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The paper describes a spectral method for combinational logic synthesis using the Walsh transform and the Reed-Muller
form. A new algorithm is presented that allows us to obtain the mixed polarity Reed-Muller expansion of Boolean functions.
The most popular minimisation (sub-minimisation) criterion of the Reed-Muller form is obtained by the exhaustive search
of all the polarity vectors. This paper presents a non-exhaustive method for Reed-Muller expansions. The new method
allows us to build the Reed-Muller form based on the analysis of Walsh-Hadamard coefficients. The presented method
has much less complexity than the procedures which have been applied until now. Both the transforms and the presented
Walsh-Hadamard spectral characterization of the Reed-Muller expansion are compared. An analysis of the properties of the
spectra obtained from these transforms is made.
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1. Introduction 1998). The modulo-2 algebra is the simplest case of the
. ) . ) . Galois field algebra. Any Boolean function can be rep-
Mar_1|pulat|ons and palculanons of discrete funct|on_s are resented in the modulo-2 algebra. In practical applica-
an important task in many areas of computer science.(jons operations of modulo 2 can be realized by means
An example is the exhaustive answer to questions aboutys oy clusive OR (EXOR) gates. The modulo-2 sum-of-
the equivalence and classifications of Boolean functions, products expression is known as the Reed-Muller expan-
which have applications in various problems of CAD, gjon Nowadays we can observe that the role of EXOR
such as synthesis, verification or testing. _ gates in the design process is very important. The new
A logic function can be implemented as many differ- athod allows us to build an optimal Reed-Muller form

ent circuit designs. This function can also be implemented |, 5c0d on the analysis of Walsh-Hadamard coefficients.
as the multi-level tree of XOR gates. In two-valued sys-

tems, the testing of the multi-level tree of XOR gates is Unfortunately, relatively few functions are fully
easy because in a fanout free linear circuit any single faultamenable to the Reed-Muller implementation. However,
propagates to the output independently of the applied in-a lot of well-known functions can be partially realized
put vector. This property allows us to minimize the num- in the XOR gates technique, and hence we have several
ber of tests required for fault detection. Such an imple- canonical families of AND/XOR forms. Many authors
mentation can also offer significant benefits by employing have studied these forms, because they offer an interest-
fewer transistors, connections and tracks. The testabilitying compromise between the testability, number of terms,
will not be considered here in view of the fact that the area and speed (Falkowski and Chang, 2000; Karpovsky,
analysis of the circuit testability based on the Reed-Muller 1976; Sasao, 1993). Examples of such canonical binary
representation has been discussed in many works so faforms are Shannon, Positive Davio and Negative Davio
(Falkowski and Chang, 1999; Karpovsky, 1985; Sasao, representations (Sasao, 1995). Any combination of the
1993; 1995). above types of trees can be used to create canonical trees:

The classical approach to the analysis, synthesis orKronecker, Pseudo Kronecker, Reed-Muller or Pseudo
testing of digital circuits is based on the description by the Reed-Muller trees. Several types of representations have
Boolean algebra operators. Over many years an alternaalready been introduced, investigated and implemented
tive description based on the operations of modulo-2 arith- in CAD (Falkowski and Chang, 2000; Sasao, 1995), but
metic has been developed (Damarla and Karpovsky, 1989;most of them still remain to be defined and experimentally
Falkowski and Chang, 1995; Sasao, 1995; Yanushkevich,evaluated.



Any Boolean functionf (x1, zo, ..., z,) of n vari- Many authors use the term GRM to denote the FPRM
ables can be represented by three forms of the Reed{Sasao, 1993). Some of them use another terminology for
Muller expansion (Falkowski and Chang, 1995; Sasao, GRMs. The Kronecker form is also called the mixed po-
1995). The positive polarity Reed-Muller form is an larity Reed-Muller expansion (MPRM). Thus, the termi-
EXOR sum of products, where each variable is not com- nology is not uniform. Let us observe that there are many

plemented: more GRMs than FPRMs for a Boolean function, and thus
the minimal GRM is not worse (it is usually much better)
f(xr, @2, ) = ap ® a1 © azws than the minimal FPRM of the same function. Though the

