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The paper describes a spectral method for combinational logic synthesis using the Walsh transform and the Reed-Muller
form. A new algorithm is presented that allows us to obtain the mixed polarity Reed-Muller expansion of Boolean functions.
The most popular minimisation (sub-minimisation) criterion of the Reed-Muller form is obtained by the exhaustive search
of all the polarity vectors. This paper presents a non-exhaustive method for Reed-Muller expansions. The new method
allows us to build the Reed-Muller form based on the analysis of Walsh-Hadamard coefficients. The presented method
has much less complexity than the procedures which have been applied until now. Both the transforms and the presented
Walsh-Hadamard spectral characterization of the Reed-Muller expansion are compared. An analysis of the properties of the
spectra obtained from these transforms is made.
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1. Introduction

Manipulations and calculations of discrete functions are
an important task in many areas of computer science.
An example is the exhaustive answer to questions about
the equivalence and classifications of Boolean functions,
which have applications in various problems of CAD,
such as synthesis, verification or testing.

A logic function can be implemented as many differ-
ent circuit designs. This function can also be implemented
as the multi-level tree of XOR gates. In two-valued sys-
tems, the testing of the multi-level tree of XOR gates is
easy because in a fanout free linear circuit any single fault
propagates to the output independently of the applied in-
put vector. This property allows us to minimize the num-
ber of tests required for fault detection. Such an imple-
mentation can also offer significant benefits by employing
fewer transistors, connections and tracks. The testability
will not be considered here in view of the fact that the
analysis of the circuit testability based on the Reed-Muller
representation has been discussed in many works so far
(Falkowski and Chang, 1999; Karpovsky, 1985; Sasao,
1993; 1995).

The classical approach to the analysis, synthesis or
testing of digital circuits is based on the description by the
Boolean algebra operators. Over many years an alterna-
tive description based on the operations of modulo-2 arith-
metic has been developed (Damarla and Karpovsky, 1989;
Falkowski and Chang, 1995; Sasao, 1995; Yanushkevich,

1998). The modulo-2 algebra is the simplest case of the
Galois field algebra. Any Boolean function can be rep-
resented in the modulo-2 algebra. In practical applica-
tions, operations of modulo 2 can be realized by means
of exclusive OR (EXOR) gates. The modulo-2 sum-of-
products expression is known as the Reed-Muller expan-
sion. Nowadays we can observe that the role of EXOR
gates in the design process is very important. The new
method allows us to build an optimal Reed-Muller form
based on the analysis of Walsh-Hadamard coefficients.

Unfortunately, relatively few functions are fully
amenable to the Reed-Muller implementation. However,
a lot of well-known functions can be partially realized
in the XOR gates technique, and hence we have several
canonical families of AND/XOR forms. Many authors
have studied these forms, because they offer an interest-
ing compromise between the testability, number of terms,
area and speed (Falkowski and Chang, 2000; Karpovsky,
1976; Sasao, 1993). Examples of such canonical binary
forms are Shannon, Positive Davio and Negative Davio
representations (Sasao, 1995). Any combination of the
above types of trees can be used to create canonical trees:
Kronecker, Pseudo Kronecker, Reed-Muller or Pseudo
Reed-Muller trees. Several types of representations have
already been introduced, investigated and implemented
in CAD (Falkowski and Chang, 2000; Sasao, 1995), but
most of them still remain to be defined and experimentally
evaluated.
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Any Boolean functionf(x1, x2, . . . , xn) of n vari-
ables can be represented by three forms of the Reed-
Muller expansion (Falkowski and Chang, 1995; Sasao,
1995). The positive polarity Reed-Muller form is an
EXOR sum of products, where each variable is not com-
plemented:

f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ a2x2

⊕ · · · ⊕ a2n−1x1x2 · · ·xn, (1)

with ai ∈ {0, 1}. In the fixed polarity form (or the gener-
alised Reed-Muller expansion, GRM) each variable may
appear as either complemented or not complemented:

