Int. J. Appl. Math. Comput. Sci., 2002, Vol.12, No.4, 559-569 ‘ ames

GENERATING QUASIGROUPS FOR CRYPTOGRAPHIC APPLICATIONS

CzEstAW KOSCIELNY*

* University of Zielona Géra, Institute of Control and Computation Engineering
ul. Podgérna 50, 65—-246 Zielona Gora, Poland
e-mail: C.Koscielny@issi.uz.zgora.pl

A method of generating a practically unlimited number of quasigroups of a (theoretically) arbitrary order using the com-
puter algebra system Maple 7 is presented. This problem is crucial to cryptography and its solution permits to implement
practical quasigroup-based endomorphic cryptosystems. The order of a quasigroup usually equals the number of characters
of the alphabet used for recording both the plaintext and the ciphertext. From the practical viewpoint, the most important
quasigroups are of order 256, suitable for a fast software encryption of messages written down in the universal ASCII code.
That is exactly what this paper provides: fast and easy ways of generating quasigroups of order up to 256 and a little more.

Keywords: quasigroups, latin squares, stream-ciphers, cryptography

1. Introduction 2. Latin Squares and Quasigroups

A latin square of orden is ann x n array in whichn?

According to eminent specialists (Dénes and Keedwell, SYMPOIs, taken from a sed, are arranged so that each
symbol occurs only once in each row and exactly once

1999) the earliest use of quasigroups in cryptography is: N)
attributed to the German mathematician R. Shauffler, who " €ach column. For any positive integer there exists
reduced in his Ph.D. dissertation of 1948 the problem of & latin square of orden. A latin square of orden for
breaking the Vigénere cipher to determining a particu- Which

lar latin square. In the above source, publicationssKo A=1{0,1,...,n—1} (1)
cielny, 1995; 1996), concerning explicitly the application is said to be normalized or reduced if the elements of both
of quasigroups for construction stream and block ciphers, its first row and its first column are in a natural order. For
are also quoted as rather rare serious contemporary effortg#achn > 2 the total numberLS(n) of latin squares of
to utilize the simplest non-associative algebraic systems inorder n (Laywine and Mullen, 1998) is given by
cryptography. In this context the work (Ritter, 1998) is by

all means also worth noticing. LS(n) =n!(n—1)!T(n), 2

. where T'(n) denotes the number of reduced latin squares
The paper presents a method of generating a prac-o¢ order n.

tically unlimited number of quasigroups of an arbitrary . .
order (practically< 256) by means of the computer alge- crea;r:: ngrmber_((:)ll‘l Iatn"_ltrs;gu:rr]zﬁi(%) dg;grdre;a? Ig-en
bra system Maple 7, for applications to cryptography. The for rathe;/ sr’rywa?lw IBI/ ;l::ould be rl10tled that Qt]he n’urr:/ber
mathematical background knowledge, mandatory for un- o .

of reduced latin squares is exactly known far < 10

derstanding this article, is rather extensive. It is assumed . -
that the reader is familiar with combinatorial structures (McKay and Rogoysl_q, 19.95) (se_e Table 1). For=
11,12, ..., 15, T'(n) is estimated in Table 2.

and knows the basic properties of groups and Galois fields,
and that he or she is acquainted with the basics of number ~ For n > 15 the bounds ofL.S(n) can be calculated
theory. The only essential topics concerning latin squares(Jacobson and Matthews, 1996) using the formula
and quasigroups are given in Section 2, since these math- n n2n
ematical constructions are not generally known. Section 3 H(k!)% > LS(n) > (n')2
briefly comments the obtained results, while the routines, k=1 n'"
implemented in Maple 7, for producing latin squares and
quasigroups, are presented in Appendix.

®3)

In Table 3 some upper and lower bounds o (n) for
several values of,, most frequently used in practice and
obtained by means of (3), are given.

amcs &)

Cz. Koscielny

Table 1. Number of reduced latin squargén) vs. n.

[n |

T(n)

1

1

4

56

9 048

16 942 080
535 281 401 585
377 597 570 964 258 81¢
7 580 721 483 160 132 811 489 28

© 0N b~ wN|3

=
o

Table 2. Estimates of'(n) for n = 11, 12, 13, 14, 15.