GRM cannot be found for each variable separately, it is
more difficult to find a good GRM which must be found
with a; € {0,1}. In the fixed polarity form (or the gener-  for all variables together.
alised Reed-Muller expansion, GRM) each variable may  The above-mentioned Reed-Muller expansion is an
appear as either complemented or not complemented:  aiternative description of a Boolean function. It employs
the modulo-2 arithmetic, which is unique and canonical
for a given Boolean function. The application of EXOR
BB agn_1d100 - dn, (2) and AND gates has only some advantages over other im-
plementations. We know (Perkowski, 1996) that if a cir-
wherea; € {0,1} and & € {z,z}. The GRM can be  cuit is presented as a Reed-Muller expansion, it is easily
obtained from the positive polarity form using the iden- testable. This implies that the Reed-Muller or Kronecker
tity z =1 z. The mixed polarity form (MPRM) allows  methods are often very efficient. Because the number of
a variable to appear in both polarities in the same equa-different expansions for each type of a tree is large or
tion. The mixed polarity expansion is more compact than very large (see Table 1), how to find the minimal or sub-
the positive and fixed polarity expansions, because thereminimal expansion is very important. The correlation be-
are no restrictions on the polarity of the input variables. tween the SOP (Sum-of-Product) and ESOP (Exclusive-
The forms of the Reed-Muller tree can be used directly Sym-of-Product) representations of switching functions
in designing AND-EXOR PLAs (Perkowski, 1996; Sasao, s intensively investigated. It has been found that for
1993). some specific classes of functions the AND-OR represen-
Table 1 shows the relations between the trees de-tation may be less economical in use than the AND-EXOR
scribed above. This table unifies most of the known design.
EXOR-based representations and presents how many dif-  To illustrate this problem, consider the Boolean func-
ferent expressions can be generated for particular types otion f, which has the exact SOP fornfi = z;x3 +
trees for a givemm-variate Boolean function. T1X2T4+21ToT3+21T3Z 4, DUt minimization as the ESOP

D Dagn_101T2 - Ty, (l)

flxi, 22, ..., 2n) = ap B a1d1 B azds

Table 1. Relation between the trees and AND-EXOR expressions.

Expression generated Number of different
Type of atree )
from the tree expressions
Positiv larity Reed-Muller
Positive Davio ositive po a. ty Reed-Mulle 1
expression (PPRM)
Reed-Muller Fixed polarly Reed-Muller on
expression (FPRM)
Pseudo Reed-Muller expression 921
(PSDRM)
No corresponding Generalised Reed-Muller gn2n=1
tree expression (GRM)
Kronecker expression (KRO),
Kronecker or Mixed Polarity Reed-Muller 3"
expression (MPRM)
Pseudo Pseudo Kronecker expression 4271
Kronecker (PSDKRO)

* Definition proposed in (Sasao, 1993)
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gives a better solutiorf = =1 & x3 & x2ZT3z4. Unfortu- synthesis, signal processing (Karpovsky, 1985; Porwik
nately, some forms of the Reed-Muller representation canand Falkowski, 1999; Sasao, 1993), etc. At first, spec-
be very inefficient. For example, the PPRM representa- tral data are generated, and then they are manipulated in
tion of the Boolean functionf = z1Z.Z3 gives 2" = 8 accordance with the application.

product terms: fppry = 1 @ 23 ® 1o ® w23 O 1 D
r123 D 1709 O X1 273. Therefore, in practical solutions
partial Reed-Muller implementations are very often used.