f(x1, x2, . . . , xn) = a0 ⊕ a1ẋ1 ⊕ a2ẋ2

⊕ · · · ⊕ a2n−1ẋ1ẋ2 · · · ẋn, (2)

where ai ∈ {0, 1} and ẋ ∈ {x, x̄}. The GRM can be
obtained from the positive polarity form using the iden-
tity x̄ = 1⊕ x. The mixed polarity form (MPRM) allows
a variable to appear in both polarities in the same equa-
tion. The mixed polarity expansion is more compact than
the positive and fixed polarity expansions, because there
are no restrictions on the polarity of the input variables.
The forms of the Reed-Muller tree can be used directly
in designing AND-EXOR PLAs (Perkowski, 1996; Sasao,
1993).

Table 1 shows the relations between the trees de-
scribed above. This table unifies most of the known
EXOR-based representations and presents how many dif-
ferent expressions can be generated for particular types of
trees for a givenn-variate Boolean function.

Table 1. Relation between the trees and AND-EXOR expressions.

Type of a tree
Expression generated

from the tree

Number of different

expressions

Positive Davio
Positive polarity Reed-Muller

expression (PPRM)
1

Reed-Muller
Fixed polarity Reed-Muller

expression (FPRM)
2n

Pseudo Reed-Muller expression

(PSDRM)
22n−1

No corresponding

tree

Generalised Reed-Muller

expression (GRM)∗
2n2n−1

Kronecker

Kronecker expression (KRO),

or Mixed Polarity Reed-Muller

expression (MPRM)

3n

Pseudo

Kronecker

Pseudo Kronecker expression

(PSDKRO)
32n−1

∗ Definition proposed in (Sasao, 1993)

Many authors use the term GRM to denote the FPRM
(Sasao, 1993). Some of them use another terminology for
GRMs. The Kronecker form is also called the mixed po-
larity Reed-Muller expansion (MPRM). Thus, the termi-
nology is not uniform. Let us observe that there are many
more GRMs than FPRMs for a Boolean function, and thus
the minimal GRM is not worse (it is usually much better)
than the minimal FPRM of the same function. Though the
GRM cannot be found for each variable separately, it is
more difficult to find a good GRM which must be found
for all variables together.

The above-mentioned Reed-Muller expansion is an
alternative description of a Boolean function. It employs
the modulo-2 arithmetic, which is unique and canonical
for a given Boolean function. The application of EXOR
and AND gates has only some advantages over other im-
plementations. We know (Perkowski, 1996) that if a cir-
cuit is presented as a Reed-Muller expansion, it is easily
testable. This implies that the Reed-Muller or Kronecker
methods are often very efficient. Because the number of
different expansions for each type of a tree is large or
very large (see Table 1), how to find the minimal or sub-
minimal expansion is very important. The correlation be-
tween the SOP (Sum-of-Product) and ESOP (Exclusive-
Sum-of-Product) representations of switching functions
is intensively investigated. It has been found that for
some specific classes of functions the AND-OR represen-
tation may be less economical in use than the AND-EXOR
design.

To illustrate this problem, consider the Boolean func-
tion f , which has the exact SOP formf = x̄1x3 +
x̄1x2x4+x1x̄2x̄3+x1x̄3x̄4, but minimization as the ESOP
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gives a better solutionf = x1 ⊕ x3 ⊕ x2x̄3x4. Unfortu-
nately, some forms of the Reed-Muller representation can
be very inefficient. For example, the PPRM representa-
tion of the Boolean functionf = x̄1x̄2x̄3 gives 2n = 8
product terms:fPPRM = 1 ⊕ x3 ⊕ x2 ⊕ x2x3 ⊕ x1 ⊕
x1x3 ⊕ x1x2 ⊕ x1x2x3. Therefore, in practical solutions
partial Reed-Muller implementations are very often used.