[n] T |
11 | 5.36-10%3
12 | 1.62-10*
13 | 2.51-10°
14 | 2.33-107
15| 1.50-108¢

Table 3. Estimates of.S(n) for n = 2%, k=4, 5,6, 7, 8.

0.689-10'38 > LS(16) > 0.101-10'19,
0.985-10™ > L5(32) >0.414-10726,
0.176 - 104169 > L§(64) > 0.133 - 104008,
0.164 - 1021091 > [,§(128) > 0.337 - 1020666
0.753 - 10102805 > [,6(256) > 0.304 - 10101724,

As can be seen (Kazielny, 1995; 1997; Kacielny

and Mullen, 1999), in the case of quasigroup-based stream

ciphers, a latin square is an essential element for the im-
plementation of both a key generator and the encipher-
ing/deciphering procedure. Since the number of latin
squares of order (usually 32 < ¢ < 256), equal to the

operatione is defined, is called a quasigroup if for any
two elementsa, b € A each of the equations

aexr=b yea=1D (5)

has exactly one solution (Dénes and Keedwell, 1974). A
guasigroup is then a simple algebraic system with one op-
eration, which must be neither commutative nor associa-
tive, but, according to (5), the operation table in a quasi-

group ought to be a latin square. A quasigroup
L= (A, (6)

in which there exists an identity elemeatc A with the
property that

VeecAlecoex=rx0c=1x] @)
is called a loop. If the operatiom is associative and if
Vac AJac Alaea=aea=ce], (8)

then the loopL. becomes a group (the elements called

the opposite otz or the inverse of1). Although the setd

can have elements of any kind, it is assumed in this paper
that its elements are non-negative integers, as in (1).

To obtain a multiplication table of am-element
quasigroup, one must have a suitably bordered latin square
of order n. The bordering means that the latin square
must be supplemented with the first row, which enumer-
ates columns, and with the first column, which enumer-
ates rows. If, e.g., the following latin square of order 8 is

given:
[0 1 2 3 45 6 7]
103 25 476
23016 7 45
Ig_ 32107654
45 6 701 2 3|
5 47 6 1 0 3 2
6 7 45 2 3 01
|76 5 43 2 1 0|

then the multiplication table of the corresponding quasi-

number of elements of an alphabet used in practice to rep-group ({0, 1, 2, 3, 4, 5, 6, 7},) will be

resent the plain-text and the cryptogram, is immense, the
key space is practically unlimited. Therefore, quasigroup-

based ciphers are much more efficient and more secure
than those based on regular algebraic systems such as

fields or groups, or on deterministic algorithms (elliptic
curve cryptosystems, conventional public-key cryptosys-
tems).

It is justified to recall here that an algebraic system

Q= <A7 .> 4)

consisting of a finite set of element$ in which a binary

/0 1 2 3 4 5 6 7
0j0 1 2 3 4 5 6 7
111 0 3 2 5 4 7 6
212 3 016 7 45
313 21 07 6 5 4. 9)
414 5 6 7 0 1 2 3
5/ 4 7 6 1 0 3 2
66 7 4 5 2 3 01
7|7 6 5 4 3 2 10

Generating quasigroups for cryptographic applications

9
;

In the case considered the operation table in the groupin (15):
isomorphic to an additive group afF'(8) has been ob-

tained: the systen{{0, 1, 2, 3, 4, 5, 6, 7}, o) is simul- o0 1 2 3 45 67
taneously a quasigroup, a loop and a group. Therefore 01 4 06 2 7 3 5
any finite group provides a latin square to a cryptographer, 112 7 3 5 1 4 0 6
who may easily transform it into many quasigroups, using
; X . 25 04 26 3 71
the notion of isotopy explained below.
. 3|4 153726 0. (15)
et e 0 417 2 6 041 5 3
Qp = (G o) (10) 510 5 1 736 2 4
and 63 6 2 4 0 5 1 7
Qi = (H, *) (11) 716 3 715 0 4 2
be two quasigroups witG| = |H|. An ordered triple The reader can easily verify (assuming that the first
operand from the left is the number of a row and the sec-
(T2, Ty,) (12) ond operand from the left is the number of a column) that

(002)03 =6, 00(203) =0, which means that the
of one-to-one mappings, ,, m of the setG onto gperationo is not associative. TheK); is a real non-
the setH is called anisotopism of Q, upon Q; if commutative quasigroup, since the operation table (15) is
not symmetrical with respect to the main diagonal.

