T<B*S*(T — 0)C*d*, v*(t)) dt
0

_ <d*, / TCS(T — £)Bu*(¢) dt>
0

<d*,yv*7f(T) — CS(T)ZO — Rf>

Fory— CS(T)z — Rf € 7' and asa — 0 in (51), we
obtain

(d*, 9o 4 (T) = CS(T)z0 — Rf)
< (d*,y — CS(T)z0 — Rf),
VyeCn (CS(T)zo + Rf +F)

or, equivalently,
(d*,y=yu s (T)) >0, Yy € CN(CS(T)z0+Rf+F').

In the following result, which is a generalization of
Proposition 4, we give a solution to ProblémR).

Proposition 9. If C is a nonempty, closed and convex set
of Y, and
CN(CS(TM)zo+ Rf+F') #10, (53)

then

& s

(i) there exists a uniqué; € F such that
A0y +CS(T)zo + Rf €C
and
{0,y — A0y — CS(T)zo — Rf) >0,
Vyeln(CS(T)zo + Rf+F'), (54)
(ii) the control
ug,(t) = B*S*(T —t)C*0y, 0<t<T (55)

is the unique solution td¢ ). Moreover, ug, is op-
timal and

lue, I* = 1107115

= <y“9faf(T) — CS(T)ZO - Rf, 9f> (56)

Proof. Let 6y d*, ug, = v* and y,- ;(7T)
A9y + CS(T)zp + Rf. Then the existence of; and
ug, follows from Lemma 2.

For the unicity, letd; ando; € F be such that
0,y — N9y — CS(T)z0 — Rf) > 0,

(ofp,y— Aoy —CS(T)z — Rf) > 0,
VyeCn (CS(T)z+ Rf +F).
Then, fory = A0y + CS(T)z + Rf € C, from the
second inequality we deduce that
(o5, A8 —Aoy) >0,
and using the first inequality with = Aoy +CS(T)z +
Rf € C, we have
(0, Aoy — ABg) > 0.
Then
(op, A0y — Nog) + (05, Aoy — Aby)

=—(0f —o5, MO —0y)) = —0f —olIF >0,

and hencely = oy. [

In the next section, we examine some particular situ-
ations concerning the choice 6f

5. Particular Cases
5.1. Case of Classic Exact Remediability

For C = {CS(T)z} and Rf € F', the inequality (54)
is trivial. Therefore, in order to havéy, it is suffi-
cient to solve the equatiomd; = —Rf, and hence
the solution to the optimal control is given hy ()
B*S*(T —t)C*60. We then obtain the solution given by
Proposition 4 in the case of the exact remediability prob-
lem.
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5.2. Case of Linear Constraints

In this part, we consider the case of linear constraints,

which is frequent in optimization theory. More pre-

cisely, without loss of generality, we consider the case

whereC is a closed subspace &f. Since Yua, s (T) =
CS(T)zo + Rf + Aby, the inequality (54) becomes

(05,9 = Yuo, .1 (T)) > 0,
Vyeln (CS(T)z+Rf +F)
or, equivalently,
<9f7 yuef,f (T)> S <9f7 y>7
Yy e CN (CS(T)zo + Rf +F).

If y =y r(T) with u € L?(0,T;U), theny describes
the whole setC'S(T)zy + Rf + F' when v describes
L?(0,T;U), and hence

<0f7yu9f,f(T)> < <0fayu,f(T)>v

forall u suchthaty, ((T) € C.
Let

(67)

Ue = {ue L*0,T;U) | yus(T)€C}

and

L2(0,T;U) — Y,

u — Lu=CHu.

For wy € L2(0,T;U) such thatlwy = CS(T)z + Rf,
we have

L:

Ue = —wo + L7(C),

where £L71(C) = {u € L*(0,T;U) | L(u)
Indeed,

e C}.

uele < CS(T)zo+Rf+LuecC
<— Lwy+ Lu€C <= L({u+wy) €C
= u€ —wo+ LC).

Since y, ;(T) = Lwy + Lu, the inequality (57) can be
written as

(05, Lwo + Lug,) < (0, Lwo + Lu), YueUe,

ie.
<0f,£ltgf> < <9f,/3u>, Yu € Ue

or, equivalently, withu = —wo + v, wherev € L71(C),

<9f,£U9f> < (Hf,—ﬁw0+£v>, Vo ele.
By settingy = Lv, (57) becomes
<0f,£uef+£wo>§<0f,y>, VyeCnNImCL.