On the other hand, the Reed-Muller form of logic im-
plementation allows for a much greater number of possi-
ble representations of the Boolean functions. The tech-
niques developed for the optimization of circuit complex-
ity (in particular, the number of gates required to imple-
ment the function) in the Boolean domain cannot be ap-
plied to the Reed-Muller form. Consequently, recently
there has been a lively interest in developing techniques
for the optimization of gate requirements in the Reed-
Muller domain or for the exact minimization of Reed-
Muller expansions. Hence some authors investigated
FPRM expansions and presented results which allowed
them to generate optimal fixed polarity Reed-Muller ex-
pansions of Boolean functions (Falkowski and Chang,
2000; 1995; 1999; Perkowski, 1996). Unfortunately, the
methods described by (Falkowski and Chang, 1999) and
others are very difficult to use when a Boolean function
has a lot of variables. Many authors find the minimal
Reed-Muller representation of a function by means of
an exhaustive search of all possible representations and
the choice of the best one. These methods are imprac-
tical for functions with large numbers of input variables
(Falkowski and Chang, 1995).

This paper presents a method which allows us to
calculate the mixed Reed-Muller polarity expansion di-
rectly from Walsh coefficients. The presented algorithm
is characterized by a low complexity and can be applied
to all n-variate Boolean functions. The total number
of arithmetic operations required to compute all Walsh-
Hadamard transform coefficients is approximately only
O(2n log2 2n) = O(2n n), similarly as in the classical
Fourier transform.

2. Calculation of Spectral Coefficients

Some solutions in the Boolean domain inform us pre-
cisely about the behaviour of the function at a single point
but say nothing about its behaviour referring to any other
points. That becomes possible when using an alterna-
tive representation of a function where the information is
much more global in nature. This alternative represen-
tation is the spectral domain (Gianiet al., 2001; Porwik,
1996; Porwik and Falkowski, 1999). The spectral data
are used for many applications in the digital logic design.
Some of them include classification of Boolean functions
(Hurst et al., 1985; Porwik and Falkowski, 1999), fault

synthesis, signal processing (Karpovsky, 1985; Porwik
and Falkowski, 1999; Sasao, 1993), etc. At first, spec-
tral data are generated, and then they are manipulated in
accordance with the application.

A Boolean functionf(x1, x2, . . . , xn) can be trans-
formed from the domain{0, 1} into the spectral do-
main by a linear transformationT · Y = S, where
T is a 2n × 2n orthogonal transform matrix,Y =
[y0, y1, . . . , y2n−1]T is the two-valued truth table vector
of f(x1, x2, . . . , xn) and S = [s0, s1, . . . , s2n−1]T is
the vector of spectral coefficients. The inverse transfor-
mation comes back from the spectral domainS to the
Boolean function domain by the application of the trans-
form T−1 ·S = Y . The most popular transforms used in
the design of logic networks are Walsh, Reed-Muller, (to a
lesser degree Haar) and arithmetic transforms (Falkowski
and Chang, 2000; Hurstet al., 1985). We can observe
that most research works and applications of spectral tech-
niques in logic design were done for either Walsh or Reed-
Muller transforms.

By definition, the spectrum of a Boolean function is
obtained by multiplying a transformation matrix by the
function’s output vector. The result of the vector-matrix
product is called the spectral vector and is composed of
elements that are referred to as spectral coefficients. The
type of information that is obtained from the spectral co-
efficients depends on the transformation matrix. One of
several ways of interpreting the meaning of each spectral
coefficient is to view it as a measure of the correlation
between two binary functions (vectors). Hence the first
function is a Boolean function represented by the two-
valued truth table vectorY and the second Boolean func-
tion is one from the collection of constituent functions of
the transformation matrixT . For a given Boolean func-
tion the Walsh spectrum has only one representation, un-
like the Reed-Muller spectrum, where we have a lot of
different expansions (see Table 1).

Besides the matrix method outlined in the present
paper, data flow graph methods and parallel calculations
similar to the Fast Fourier Transform have also been used.