The notion of thesimple product of quasigrougs
also very important for application cryptographers since,

forall z, y € G. It should be noted that the mapping : . ; . .
) . . .if two quasigroups are given, it permits to construct a
permutes the elements in the table of operations in a quasi-

group Q,, while =, and =, operate on the elements of guasigroup of_ the order equal to the product of the orders
the row and column borders of this table, respectively. It of these quasigroups.

is also said thatQQ; is an isotope of a primary quasi- Let
group Q,. One can prove that the set of all isotopisms of _ _
a quasigroup of orden forms a group of ordetn!)3. Qi = (R, e), Q2 =(50),

From (13) it follows that R={0,1,2,...,n — 1}, (16)

o (2) x 7y (y) = me(z 0 y) (13)

X*Y:wt(wgl(x)ow;(y)> (14) S={0,1,2, ..., np— 1}

be two arbitrary quasigroups. Then the simple prodQct

forall X, Y € H. Equation (14) allows us to operate on of these quasigroups is the algebraic system

elements ofQ; if the table of operations ilQ),, is known.

It is evident that ifr, = m, = , then the algebraic Q=Q1xQ2=(T, %), a7
systems (10) and (11) are isomorphic.

whereT = {0, 1, ..., niny — 1}. To define the opera-

The isotopy is then a practically inexhaustible source tion % in the setT", let us first assume that

of quasigroups, since without any problems we can
construct many groups of an arbitrary finite order Top=RxS={to, t1, ..., tnyny_1} (18)
and thereby many latin squares, and, using (14), gen-

erate (n!)® quasigroups. For example, assume that is the Cartesian product of the sesand S. Further, let
Q, = ({0, 1, 2, 3,4, 5, 6, 7}, e) with the operation ta-

ble given by (9). If ti = (ri;81), te = (T, sk),
(19)
o (01234567) o < 01234567) k€T, ri,mx€R, si sk €S
’ 46275130) ° Y 47106532) Noting that the quasigroup with elements belonging to the
setT,,
01234567 Qcp = (Tep, *) (20)
7T = b)

k 17246053 is the simple product of quasigroups (16), we can define

. . , the operationx as follows:
then, using (14), we obtain the quasigrop, =

({0, 1,2,3,4,5,6, 7}, o) with the operation table as tix ty, = ((ri o k), (siosk)). (21)

ames @ Cz. Koscielny

Table 4. Operation table for the quasigro@p, = (T¢p, *) = Q1 X Q.

* (0,0) (0,1) (0,2) (1,0) (1,1) (L,2) (2,0) (2,1) (2,2) (3,0) (3,1) (3,2)
(0,0) | (3,1) (3,2) (3,0) (0,1) (0,2) (0,0) (1,1) (1,2) (1,0) (2,1) (2,2) (2,0)
(0,1) (3,0) (3,1) (3,2) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
(0,2) | (3,2) (3,0) (3,1) (0,2) (0,0) (0,1) (1,2) (1,0) (1,1) (2,2) (2,0) (2,1)
LO) |21 22 20 (L) (L2) (L0 0.1 (0.2 (0.0 G1) (32 (3,0
(L1 | (2.0 1) 22 (L0 (L) (1L2) (0,0) (0,1) (0,2) (3,0) (1) (32)
L2)] (22 @0 @1 (L2 (L0 (L1 (0.2 00 0.1 (32 (3.0 61
2.0 (LY L2 10 G (32 (0 1) 22 (20 (01 (02 (0,0
1] 1L LD 12 (3.0 G1) (2 (20 21 (22 (00 (1) (0.2
22| L2 L) L) (32 (3.0 (1 (22 20 (21 (02 (00 (01
(3.0 0,10 0.2 00 @1 22 0 (1) (32 (30 (L) (L2) (10
31| 0,0 0.1 02 20 1) 22 (0 (1 (32 (L0 (L1) (12
(3.2] 0,2 00 01 22 20 1) (32 30 31 (L2 (L0) (L1

But we want to represent the simple product of quasi- |n this case
groups (16) as a quasigroup (17). To this end, we must
convert the sefl;,, into the setT". There are many ways T., = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),
of doing such a conversion. The mapping

A . tm — X’ t:r 6 IWCP7 X’ T 6 T’ (22) (25 0)7 (2’ 1)7 (27 2)’ (37 0)7 (3’ 1)7 (37 2)}

defined by the function and the quasigrouf., = (T, *) = Q1 x Qo has the
Mte) = Mra, $2) = nary + 54, (23) operation table given in Tab. 4.