A Boolean functionf(x1, zo, ..., z,) can be trans-
formed from the domain{0,1} into the spectral do-
main by a linear transformatio” - Y = S, where

On the other hand, the Reed-Muller form of logicim- T is a 2" x 2" orthogonal transform matrix,y =
plementation allows for a much greater number of possi- [yo, y1,...,ysn_1]7 is the two-valued truth table vector
ble representations of the Boolean functions. The tech-of f(z1,z2,...,2,) and S = [sq,51,..., 8 _1]7 is
nigues developed for the optimization of circuit complex- the vector of spectral coefficients. The inverse transfor-
ity (in particular, the number of gates required to imple- mation comes back from the spectral domanto the
ment the function) in the Boolean domain cannot be ap- Boolean function domain by the application of the trans-
plied to the Reed-Muller form. Consequently, recently form 7' .8 =Y. The most popular transforms used in
there has been a lively interest in developing techniquesthe design of logic networks are Walsh, Reed-Muller, (to a
for the optimization of gate requirements in the Reed- lesser degree Haar) and arithmetic transforms (Falkowski
Muller domain or for the exact minimization of Reed- and Chang, 2000; Hurst al, 1985). We can observe
Muller expansions. Hence some authors investigatedthat most research works and applications of spectral tech-
FPRM expansions and presented results which allowedniques in logic design were done for either Walsh or Reed-
them to generate optimal fixed polarity Reed-Muller ex- Muller transforms.
pansions of Boolean functions (Falkowski and Chang,
2000; 1995; 1999; Perkowski, 1996). Unfortunately, the
methods described by (Falkowski and Chang, 1999) and
others are very difficult to use when a Boolean function
has a lot of variables. Many authors find the minimal
Reed-Muller representation of a function by means of
an exhaustive search of all possible representations an
the choice of the best one. These methods are imprac

tical for functions with large numbers of input variables coefficient is to view it as a measure of the correlation

(Falkowski and Chang, 1995). between two binary functions (vectors). Hence the first
This paper presents a method which allows us to function is a Boolean function represented by the two-

calculate the mixed Reed-Muller polarity expansion di- valued truth table vecto¥” and the second Boolean func-

rectly from Walsh coefficients. The presented algorithm tion is one from the collection of constituent functions of

is characterized by a low complexity and can be applied the transformation matris@’. For a given Boolean func-

to all n-variate Boolean functions. The total number tion the Walsh spectrum has only one representation, un-

of arithmetic operations required to compute all Walsh- like the Reed-Muller spectrum, where we have a lot of

Hadamard transform coefficients is approximately only different expansions (see Table 1).

0(2"log,2™) = O(2™n), similarly as in the classical

Fourier transform.

By definition, the spectrum of a Boolean function is
obtained by multiplying a transformation matrix by the
function’s output vector. The result of the vector-matrix
product is called the spectral vector and is composed of
elements that are referred to as spectral coefficients. The
ype of information that is obtained from the spectral co-

fficients depends on the transformation matrix. One of
'several ways of interpreting the meaning of each spectral

Besides the matrix method outlined in the present
paper, data flow graph methods and parallel calculations
similar to the Fast Fourier Transform have also been used.

2. Calculation of Spectral Coefficients

) ) o 2.1. Walsh Spectral Coefficients
Some solutions in the Boolean domain inform us pre-

cisely about the behaviour of the function at a single point walsh functions can be generated in a recursive way
but say nothing about its behaviour referring to any other by using the Hadamard matrix (Hurst al, 1985).

points. That becomes possible when using an alterna-The Hadamard matrix of any dimension is generated as
tive representation of a function where the information is fgllows:

much more global in nature. This alternative represen-
tation is the spectral domain (Giaei al, 2001; Porwik, Ty(n—1) Tyn-1)
1996; Porwik and Falkowski, 1999). The spectral data Tw(n) = T

o : o . . w(n—1
are used for many applications in the digital logic design.
Some of them include classification of Boolean functions ) 1
(Hurst et al, 1985; Porwik and Falkowski, 1999), fault T,0)=[1], T, )=,
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Each row of the matrixT",,(n) thus created includes a
discrete Walsh sequeneeul(w, t) (in other words, a dis-
crete Walsh function). In this notationy identifies the
number of the Walsh function, antd stands for the dis-
crete point of the function determination interval.