2.1. Walsh Spectral Coefficients

Walsh functions can be generated in a recursive way
by using the Hadamard matrix (Hurstet al., 1985).
The Hadamard matrix of any dimension is generated as
follows:

T w(n) =

[
T w(n− 1) T w(n− 1)

T w(n− 1) −T w(n− 1)

]
,

T w(0) = [1] , T−1
w (n) =

1
2n

T w(n).

(3)
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Each row of the matrixT w(n) thus created includes a
discrete Walsh sequencewal(w, t) (in other words, a dis-
crete Walsh function). In this notation,w identifies the
number of the Walsh function, andt stands for the dis-
crete point of the function determination interval.

The set of all Walsh sequences included in the matrix
T w(n) constitutes the orthogonal space basisl22m . Each
Boolean functionf can be distributed in a finite Walsh
series by multiplying the Hadamard matrix by the truth
vector of the Boolean function. In such a case the function
f possesses an alternative representation in the form of
the ordered setS of Walsh spectral coefficients resulting
from multiplication.

We have two forms of Walsh-Hadamard spectra of
the Boolean functionf known in the literature as theR
and S spectra (Falkowski and Porwik, 1999; Hurstet al.,
1985; Porwik, 1996). The spectral coefficients ofR have
exactly the same information content as the coefficients
of S, but will not have the same magnitudes. Only the
S spectrum is used in this paper. In theS coding, the
{0, 1} values corresponding to true and false minterms
are respectively replaced by the{1,−1} values. Each
spectrum coefficientsi ∈ S is described by its order.
The order is equal to the number of variables describing
the linear function, which corresponds to the row in the
matrix T w(n) for a given spectral coefficient. Thesi

elements of vectorS are ordered according to a straight
binary code of literals describing the minterms of the orig-
inal truth vectorY . The relationship between the Walsh
coefficients and the variables of a Boolean function can be
described as follows.

Definition 1. Any Boolean functionf(x1, x2, . . . , xn)
of n variables can be expressed by means of Walsh-
Hadamard coefficients as the arithmetical polynomial

f(x1, x2, . . . , xn)

=
1

2n+1

[
2n − s0 − s1(−1)xn − s2(−1)xn−1

− · · · − s2n−1(−1)x1⊕x2···⊕xn

]
, (4)

where ⊕ stands for the modulo-2 addition, and
s0, s1, . . . , s2n−1 ∈ S are spectral coefficients.

The knowledge of the spectral coefficients of
Boolean functions raises the possibility of evaluating
properties of both a single Boolean function and a selected
group of functions. In (Porwik, 1996) it was shown that
separate spectral coefficients can be treated as a correla-
tion measure between the basic standard trivial functions
corresponding to the coefficients and the Boolean func-
tion. Spectral coefficients have many properties which are
already well known (Hurstet al., 1985; Karpovsky, 1976).
The analysis of the properties of the Hadamard matrix

reveals the following important dependence between the
spectrum elementssj and a given Boolean functionf .

Property 1. If a coefficientsj has a large (resp. small)
positive value, thenf is strongly (resp. weakly) depen-
dent on the linear combination of variables

2n−1∑
j=0

x
(j1)
1 ⊕ · · · ⊕ x(jn)

n over GF(2).

If a coefficientsj has a large (resp. small) negative value,
then f is strongly (resp. weakly) dependent on the linear
combination of variables

2n−1∑
j=0

x
(j1)
1 ⊕ · · · ⊕ x

(jn)
n over GF(2),

where

x
(ji)
i =

{
0 if ji = 0,

xi if ji = 1,

j1, j2, . . . , jn constitute the binary representation of a
numberj, j1 is the MSB, andjn is the LSB.