MHX)=t, = (iquo(X7 ng), X modnz), (24) Thus, after the application of the mapping (22), the oper-
gives one of the simplest solutions, since taking account@tion table inthe quasigrou® = Q. x Q = (T, x) is

of (21)—(24), we have given by Tab. S.
XxV =)\(A_l(X) *)\—1(3/)). (25) Table 5. Operation table for the quasigroup
Q= (T, *)=Q1 % Qa.
Finally,
X xY = n2(iquo(X, ny) e iqua(Y, ns)) oot 3 4 5 6 7 8 910 11
+ (X modny) o (Y modny). (26) 010 11 1 2 0 4 5 3 7 8 6
In (24) and (26)X, Y € T, iquo(m, n) computes the lp91011 0 1 2 3 4 5 6 7 8
integer quotient ofn divided by n, operators +, mod and 2111 910 2 0 1 5 3 4 8 6 7
multiplication by no denote the usual arithmeticopera- 3| 7 8 6 4 5 3 1 2 0 10 11 9
tions, while e and o are operations in quasigroupg,; 416 7 8 3 4 5 0 1 2 910 11
and @, respectively. . . 58 6 7 5 3 4 2 0 111 9 10
To explain in detail the calculation of the simple
product of quasigroups, assume that 64 5 3101 9 7 8 6 1 2 0
73 4 5 9101 6 7 8 0 1 2
= R?) = S)
Q= (Re) Q=(50) 85 3 411 910 8 6 7 2 0 1
R={0,1,23}, 5={0,1,2} ol 1 2 0 7 8 61011 9 4 5 3
and 100/0 1 2 6 7 8 91011 3 4 5
°j0 123 1m0 2 0 1 8 6 711 910 5 3 4
03 0 1 2
112 1 0 3
21 3 2 0 where
310 2 3 1 T=1{0,1,...,11}

Generating quasigroups for cryptographic applications @ ames

It should be noted that the simple product of two gramming languages (e.g. in C, C++, Fortran 95, etc.),
guasigroups is not, in general, commutative, and that it equipped with the appropriate libraries for doing advanced
can be easily generalized to an arbitrary number of quasi-mathematics. The execution time can then be shortened
groups. even up to 100 and more times.

To generate quasigroups of an arbitrary order, a pow- It should also be noted that the routifegyfz can
erful software tool for doing the mathematics is needed. be considerably optimized and, for applications, it should
For that purpose the computer algebra system Maple 7 carbe written in a high level programming language rather
be used, since this software offers, among other things,than in the Maple interpreter. To do it, one must be famil-
powerful and effective integer arithmetic and operations iar with the properties of Zech’s logarithms ifiGF'(q)
in the domain of univariate polynomials over the inte- (Koscielny, 1995).
gers modulon, allowing computations in the finite field
GF(p™). There are also other useful Maple packages,
defining all number theory functions and routines, return- References
ing not only random permutations, but also all the ele-
ments of the combinatorial class of required size. Fur- panes 3. and Keedwell A.D. (1974)atin Squares and Their
thermore, each algorithm can be intelligibly and concisely Applications — Budapest: Akadémiai Kiadé.
written d.own by means the Maplp interpreter, easily com- Dénes J. and Keedwell A.D. (1999)Some applications of
prehensible by any mathematician and programmer. But non-associative algebraic systems in cryptolegyTechn.

as regards quasigroups, Maple is very poor: the only pack- Rep. 99/03, Dept. Math. Stat., University of Surrey.
age MOLS returns a list of up tp™ — 1 mutually orthog-

onal latin squares of ordes™, which are, in fact, interi-
ors of tables of addition irfGF(p™) with permuted rows.
Therefore, in Appendix several useful algorithms for gen-
erating quasigroups, written in the Maple 7 interpreter, are

Jacobson M.T. and Matthews P. (199&enerating uniformly
distributed random latin squares— J. Combinat. Desig.,
Vol. 4, No. 6, pp. 405-437.