For y = 0, we have (0, Lup, + Lwo) < 0, and by
replacingy by —y, we have

<9f,£qu+L'wo>§ 7<9f,y>, VyGCﬁImE.

Then

<0f,£’bb9f + Lwp) < <9f,y> < —<9f,£UQf + Lwyg),
VyeCNnImCL,

|07, )] < —(0f, Lug, + Lwo), YyecCNImL

and (f,y) =0, Yy € CNIm L, because foyy € C we
have (6;,y) # 0. Thenay € C,V «, and hence

— <9f7£’lmf +£w0>

(07, )] ’
which is impossible. Therd; € (C N Im£)*. Since
,Cqu + Lwg = yUGf*f —Rf,we get<0f, ,CUgf +£wo> =
(0, Yuq,.r) = 0 becausey,, s € C.

la] > Ya,

Corollary 1. If there exists a uniqué; € F such that

0p € (CNImL):, CS(T)z + A0y + Rf €C, (58)
where (CNImL)t = {¢p € F | (¢,y) =0, Vy €

C NIm L}, the corresponding control is the optimal one
ensuring the enlarged exact remediability with respect to
the subspacé€.

Note that, using (58), we havéd;, CS(T)zy +
A0y + Rf) =0. Then

J(U‘@f) = HofH%-' = <9f7A0f> = 7<9fa CS(T)ZO+Rf>
The orthogonality is considered as a duality betwe®en
and F'.

5.3. Case of the Constraint of “Bounded Observation”
Let C = B(CS(T)z0,¢). We havey, ;(T) € C <—
ICHu+ Rf|| < e, and if |Rf|| < e, itis sufficient to
consider the zero control. Assume then thi&f| > e.

For a > 0, consider the operatdr, : y € Y — (al +
Ay € Y. We have

(Tay,y) = ((al + Ny, y) = ally|* + lylF-

I, isthen anisomorphisi” — Y. By settingy, € Y,
the unigue solution to the equation
(al +A)ya = Rf, (59)

we have the following result.
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Corollary 2. y, is the solution to (54), if and only if
allyall = e

Proof. Using (59), we have) — CS(T)zo — Ay, — Rf =
y— CS(T)z0 + ay,. Then

(Ya,y — CS(T)z0 — Aya — Rf)
= <ya,y —CS(T)zo + ay,,,>
= <ya7y - CS(T)ZO> + a||y(l||27

andfory € CN(CS(T)zo + Rf + F') we have

(60)

(Yar,y — CS(T)z0) > —¢l|yal|-
Then
(Ya, y—CS(T)20—Aya—R[) > |lyall(allyall—¢). (61)

The condition is sufficient becausedf|y,| > ¢, theny,
satisfies (54).

This condition is also necessary, because using the

hypothesis we have

(Ya,y — CS(T)z0 — Aya — Rf) >0,
VyeCn (CS(T)z + Rf +F'). (62)

Sincey, € Y, the inner product is defined fay € Y. On
the other hand, since the affine spac8(7")zo+ Rf+F’
is dense in Y, the inequality (54) is true fgre C.

Let

y=CS(T)z — SHZ‘IH ecC.

Using (60), we have
(Yary — CS(T)2 — Ayo — Rf)
= (Yary — CS(T)20) + alyal®
= |lyall(allyall = €) > 0,

and hencez||y,| > e. [ |

6. Conclusion

In this work, we defined and characterized the notion of
enlarged exact remediability, which is a generalization
of the notion of exact remediability, introduced in previ-

ous works, and also the notion af-efficient actuators.

Then we studied the relationship between weak remedi-
ability and C-remediability, and hence between efficient
actuators and’-efficient actuators in the case of a ball

C = B(CS(T)z, ).

G s

Using an extension of the H.U.M. approach as well
as penalization and optimization techniques, we showed
how to determine the optimal control ensuring enlarged
exact remediability, and that the cost is reduced with re-
spect to the problem of exact remediability. As an appli-
cation, we examined particular cases related to the choice
of the constraints or the region of toleran€e

Finally, let us note that this work can be extended to
the problem of regional enlarged remediability and also to
other systems.
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