2.2. Mixed Reed-Muller Spectral Coefficients

The mixed polarity Reed-Muller canonical forms repre-
sent expansions where each Boolean variablexi may oc-
cur with mixed polarityci = 0, 1, 2. Here 2 means that
this variable can be represented as complemented or not
complemented. Therefore we obtain the following fam-
ily of 3n mixed polarity Reed-Muller expansions (Sasao,
1995; Yanushkevich, 1998):(
T RM (n)

)
c

= (T RM )c1 ⊗ (T RM )c2 ⊗ · · · ⊗ (T RM )cn
,(

T−1
RM (n)

)
c

= (T−1
RM )c1 ⊗ (T−1

RM )c2 ⊗ · · · ⊗ (T−1
RM )cn

,

(T RM )0 = (T−1
RM )1 =

[
1 0
1 1

]
,

(T RM )1 =

[
0 1
1 1

]
,

(T−1
RM )1 =

[
1 1
1 0

]
,

(T RM )2 = (T−1
RM )2 =

[
1 0
0 1

]
,

(5)

where⊗ signifies the tensor product,c ∈ {0, 1, . . . , 3n−
1} denotes the polarity, andc1, c2, . . . , cn constitute the
ternary representation ofc.
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The relationship between the mixed polarity Reed-
Muller coefficients and the variables of the Boolean func-
tion can be expressed as follows:

fc(x1, x2, . . . , xn)

=
2n−1∑
j=0

sj(x1⊕ c1)
j1 · · ·(xn⊕ cn)jn over GF(2), (6)

where

(xi ⊕ ci)ji

=


1 if ci = 0, 1 and ji = 0,

xi if ci = 0 and ji = 1 or ci = 2 and ji = 1,

xi if ci = 1 and ji = 1 or ci = 2 and ji = 0,

j1, j2, . . . , jn constitute the binary representation ofj,
j1 is the MSB, jn is the LSB ands0, s1, . . . , s2n−1 are
the spectral coefficients.

Example 1. Determine Walsh-Hadamard and mixed po-
larity Reed-Muller spectra for the Boolean function
f(x1, x2, x3) = x̄1x̄2x̄3 + x̄1x2x̄3 + x1x2x̄3. Using (4)–
(6) we can form Table 2.

Table 2. Walsh spectrum of a Boolean functionf .

x1x2x3 f(x1, x2, x3) S
Type of

correlation (*)

0 0 0 1 2 0

0 0 1 0 −6 x̄3

0 1 0 1 2 x2

0 1 1 0 2 x2 ⊕ x3

1 0 0 0 −2 x̄1

1 0 1 0 −2 x1 ⊕ x3

1 1 0 1 −2 x1 ⊕ x2

1 1 1 0 −2 x1 ⊕ x2 ⊕ x3

(*) Each spectral coefficient fromS represents a correlation
measure between the truth column vectorY of function f and
the corresponding Walsh-Hadamard row function.

For Walsh-Hadamard coefficients we obtain from (4)
another expansion off :

f(x1, x2, x3) =
1
16

[
6 + 6(−1)x3 − 2(−1)x2

− 2(−1)x2⊕x3 + 2(−1)x1

+ 2(−1)x1⊕x3 + 2(−1)x1⊕x2

+ 2(−1)x1⊕x2⊕x3

]
.

From (5) and (6) we can calculate all the possible
polarities of the mixed Reed-Muller expansions (see Ta-
ble 3). For different mixed polarity coefficients, from (6)

we get the following Reed-Muller expansions off :

for S0 : 1⊕ x3 ⊕ x1 ⊕ x1x3 ⊕ x1x2

⊕ x1x2x3,

for S1 andS2 : x3 ⊕ x1x3 ⊕ x1x2x3,

for S3 : 1⊕ x3 ⊕ x1x2 ⊕ x1x2x3,

for S4 andS5 : x3 ⊕ x1x2x3,

for S6 : x2 ⊕ x2x3 ⊕ x2 ⊕ x2x3 ⊕ x1x2

⊕ x1x2x3,

for S7 : x2x3 ⊕ x2x3 ⊕ x1x2x3,
...

...

for S25 andS26 : x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3.

�

Property 2. The minimal complexity of a given Boolean
function f is equal to the minimal number of EXOR gates
required in the realization off .