The set of all Walsh sequences included in the matrix
T, (n) constitutes the orthogonal space bagis. Each
Boolean functionf can be distributed in a finite Walsh
series by multiplying the Hadamard matrix by the truth
vector of the Boolean function. In such a case the function
f possesses an alternative representation in the form o
the ordered sefS of Walsh spectral coefficients resulting
from multiplication.

We have two forms of Walsh-Hadamard spectra of
the Boolean functionf known in the literature as th&
and S spectra (Falkowski and Porwik, 1999; Huestal,,
1985; Porwik, 1996). The spectral coefficientsBfhave
exactly the same information content as the coefficients
of S, but will not have the same magnitudes. Only the
S spectrum is used in this paper. In ti# coding, the
{0,1} values corresponding to true and false minterms
are respectively replaced by thel, —1} values. Each
spectrum coefficients; € S is described by its order.
The order is equal to the number of variables describing
the linear function, which corresponds to the row in the
matrix T',,(n) for a given spectral coefficient. The;
elements of vectoiS are ordered according to a straight
binary code of literals describing the minterms of the orig-
inal truth vectorY . The relationship between the Walsh
coefficients and the variables of a Boolean function can be
described as follows.

Definition 1. Any Boolean function f(x1,xa, ..., x,)
of n variables can be expressed by means of Walsh-
Hadamard coefficients as the arithmetical polynomial

)

[2 = 50 = s1(=1)"" = sp(=1)"

flz1,x,. ..
_ 1
- 2n+1

.= 8271_1(_1)961@962“-@1”}7 (4)
where @ stands for the modulo-2 addition, and

S0, S81,---,8on_1 € S are spectral coefficients.

The knowledge of the spectral coefficients of
Boolean functions raises the possibility of evaluating
properties of both a single Boolean function and a selected
group of functions. In (Porwik, 1996) it was shown that

separate spectral coefficients can be treated as a correla-

tion measure between the basic standard trivial functions
corresponding to the coefficients and the Boolean func-

tion. Spectral coefficients have many properties which arewhere® signifies the tensor produat,< {0, 1, . ..

already well known (Hurstt al, 1985; Karpovsky, 1976).
The analysis of the properties of the Hadamard matrix

f

Ji,J2, .-

reveals the following important dependence between the
spectrum elements; and a given Boolean functioffi.

Property 1. If a coefficients; has a large (resp. small)
positive value, thenf is strongly (resp. weakly) depen-
dent on the linear combination of variables

2" —1

Sz @ @alr) over GF(2)
=0

If a coefficients; has a large (resp. small) negative value,
then f is strongly (resp. weakly) dependent on the linear
combination of variables

2" —1

Z x(ljl) D---P 1'7(.5”) over GF(2)7
=0

where

if
if

0 it ji=

Ji =1,

, jn constitute the binary representation of a
numberj, j; isthe MSB, andj,, is the LSB.

2.2. Mixed Reed-Muller Spectral Coefficients

The mixed polarity Reed-Muller canonical forms repre-
sent expansions where each Boolean variablenay oc-

cur with mixed polarityc; = 0,1,2. Here 2 means that
this variable can be represented as complemented or not
complemented. Therefore we obtain the following fam-
ily of 3™ mixed polarity Reed-Muller expansions (Sasao,
1995; Yanushkevich, 1998):

(Trr(n), = (Trum)e, @ (TrRM) e, @+ @ (TRM)e, s

(T;z}w (n))c = (Tﬁzlw)cl ® (Tﬁzlw)@ & (Tﬁzlw)cnv
_ (1 0]
(Tra)o = (Try)1 = ;
1 1
o 1
(TR]W)l - 1 5
- - (5)
1 1
Try) = ,
(Truh L0
~ (1 0]
(Trm)2 = (Tle\/[)Z = ,
0 1
73n_

1} denotes the polarity, and;, cs, . .
ternary representation af

., c, constitute the
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The relationship between the mixed polarity Reed-
Muller coefficients and the variables of the Boolean func-
tion can be expressed as follows:

felxr,@e,. .. xy)
2n_1 . .