Koscielny C. (1995): Spurious Galois fields— Appl. Math.
Comp. Sci., Vol. 5, No. 1, pp. 169-188.

presented.
Koscielny C. (1996): A method of constructing quasigroup-
based stream-ciphers— Appl. Math. Comp. Sci., Vol. 6,
3. Conclusions No. 1, pp. 109-121.
))) Koscielny C. (1997)NLPN sequences ovér F'(q). — Quasigr.
The problem concerning the construction of quasigroups, Related Syst., No. 4, pp. 89—102.

;:np%rtant for :hedptﬁf“ﬁ O]; q;laSI%roup-basedtC(ij_he;s, Koscielny C. and Mullen G.L. (1999):A guasigroup-based
as been resolved. 1he viapie /routines presented in Ap- public-key cryptosyster— Int. J. Appl. Math. Comp. Sci.,

perjdix can bg used direqt_ly for geqerating guasigroups, Vol. 9, No. 4, pp. 955-963.
while two routines are auxiliary: the first computes Zech'’s
logarithms needed for constructing addition and subtrac-
tion tables in SGF(q), the other can write an arbitrary _ _
latin square into a text file. All the routines can be used McKay B. and Rogoyski E. (1995)-atin Squares od Order 10
as tools for designing both the encrypting and decrypting — Electr. J. Combinat., Vol. 2, No. 3.

procedures of quasigroup-based stream-ciphers, and th&itter T. (1998):Latin squares: A literature survey—Research
key generators for such Ciphers as well. comments from ciphers by Ritte— Available at

. L . http://www.io.com/~ritter/RES/LATSQR.HTM
If, in some applications, the presented routines
seemed to be slow, one can implement them in other pro-

Laywine C.F. and Mullen G.L. (1998)Discrete Mathematics
Using Latin Squares— New York: Wiley.

Appendix

Maple 7 Routines for Generating Latin Squares

All the names of the routines presented here, generating directly latin squares, begin with théslettengch means
latin square

ames @ Cz. Koscielny

1. LSs Isomorphic with the Interior of the Operation Table of a Cyclic Group, of
a Multiplicative Group of GF(p™), and of an Additive Group of GF'(p™)

The first one-argument routigcg (cg denotingcyclic group computes the interior of the table of addition modulo
and returns a latin square in the form of anx n matrix:

> Iscg := proc(q::posint)
local i, |, Is;
Is := array(1 .. g, 1 .. q);
for i to q do
for j to g do Isfi, j] := (i + j - 2) mod q end do
end do;
evalm(ls)
end proc:

The proceduréscg can be called with an arbitrary actual argument

As is known, the order of a multiplicative group 6fF'(p™) equalsp™ — 1. Therefore, using a routine which gen-
erates a latin square of orderisomorphic with the interior of the multiplicative group 6fF'(p™), we must remember
that the conditiony + 1 = p™ must be satisfied.

The one-argument routinemgff (mgff stands fomultiplicative group of a finite fielduses the GF package. This
routine generates also a latin square of the okder 256, which is important for practice since, in this cagef 1 is a
prime.

> Ismgff := proc(qg::posint)
local i, j, Is, m, p, w, @;
w := ifactor(q + 1);
p := op(convert(w, list)[1]);
if nops(w) = 1 then m := 1 else m := op(op(w)[2]) end if;
if pPm <> g + 1 then error "gq+1 must be a power of prime"

end if;
g = GF(p, m);
Is ;= array(d .. q, 1 .. q);

for i to g do for j to q do Is[i,] :=
g:-output(g:-*'(g:-input(i), g:-input(j))) - 1
end do
end do;
evalm(ls)
end proc:

Similarly to the previous procedure, the two-argument rousagff (agff stands foradditive group of a finite
field) makes use of the GF package. Thus, the order of the returned latin square, isomorphic to the operation table in the
additive group of GF'(p™), is equal to the power of the primg”.