Property 3. For a given Boolean functionf , more than
one Reed-Muller polarity vectorSi can have the same
form.

Corollary 1. (Porwik and Falkowski, 1999)A Boolean
functionf(x1, x2, . . . , xn) includes a redundant variable
xi if for each linear combination in which the variablexi

occurs the value of the corresponding Walsh-Hadamard
spectral coefficient is equal to zero.

The above proves that Walsh-Hadamard representa-
tions of Boolean functions are less complicated and have
simpler implementations than mixed Reed-Muller repre-
sentations. This is the reason why an efficient algorithm
minimizing and determining the Reed-Muller form by
means of the Walsh-Hadamard spectrum could be devel-
oped. The described algorithm allows us to calculate the
optimal mixed Reed-Muller form directly from the Walsh
spectrum, without finding all mixed Reed-Muller expan-
sions as in the classical method.

3. Algorithm

Input Data: The input required for the analysis method
consists of only the two-valued truth table vectorY of a
Boolean functionf(x1, x2, . . . , xn) = f(x).

Output Data: A Boolean function in the Reed-Muller
form.

1. Compute the Wash-Hadamard transformation matrix
T w(n).

2. Convert the truth table vector Y =
[y0, y1, . . . , y2n−1]T , yi ∈ {0, 1} according to
the formula g : {0, 1} → {1,−1}, and determine
the vector of spectral coefficientsS.
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Table 3. Reed-Muller spectrumSi of a Boolean functionf for different polarities,i = 0, 1, . . . , 3n − 1.

x1x2x3 f(x1, x2, x3) Mixed polarity Reed-Muller spectrum

S0 S1 S2 S3 S4 S5 S6 S7 · · · S25 S26

0 0 0 1 1 0 1 1 0 1 1 0 · · · 0 1

0 0 1 0 1 1 0 1 1 0 1 1 · · · 1 0

0 1 0 1 0 0 0 0 0 0 1 0 · · · 0 1

0 1 1 0 0 0 0 0 0 0 1 1 · · · 1 0

1 0 0 0 1 0 1 0 0 0 1 0 · · · 0 0

1 0 1 0 1 1 0 0 0 0 1 1 · · · 0 0

1 1 0 1 1 0 1 1 0 1 0 0 · · · 0 1

1 1 1 0 1 1 0 1 1 0 0 0 · · · 1 0

3. Using Corollary 1 check whetherf is redundant. If
it is, then modify the function and go to Step 2.

4. Choose the largest (in magnitude) spectral coefficient
si = |si|, i = 0, 1, . . . , 2n − 1. The spectral co-
efficient(s) with the largest magnitude(s) indicate(s)
the most important input conditions that control the
function output. If more than one spectral coefficient
have equal magnitudes, the choice is arbitrary.

5. Realize the new functionfs(x) that corresponds to
the coefficient chosen in Step 4.

6. Compute the functiond(x) = f(x) ⊕ fs(x).
The function d(x) indicates the number of agree-
ments (disagreements) betweenf(x) and fs(x) at
point x:

d(x) =

{
1 for f(x) 6= fs(x),

0 for f(x) = fs(x).

7. Combine all the intermediate realizations at pointsx
whered(x) = 1 using the sum-modulo-two operator
(⊕).

8. If the Hamming distance isW [d(x)] = 1 or
W [d(x)] = 0, then the obtained result is optimal

Table 4. Truth table of the Boolean functionf(x), its spectrum, correlation measure and functiond(x).

x1x2x3 x f(x) S fs(x̄3)
d(x) =

f(x)⊕ fs(x)
Type of

correlation

0 0 0 0 1 2 1 0 0

0 0 1 1 0 −6 0 0 x̄3

0 1 0 2 1 2 1 0 x2

0 1 1 3 0 2 0 0 x2 ⊕ x3

1 0 0 4 0 −2 1 1 x̄1

1 0 1 5 0 −2 0 0 x1 ⊕ x3

1 1 0 6 1 −2 1 0 x1 ⊕ x2

1 1 1 7 0 −2 0 0 x1 ⊕ x2 ⊕ x3

(minimal number of products and literals). Other-
wise, we obtain the Reed-Muller form, which can be
additionally minimized by means of other methods
(Yanushkevich, 1998).

