
Int. J. Appl. Math. Comput. Sci., 2002, Vol.12, No.4, 581–589

COMPONENT COMPOSITION VALIDATION

ANDREAS SPECK∗, ELKE PULVERMÜLLER∗∗

M ICHAEL JERGER∗∗∗, BOGDAN FRANCZYK∗∗∗∗

∗ Intershop Research, Intershop Tower
D–07740 Jena, Germany

e-mail:a.speck@intershop.com

∗∗ Fakultät für Informatik, IPD, Universität Karlsruhe
D–76128 Karlsruhe, Germany

e-mail:pulvermueller@acm.org

∗∗∗ sLAB oHG, Otto-Lilienthal Str. 36
D–71034 Böblingen, Germany

e-mail: jerger@jerger.org

∗∗∗∗ Institute of Technical and Computer Education
University of Zielona Góra

65–762 Zielona Góra, Poland, and

Universität Leipzig
Lehrstuhl für Informationsmanagement

D–04109 Leipzig, Germany
e-mail:franczyk@wifa.uni-leipzig.de

Many approaches such as component technologies have been invented in order to support software reuse. Based on these
technologies a large variety of techniques have been introduced to connect components. However, there is little experience
concerning the validation of component systems. We know how to plug components together, but we do need ways to check
whether that works. In this paper we introduce an approach to validating component compositions and showing how such a
process can be supported by tools. We introduce a way to compare the interface specification of components automatically
against the code. Furthermore, we demonstrate how compositions of components can be specified by logical formulas,
allowing us to automatically validate these compositions.

Keywords: composition verification, component composition, feature interaction, model checking

1. Introduction

Component-driven approaches to software development
are becoming more and more important. As with objects,
there exist various definitions of components, and the one
best known is given in (Szyperski, 1997). Components
and their compositions are supported by various tech-
nologies such as CORBA, COM/DCOM (COM+) or Java
Beans. Components are more than an issue of research. At
the moment various commercial vendors provide compo-
nents as building blocks (e.g., Enterprise Beans) for indus-
trial systems, trying to establish component marketplaces
(Componentsource, 2001).

Building systems from components allows us to
reuse software units on an industrial scale. It is possible
to buy, instead of making, parts of the whole system, and

to compose these parts which may come from different
vendors. Reusing components has the potential to reduce
time-to-market ratios and to improve quality. The com-
posing can be realised by structuring sets of functional-
ity (sub-components) to form a larger component (super-
component) forming a hierarchy, or by inserting commu-
nication between components.

A major problem regarding components is that the
mechanisms of component combination on the code-level
are well known, while there is little experience concerning
the modeling of relationships between components and
their communication.

In this paper, we present an approach to modeling
components and component compositions. Moreover, we
provide a technique for defining the communication se-
quences between and inside the components. The compo-

A. Speck et al.582

sition and its dynamic interactions can be validated by a
verification tool based on symbolic model checking.

Section 2 presents the basic component model of the
approach and demonstrates how single components can be
automatically verified against their specification. In Sec-
tion 3 general issues of composition validation are dis-
cussed, and our composition model and validation process
are introduced. Some related work can be found in Sec-
tion 4.

2. Component Validation

Before we start validating communication between com-
ponents, first we have to check each component by com-
paring its specification with implementation.

InPort
Example

Component

OutPort n

OutPort 1

...

InPort 1

...

InPort n

m1

m 2

m3

Fig. 1. Component withInPortsandOutPorts.

To describe the capabilities of a component, we dis-
tinguish the component’s input (represented byInPorts),
its output (OutPorts) and its internal behavior (c.f., Fig. 1).
The concept of the interface specification withInPorts
and OutPorts is based on the module interface concept
(Gouthier and Pont, 1970). Its application is described in
various papers (Lauder and Kent, 1999).InPortsandOut-
Portsare finite state machines which represent the proto-
col of the input and output communication of a compo-
nent.

2.1. Description of the Internal Behavior

The internal behavior of components is triggered by ex-
ternal requests according to the protocol defined by the
component’sInPorts, and has to result in responses of the
component defined by theOutPorts.

There are several ways of discribing the internal con-
trol flow between ports: finite state automata like inCo-
CoNut(Heuzeroth and Reussner, 1999), which is based on
the experiences of the application of finite state automata
in the design and verification of network communication
protocols (Holzmann, 1990), or UML sequence diagrams
(Vanderperren and Wydaeghe, 2001). Since the automatic
generation of UML sequence charts is supported by var-
ious tools, the second alternative is advantageous; hence
we concentrate on this alternative.