> |sagff := proc(p::prime, m::posint)

local Is, g, i, j, n;
g = GF(p, m);
n = p™m;

Is ;= array(1 .. n, 1 .. n);

for i from O ton - 1 do for j from O to n - 1 do
Isfi + 1, j + 1] :=
g:-output(g:-‘+(g:-input(i), g:-input(j)))

end do
end do;
evalm(ls)
end proc:

Generating quasigroups for cryptographic applications @ amcs

A2. Two LSs Isomorphic with the Interior of Addition and Subtraction Tables
of a Spurious Galois Field

Each SGF(q) can provide two latin squares being the interiors of addition and subtraction tables (it is clear, however,
that the table of addition i F'(¢) of characteristic 2 does not differ from the subtraction table in this field).

To determine addition and subtraction tablesS6:F(q), the appropriate Zech logarithm is needed. It can be
computed using the two-argument routfisgfz (f for file, sgf for spurious Galois fieldz for Zech'’s logarithm). The
routine implements an algorithm similar to that in @6elny, 1995, p. 179) and returns all values of Zech’s logarithms
for SGF(q). The result of calculation is written in the text file namfad. Each row of the file containg (z), = =
1,2,...,q—2if giseven,orZ(z), x=0,1,2, ..., (¢q—3)/2, (¢ +1)/2, ..., g —2if ¢ is odd.

> fsgfz := proc(qg::posint, fn::string)
local i, k, b, f, nd, nz, p, z, za, zs, g2, n, nc, g1, c, ip, z2f
ql = q - 1;
g2 = q - 2
f := fopen(fn, WRITE);
nd := convert(nops(convert(ql, base, 10)), string);
if g mod 2 = 0 then n = 1/2*g2 else n := 1/2*ql end if;
z = array(1l .. q2);

I — 1

with(combstruct);
¢ = iterstructs(Combination(q2), size = n);
nz = 0;

for i to count(Combination(q2), size = n) do
p := convert(nextstruct(c), list);
ip := iterstructs(Permutation(p));
while not finished(ip) do
za := nextstruct(ip);
b := false;
if g mod 2 = 0 then
for k to n do b := b or zalk] = k end do;

if not b then
for k to n do
z[K] = zalK];
zZ[gl - K] := (z[k] - k + g1) mod gl
end do;

zs := convert(z, set);
if nops(zs) = g2 and not member(0, zs)
then
nz ;= nz + 1;
for k to g2 do fprintf(f, cat("%", nd, "d "), z[K])

end do;
fprintf(f, "\n")
end if
end if
else

for kton-1dob:=borzak] =k -1
end do;
if not b then

for k to n do z[Kk] := zalk] end do;

for k ton -1 do z[g2 - k + 1] =
(zalk + 1] - k + g1) mod gl

end do;

zs := convert(z, set);

if nops(zs) = g2 and not member(0, zs)

then

ames @ Cz. Koscielny

nz := nz + 1,
for k to g2 do fprintf(f, cat("%", nd, "d "), z[K])

end do;
fprintf(f, "\n")
end if
end if
end if
end do

end do;
fprintf(f, "%s%d%s %d", "Number of sgf(", g, ") equals to", nz);
fclose(f)

end proc:

Calling the routine as in the following statements:
> fsgfz(9,"d:\Watsqr\\z09"); fsgfz(10,"d:\\latsqr\\z10");

will create two text files, namezD9 andz10, situated on the disd: in the directorylatsqr (this directory must exist on
the discd:).

After computing the set of all Zech’s logarithms for a desikgdve can generate two latin squares of orgefor
any element of this set, using the procedissgf . The second formal parameter of this routinejs a list containing
the values of an arbitrary row of the file, created by the routsgéz