= Z sj(x1® ) (2,® c,)’" over GF(2) (6)
j=0

where

(z; @ ¢;)7

1 if ¢,=0,1andj; =0,

andj;, =1 or¢; =2 andj; =1,
T;if ;=1 andj;=1 or¢; =2 andj; =0,

1,42, -, Jn constitute the binary representation ¢f

j1 is the MSB, j,, is the LSB andsg, s1,...,82n_1 are
the spectral coefficients.

ZT; if CiZO

Example 1. Determine Walsh-Hadamard and mixed po-
larity Reed-Muller spectra for the Boolean function
(@1, @2, 23) = 17273 + T10273 + 12273. Using (4)—
(6) we can form Table 2.

Table 2. Walsh spectrum of a Boolean functjfin

Type of
22y | fl@,2,35) | S correlation (¥)
000 1 2 0
001 0 -6 T3
010 1 2 T2
011 0 2 T2 D T3
100 0 -2 T
101 0 -2 z1 D3
110 1 -2 T1 Dz
111 0 2| zmBr2Duas

(*) Each spectral coefficient fronS represents a correlation
measure between the truth column vec¥orof function f and
the corresponding Walsh-Hadamard row function.

For Walsh-Hadamard coefficients we obtain from (4)
another expansion of:

1
— 16+ 6(—1)" —
166 6=

— 2(=1)787 4 2(-1)

f(z1,m2,23) = 2(-1)*
+2(—1)"18%s 4 2(—1)1 G2
+ 2(_1):6169:82@%3]

From (5) and (6) we can calculate all the possible

polarities of the mixed Reed-Muller expansions (see Ta-
ble 3). For different mixed polarity coefficients, from (6)

&

we get the following Reed-Muller expansions ff

for SO 1®rsP 1 Drirs D T2
@ x12273,

for Sl and52 T3 D X173 D T1T2T3,

for S° 16 23 ® x17T2 P 17223,

for S* andS°® T3 ® T1T2T3,

for S° Ty @ Toxg ® T2 ® Tox3 B T1T2
S z1T273,

for 87 ToT3 ® ToT3 D T1T27T3,

for $%° and.S%¢ T1T2T3 D T1X2T3 O T1X27T3.

¢

Property 2. The minimal complexity of a given Boolean
function f is equal to the minimal number of EXOR gates
required in the realization off.

Property 3. For a given Boolean functiorf, more than
one Reed-Muller polarity vectoS* can have the same
form.

Corollary 1. (Porwik and Falkowski, 1999)A Boolean
function f (x4, za, ..., x,) includes a redundant variable
x; if for each linear combination in which the variable
occurs the value of the corresponding Walsh-Hadamard
spectral coefficient is equal to zero.

The above proves that Walsh-Hadamard representa-
tions of Boolean functions are less complicated and have
simpler implementations than mixed Reed-Muller repre-
sentations. This is the reason why an efficient algorithm
minimizing and determining the Reed-Muller form by
means of the Walsh-Hadamard spectrum could be devel-
oped. The described algorithm allows us to calculate the
optimal mixed Reed-Muller form directly from the Walsh
spectrum, without finding all mixed Reed-Muller expan-
sions as in the classical method.

3. Algorithm

Input Data The input required for the analysis method
consists of only the two-valued truth table vectdr of a
Boolean functionf (z1, 2, ..., 2,) = f(z).

Output Data A Boolean function in the Reed-Muller
form.

1. Compute the Wash-Hadamard transformation matrix
Ty(n).

2. Convert the truth table vector Y
(Yo, Y15 yan—1)T, y; € {0,1} according to
the formulag : {0,1} — {1,-1}, and determine
the vector of spectral coefficients.
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Table 3. Reed-Muller spectrur® of a Boolean functionf for different polarities,; = 0,1,...,3" — 1.