End of Algorithm.

Example 2. Let f be a Boolean function intro-
duced in Example 1. At the first stage, spectral
Walsh-Hadamard coefficients are calculated:Y =
[2,−6, 2, 2,−2,−2,−2,−2]T . From Corollary 1 we
know that the functionf is not redundant. Next we find
coefficients with the largest magnitudes. In our example
this condition is satisfied for the coefficients1 = −6.
Hencefs(x) = f(x3). In the next step we determine the
function d(x) (see Table 4). We can observe that in this
function only one disagreement point appears. The termi-
nal condition is satisfied and the remaining term can be
realized directly.

The appropriate elements of Table 4, which were
used for creation of the new form of the function, are
marked with bold symbols. The white frames indicate the
correlation measure between the functionf and the ap-
propriate row of the Hadamard matrix. The bold symbols
indicate the essential values of the functiond(x).
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Hence we construct the equationf(x1, x2, x3) =
x̄3 ⊕ x1x̄2x̄3. Note that the obtained result is
consistent with the S4 Reed-Muller form. This
form had already been calculated in Example 1 but
now the final result was obtained faster. Un-
like in the classical Reed-Muller method, this re-
sult was calculated by one pass of the algorithm.

�

Example 3. Let f be the Boolean function described
in Table 5. As in Example 2, we construct the equation
f(x1, x2, x3, x4) = x2 ⊕ x3 ⊕ x̄1x̄2x3x̄4. �

Table 5. Truth table of a Boolean functionf(x), its spectrum, correlation measure and error functiond(x).

x1x2x3x4 x f(x) S fs(x2 ⊕ x3)
d(x) =

f(x)⊕ fs(x2 ⊕ x3)
Type of

correlation

0 0 0 0 0 0 2 0 0 0

0 0 0 1 1 0 2 0 0 x4

0 0 1 0 2 0 −2 1 1 x̄3

0 0 1 1 3 1 −2 1 0 x3 ⊕ x4

0 1 0 0 4 1 2 1 0 x2

0 1 0 1 5 1 2 1 0 x2 ⊕ x4

0 1 1 0 6 0 14 0 0 x2⊕x3

0 1 1 1 7 0 −2 0 0 x2 ⊕ x3 ⊕ x4

1 0 0 0 8 0 2 0 0 x1

1 0 0 1 9 0 2 0 0 x1 ⊕ x4

1 0 1 0 10 1 −2 1 0 x1 ⊕ x3

1 0 1 1 11 1 −2 1 0 x1 ⊕ x3 ⊕ x4

1 1 0 0 12 1 2 1 0 x1 ⊕ x2

1 1 0 1 13 1 2 1 0 x1 ⊕ x2 ⊕ x4

1 1 1 0 14 0 −2 0 0 x1 ⊕ x2 ⊕ x3

1 1 1 1 15 0 −2 0 0 x1 ⊕ x2 ⊕ x3 ⊕ x4

4. Experimental Results and Final Remarks

The proposed approach allows us to solve the problem of
the minimal (in terms of the number of products) canoni-
cal representation of a completely specified Boolean func-
tion. The results of the realization of the presented al-
gorithm were compared with the U.C. Berkeley product
Esperesso (Micheli, 1994). The Espresso package takes
as the input a two-level representation of a two-valued
Boolean function, and produces an equivalent minimal
representation. This algorithm gives the optimal solu-
tion in heuristic Boolean minimization. It is necessary to
note that the outputs of the Espresso are sums of prod-
ucts (SOP) and the outputs of the algorithm are exclusive
sums of products (ESOP). The number of products (P) as
well as the number of literals (L) (complemented or non-
complemented variables) appearing in all the products P
in the obtained expression are given in Table 6.