> |ssgf := proc(q::posint, z::list)
local g1, g2, zech, i, k, m, ni, S, Isa, Isb;
S = proc(X, y::nonnegint)
local d, mn;
if x =0 ory =0 then return x + y
elif x <= y then mn = x
else mn =y
end if;
d := abs(x - vy);
if d = ni then return 0
else return 1 + ((mn - 1 + zech[d]) mod ql)

end if
end proc;
ql ==q - 1
g2 = ql - 1;
Isa = array(1 .. q, 1 .. q);
Isb := array(1 .. g, 1 .. Q);

zech = array(0 .. g2);
zech[0] = 1,
if ¢ mod 2 = 0 then
ni := 0; for i to g2 do zech[i] := z[i] end do

else

ni := 1/2*ql;

for i to ni do zech[i - 1] := z[i] end do;

for i from ni + 1 to g2 do zech[i] := z[i] end do
end fif;
zech[ni] = O;
for i to g do

for k to g do Isafi, k] := S(i - 1, k - 1) end do
end do;

for i to g do for k to g do for m to q do
if Isali, Kl = m - 1 then Isbim, k] :=i -1

Generating quasigroups for cryptographic applications @ amcs

end if
end do
end do
end do;
evalm(lsa), evalm(isb)
end proc:

The algorithm according to which the procedisgfz is implemented is not the fastest one. Therefore, it practi-
cally operates on the value of the actual parameter 20. But it has been observed (Kcielny, 1996) that the discrete
function Z(2x — 1) =¢q/2 —x+1, Z(2z) =z, x =1, 2, ..., (¢ — 2)/2 satisfies the conditions for Zech’s logarithm
of SGF(q) for an arbitrary every > 6.

The above is taken into account by the routisgesgf (psgf stands foparticular sg), having one argument and
operating exactly in the same manner as the procddsgé

> |Ispsgf := proc(q::posint)
local S, i, k, m, a, b, qi;
if g mod 2 =1 or g < 6 then
error "q must be an even integer > 5"
end fif;
S = proc(x, y)
local d, mn, z;
if x =0 ory = 0 then return x + y end if;
if x <=y then mn := x else mn = y end if;
d = abs(x - vy);
if d mod 2 = 0 then z := 1/2*d
else z := 1/2*q + 1/2*d - 1/2
end if;
mn = mn - 1;
if d = 0 then return O
else return 1 + ((mn + z) mod ql)

end if
end proc;
a = array(l .. q, 1 .. Q)
b = array(1 .. q, 1 .. q);
ql = q - 1;
for i to q do
for k to g do a[i, k] ;= S(i - 1, k - 1) end do
end do;
for i to q do for k to g do for m to q do
if afi, Kl = m - 1 then bim, k] =i -1
end if
end do
end do
end do;
evalm(a), evalm(b)
end proc:

A3. Routine for Computing the Simple Product of an Arbitrary Number of Quasigroups

The routinesspr (spr corresponds tgimple produdtwith an arbitrary number of arguments can be applied to gener-
ating a simple product of an arbitrary number of quasigroups, equal to the number of arguments passed in the procedure
call. It contains a local procedusp?2, which is based exactly on the formulae (16)—(26). The procesipPecom-

putes the simple product of two arbitrary quasigroups and its use by the main routine depends on the number of actual
parameters in the call to the procedigsspr

ames @ Cz. Koscielny

> lIsspr = proc()
local sp2, i, Itsq;
sp2 := proc(a::matrix, b::matrix)
local i, k, cp, nl, n2, nl12, Is;
nl := linalg[rowdim](a);
n2 := linalg[rowdim](b);
nl2 := nl*n2;
cp := array(l .. nl2);
Is := array(1 .. n12, 1 .. nl2),
for i from 0 to nl2 - 1 do
cpli + 1] = [iquo(i, n2), i mod n2]
end do;
for i to n12 do for k to n12 do Is[i, k] :=
n2*alcpfil[1] + 1, cplk]1] + 1]
+ blep(il2] + 1, cpK][2] + 1]
end do
end do;
evalm(ls)
end proc;
Itsq := args[1];
if nargs = 1 then return args[l] end if;
for i from 2 to nargs do Itsq := sp2(ltsq, args]i])
end do
end proc:

For example, the call
> |sspr(lsmgff(4),Iscg(2), Isagff(2,1));
will compute the product of three quasigroups of orders 4, 2 and 2.

A4. Routine for Determining the Isotope of an Arbitrary Quasigroup

The one-argument proceduses (is stands folisotopg transforms any latin square into the interior of an operation
table in a quasigroup, according to (14). The required three permutations are generated at random by means of the
combinat package.