’ T1T2T3 ‘ f(l’l,I27$3) |

Mixed polarity Reed-Muller spectrum

S0 [ st [s2 s [ s s5 | S5 §7 §25 | g26
000 1 1 0 1 1 0 1 1 0 0 1
001 0 1 1 0 1 1 0 1 1 1 0
010 1 0 0 0 0 0 0 1 0 0 1
011 0 0 0 0 0 0 0 1 1 1 0
100 0 1 0 1 0 0 0 1 0 0 0
101 0 1 1 0 0 0 0 1 1 0 0
110 1 1 0 1 1 0 1 0 0 0 1
111 0 1 1 0 1 1 0 0 0 1 0

3. Using Corollary 1 check whethef is redundant. If

it is, then modify the function and go to Step 2.

4. Choose the largest (in magnitude) spectral coefficient

s; = |si|, ¢ = 0,1,...,2" — 1. The spectral co-
efficient(s) with the largest magnitude(s) indicate(s) End of Algorithm.
the most important input conditions that control the
function output. If more than one spectral coefficient Example 2. Let f be a Boolean function intro-
have equal magnitudes, the choice is arbitrary.

5. Realize the new functiory,(z) that corresponds to

the coefficient chosen in Step 4.

6. Compute the functiond(x)

point x:

0 for

f(@) @ flx).
The function d(x) indicates the number of agree-
ments (disagreements) betwe¢fx) and f;(z) at

f(z) = fo(x).

7. Combine all the intermediate realizations at points

whered(z) = 1 using the sum-modulo-two operator

(@).

8. If the Hamming distance iV [d(z)]

1 or

Wld(z)] = 0, then the obtained result is optimal

(minimal number of products and literals). Other-
wise, we obtain the Reed-Muller form, which can be
additionally minimized by means of other methods
(Yanushkevich, 1998).

duced in Example 1. At the first stage, spectral
Walsh-Hadamard coefficients are calculatedy’ =
[2,-6,2,2, -2, -2, -2 —2]T.  From Corollary 1 we
know that the functionf is not redundant. Next we find
coefficients with the largest magnitudes. In our example
this condition is satisfied for the coefficien; = —6.
Hence fs(z) = f(T3). In the next step we determine the
function d(x) (see Table 4). We can observe that in this
function only one disagreement point appears. The termi-
nal condition is satisfied and the remaining term can be
realized directly.

The appropriate elements of Table 4, which were
used for creation of the new form of the function, are
marked with bold symbols. The white frames indicate the
correlation measure between the functignand the ap-
propriate row of the Hadamard matrix. The bold symbols
indicate the essential values of the functiéf:).

Table 4. Truth table of the Boolean functigf{z), its spectrum, correlation measure and functitfr).

~ d(z) = Type of

iy | x| f(z) | S | fs(Zs) F(z) @ folz) correlation
000 |0 1 2 1 0 0
001 |1| o | —s6 0 0 Z3
010 (2| 1 | 2 1 0 2
011 | 3] o 2 0 0 T2 ® 3
100 [4] o | -2 1 1 Z
101 | 5] o | -2 0 0 e
110 | 6 1 -2 1 0 1 D T2
111 |7 0 | —2| 0 0 1 ® 22 B3
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Hence we construct the equatiof(zy, 22, z3) =
T3 D T1T2T3. Note that the obtained result is
consistent with the S* Reed-Muller form. This

€&

The first three cases represent one-output functions.
The last four benchmarks were formed from multi-output
functions by choosing the 2nd, 7th, 12th or 61st output.

form had already been calculated in Example 1 but The experiments show that the algorithm of Section 3 is

now the final result was obtained faster. Un-

like in the classical Reed-Muller method, this re-

sult was calculated by one pass of the algorithm.
¢

Example 3. Let f be the Boolean function described
in Table 5. As in Example 2, we construct the equation
(w1, 20,73, 24) = 22 © 23 © T1T27374. ¢

more effective than the well-known Espresso algorithm.

The differences between the Reed-Muller implemen-
tation and standard Boolean logic can be explained by
means of a practical example. Table 7 shows a comparison
of a 4-bit synchronous binary counter which was imple-
mented using standard Boolean logic and the Reed-Muller
form. In both realizations we used the Quén ASIC li-
brary and CMOS technology.