The first three cases represent one-output functions.
The last four benchmarks were formed from multi-output
functions by choosing the 2nd, 7th, 12th or 61st output.
The experiments show that the algorithm of Section 3 is
more effective than the well-known Espresso algorithm.

The differences between the Reed-Muller implemen-
tation and standard Boolean logic can be explained by
means of a practical example. Table 7 shows a comparison
of a 4-bit synchronous binary counter which was imple-
mented using standard Boolean logic and the Reed-Muller
form. In both realizations we used the 0.9µm ASIC li-
brary and CMOS technology.

Table 6. Number of products and terms (literals) after
function minimization for the presented ex-
amples and MCNC∗ benchmarks.

Boolean function
or circuits

Espresso
algorithm

Presented
method

IN OUT L P L P

Example 2 3 1 4 2 4 2

Example 3 4 1 8 3 6 3

xor5 5 1 80 15 5 5

rd53 5 3 (2nd) 4 4 4 2

dc1 4 7 (7th) 6 3 6 3

bw 5 28 (12th) 16 4 17 4

ex5 8 63 (61st) 19 9 18 4

∗ MCNC – Microelectronics Center of North Carolina
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Table 7. Standard Boolean and partial Reed-
Muller (R-M) implementations∗.

Optimized
Boolean

Optimized
partial R-M

Comparation (%)

Maximum delay
(nsec)

1.713 1.758 2.6 increase

Transistors∗∗ 60 40 33 reduction

Tracks 20 12 40 reduction

Track segments 34 15 55 reduction

∗ From a report by C. Maxfield, EDN Magazine, USA,
March 1996 (with the author’s permission).

∗∗ Omitted transistors which occur in both
implementations.

The XOR gates in this library are buffered pass-
transistor implementations, each requiring only 10 tran-
sistors (as opposed to building the XOR gates from the
AND/OR/NOT gates, which would require more transis-
tors and would be slower). From Table 7 we can ob-
serve that the Reed-Muller implementation is only slightly
slower than its Boolean counterpart but offers signifi-
cant benefits in reducing the area utilization, because the
implementation requires substantially fewer transistors,
tracks and connections.

Additionally, as was already mentioned, the circuits
built in the Reed-Muller form are very susceptible to test-
ing. Any Reed-Muller circuit can be tested for all sin-
gle stuck-at-faults with a maximum of3n + 4 input vec-
tors, wheren is the number of primary inputs (Breuer
and Friedman, 1976). The problem of test generation for
digital circuits was not considered in this paper.

Besides the matrix method presented in this paper,
data flow graph methods and parallel calculations simi-
lar to the Fast Fourier Transform were also used to calcu-
late Walsh-Hadamard and Reed-Muller transforms. These
methods reduce the number of necessary calculations.
The classical methods of spectrum calculation (for both
Reed-Muller and Walsh matrix transforms) can be de-
scribed using the complexity criterion:

C(S,T ) = k2n + kn(kn − 1),

where k is the valence off (for a two-valued Boolean
function we havek = 2), n denotes the number of argu-
ments of the Boolean function,k2n stands for the number
of multiplications, andkn(kn−1) denotes the number of
additions.

Hence the complexity criterion for the Reed-Muller
expansions of all mixed polarities is3nC(S,T ). Next we
must choose the shortest expansion. For the Walsh spec-
trum we get only the complexityC(S,T ). The solution
is computed immediately and very often has the shortest
representation.

Notice that the data flow graph methods and parallel
calculations have also been used to calculate the Walsh-
Hadamard and Reed-Muller transforms. These methods
reduce the number of necessary calculations. Nowadays
the computational process in either the Reed-Muller or the
Walsh domain is based on the well-known butterfly signal
flow graph configuration. In this case computational com-
plexity can be described byCmin(S,T ) = nkn. This
means that we execute addition operations only. Clearly,
in this situation for all mixed Reed-Muller expansions we
obtain the complexity3nCmin(S,T ).
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