> Isis := proc(ls::matrix)
local i, k, n, pix_, piy_, pit, q;
n := linalg[rowdim](Is);
g = array(1 .. n, 1 .. n);

pix_ := combstruct[draw](Permutation(n));
piy_ := combstruct[draw](Permutation(n));
pit ;= combstruct[draw](Permutation(n));

for i to n do for k to n do
qli, K] := pit[ls[pix_[i], piy_[K]] + 1] - 1
end do
end do;
evalm(q)
end proc;

Since the permutationsx_ , piy_ andpit are generated at random, any call, repeated several times, may give
different quasigroups. In order to obtain the same result in any call, a seed for the random number generator must be set.
For example, by repeating the instructions

> seed := 142857: Isis(Isspr(lsmgff(4), Iscg(4)));
the reader will obtain every time the same result.

Generating quasigroups for cryptographic applications @ amcs
A5. Routine for Writing LS to a File

The implementation of quasigroup-based cryptographic systems is generally done in languages other than the Maple
interpreter. In this case a quasigroup, determined by Maple, ought to be written to a file and then imported into other
encrypting/decrypting software. To achieve this, we must modify the procéshige. Of course, there are many ways of

doing it. For example, the proceduteqg computes the same quasigroup as the rousigg , but, instead of returning

a computed quasigroup, it writes it to a text file nanssfd and created in the current directory.

fls := proc(ls::matrix, fn::string)

local f, i, k, n, nc;
n := linalg[rowdim](ls);
nc := convert(nops(convert(n, base, 10)), string);
f := fopen(fn, WRITE);
for i to n do
for k to n do
fprintf(f, cat("%", nc, "d "), Is[i, K])
end do;
fprintf(f, "\n")
end do;
fclose(f)
end proc:

> seed = 13: fls(Isis(Ispsgf(16)[2]),"d:\\latsgr\\q16");

Finally, from among plenty of statements using the roufise , cooperating with the others procedures of this
section in order to create a file containing the interior of the operation table in a quasigroup of order 256, several examples
are given:

fls(Isis(Isspr(lspsgf(16)[1], Ispsgf(16)[2])), "d:\latsgr\\q256a");
fls(Isspr(Isis(Ismgff(16)), Isis(Isagff(2,4))),"d:\\latsqri\q256b");
fls(Isis(Isspr(Isis(Ispsgf(8)[2]), Isis(Isagff(2,5)))),"d:\latsqr\\q256c");
fls(Isis(Isspr(Isagff(2,5), Isagff(2,3))),"d:\latsqri\q256d");
fls(Isis(Isspr(Ispsgf(16)[2], Iscg(4), Isis(lsmgff(4)))),"d:\\latsqr\\q256e");
fls(Isis(Isspr(Ispsgf(64)[1], Isis(Isagff(2,2)))),"d:\\latsqr\\q256f");
fls(Isis(Isspr(lIsis(Isagff(2,3)), Ispsgf(32)[2])),"d:\\latsqr\\q2569g");
fls(Isis(Isspr(Ispsgf(8)[1], Ispsgf(8)[2],Iscg(4))),"d:\latsgri\q256h");
fls(Isis(Isagff(2,8)),"d:\\latsgr\\q256i");
fls(Isis(Ispsgf(256)[2]),"d:\\latsgr\\q256j");
fls(Isis(Ismgff(256)),"d:\\latsqr\\q256k");
fls(Isis(Isspr(lspsgf(16)[1],Ispsgf(16)[1])),"d:\Mlatsqr\\q2561");
fls(Isis(Isspr(Ismgff(16),Ismgff(16))),"d:\\latsqr\\g256m");
fls(Isis(Iscg(256)),"d:\\latsqr\\q256n");
fls(Isis(Isspr(Isagff(2,7),Ismgff(2))),"d:\\latsqri\\q2560");
fls(Isis(Isspr(Ispsgf(32)[1],Iscg(8))),"d:\latsgr\\q256p");

VVVVVVVVVVVYVYVYVYVYV

As can be seen, all the procedures presented here provide poweful means for generating quasigroups.

Received: 26 April 2001
Revised: 21 January 2002
Re-revised: 1 March 2002