Table 5. Truth table of a Boolean functiof(x), its spectrum, correlation measure and error functi¢n).

v12223%4 | T | f(@) S | folz2 @ as) f(x) G;l(f::;)(mj@x,j) C(-)rE/rFe)IeagI)n
0000 | O 0 2 0 0 0
0001 | 1 0 2 0 0 T4
0010 | 2 0 | -2 1 1 T3
0011 | 3 1 | -2 1 0 T3 D T4
0100 | 4 1 2 1 0 T2
0101 | 5 1 2 1 0 T2 B T4
0110 6 0 14 0 0 Tr2Pxs
o111 | 7 0 | -2 0 0 T2 D3 D Ta
1000 | 8 0 2 0 0 T1
1001 | 9 0 2 0 0 T P 14
1010 |10| 1 -2 1 0 1 @23
1011 |11| 1 | -2 1 0 T1 D3 D T4
1100 [12] 1 2 1 0 1 @ T2
1101 13 1 2 1 0 1 Do D x4
1110 (14| © -2 0 0 1 @ x2 D3
1111 (15| O -2 0 0 1 ®x2 D3 D s

4. Experimental Results and Final Remarks

The proposed approach allows us to solve the problem of

the minimal (in terms of the number of products) canoni-

cal representation of a completely specified Boolean func-
tion. The results of the realization of the presented al-

gorithm were compared with the U.C. Berkeley product

Table 6. Number of products and terms (literals) after
function minimization for the presented ex-
amples and MCNCbenchmarks.

Esperesso (Micheli, 1994). The Espresso package take

as the input a two-level representation of a two-valued

Boolean function, and produces an equivalent minimal

representation. This algorithm gives the optimal solu-
tion in heuristic Boolean minimization. It is necessary to

note that the outputs of the Espresso are sums of prod;

ucts (SOP) and the outputs of the algorithm are exclusive

sums of products (ESOP). The number of products (P) as

well as the number of literals (L) (complemented or non-

Boolean function Espresso Presented
or circuits algorithm method
5 [IN]| our L P L P
Example 2| 3 1 4 2 4 2
Example 3| 4 1 8 3 6 3
xor5 5 1 80 15 5 5
rd53 5 | 3(2nd) 4 4 4 2
dcl 4 7 (7th) 6 3 6 3
bw 5 | 28(12th)| 16 4 17 4
ex5 8 | 63(61st)| 19 9 18 4

complemented variables) appearing in all the products P
in the obtained expression are given in Table 6.

* MCNC - Microelectronics Center of North Carolina




Table 7. Standard Boolean and partial Reed- Notice that the data flow graph methods and parallel
Muller (R-M) implementations. calculations have also been used to calculate the Walsh-
Hadamard and Reed-Muller transforms. These methods

— — reduce the number of necessary calculations. Nowadays
Optimized, Optimized :
Efomean paFr)tiaI R-m| Comparation (%) the computational process in either the Reed-Muller or the
Maximum delay _ Walsh domain is based on the well-known butterfly signal
(nsec) 1.713 1.758 2.6 increase flow graph configuration. In this case computational com-
Transistors” 60 20 33 reduction plexity can be described bﬁ_',_nin(S,T) = nk™. This
Tracks 20 12 20 reduction means that we execute addition operations only. Clearly,
, in this situation for all mixed Reed-Muller expansions we
Track segments 34 15 55 reduction obtain the complexity™ Cnin (S, T).

* From areport by C. Maxfield, EDN Magazine, USA,
March 1996 (with the author’s permission).

** Omitted transistors which occur in both
implementations. References

The XOR gates in this library are buffered pass- Breuer M.A. and Friedman A.D. (197@piagnosis and Reliable
transistor implementations, each requiring only 10 tran- Dets?g Oifr?'g't;‘r' Systems— Potomac, Maryland: Com-
sistors (as opposed to building the XOR gates from the puter-science Fress. o
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