The internal activities of components are described
as follows: We start from each state in the component’sIn-
Portsand connect them with their resultingOutPortstates:

M := {m}, m is a symbol of the input alphabet of the
InPort automata; we considerm as a message;

R := {r}, r is one symbol of the output alphabet of all
OutPortautomata of the respective component;

C := {c}, c is a Boolean expression.

m1

m2

m3

[condition1]

[condition2]

r1

r4

r3

r2

c2r6

c1r5

Component
InPort 1

OutPort 1

InPort 2

InPort 3

OutPort 2

OutPort 3

1stObject 2ndObject 3rdObject

(c1 | c2)m4

Fig. 2. Communication sequences between
InPortsandOutPorts.

In general, we can distinguish four different cases,
which are depicted in Fig. 2 (the figure presents these ac-
tivities in an arbitrary temporal order):

1. Empty output (no resulting response):

f : M −→ ε. (1)

For example, the messagem1 causes no response:

m1 7−→ ε.

2. Exactly one response:

f : M −→ R. (2)

The messagem2 results in one response:

m2 7−→ r1.

3. Sequence of responses:

f : M −→ R∗, (3)

R∗ = {rk0rk1 . . . rkn
| rki

∈ R ∪ {ε};

ki ∈ {0, 1, 2, 3, . . . }}.

Component composition validation 583

If n = 0, Cases 1 and 2 are covered by the above
equation.

A sample reaction to messagem3 can be

m3 7−→ r2r3r4.

4. Branched response:

f : C ◦M −→ C ◦R∗. (4)

An extension of (4) results in a more generic equa-
tion, which covers Cases 1, 2 and 3:

f : C ′ ◦M −→ C ′ ◦R∗, (5)

C ′ := C ∪ {ε} .

The reaction to the received messagem4 may result
in any sequence of responses depending on the con-
dition [c]. An example can be

c1m4 7−→ c1r5,

c2m4 7−→ c2r6.

In addition, conditions may be the means to express
and thus check the synchronisation of component ex-
ecution.

In order to compress the internal communication of
a component (c.f., Fig. 3),InPorts andOutPortsmay be
connected directly, considering only the order of state
transitions (inInPortsandOutPorts) triggered by incom-
ing messages. Such a compression of internal informa-
tion1 leads to better comprehension of the component ca-
pabilities and an overview of the components’ capabili-
ties without being overwhelmed with internal details. The
possibility of hiding the internal details is crucial for the
concept of super-components as introduced in Section 3.2.

m1

m2

r1

r3

r2

Component

OutPort 1
fstObject sndObject

r1

r3

r2

Component

m1

m2

InPort 1 OutPort 1

OutPort 2

Compression

Inflation

OutPort 2

InPort 1

Fig. 3. Compression of internal communication.

1 We would like to call it compression according to (Coplien, 2000)
since compressing implies that the information is not lost but may
be restored when required.

2.2. Verification of Internal Communication
Components

Before validating a component system, the components
themselves have to be verified, which means compar-
ing the components’ inputs and outputs with theInPort
andOutPort specifications. The internal communication
of the components is implicitly checked here.

The concrete steps are as follows: The input inter-
face relying on theInPort documentation is verified. This
can be done simply by comparing the real interface in the
code with the specification. A specific order between the
method calls which correspond to anInPort automaton
has to be indicated by annotations in the code.

In the second step theInPort automaton is extended
by the internal communication sequences (c.f. the se-
quence chart in Fig. 2). The resulting extendedInPort
automaton is then compared with the correspondingOut-
Port automaton. Such a comparison can be automatically
performed with a model checking tool.

We apply Mealy automata (Kohavi, 1978). How-
ever,Moore automata (Moore, 1956) may be applied as
well, since they are equivalent to theMealy automaton
(Hopcroft and Ullman, 1979). AMealy automatonM
is a quintupleM = (I, O, S, δ, λ) with I,O, S as non-
empty finite sets of input and output symbols as well as
states, respectively:

input function δ: I × S → S (state transition),

output functionλ: I × S → O,

while I := C ′ ∪M and O := C ′ ∪R∗ is valid.

The extensions of theInPort automaton follow the
rules given in Section 2.1. Extensions of the examples
are:

m1 7−→ ε,

m2 7−→ r1,

m3 7−→ r2r3r4,

c1m4 7−→ c1r5,

c2m4 7−→ c2r6.

The extension of theInPort automatonMI is per-
formed by projectionΠOi. This projection is defined as
follows: If M = (I,O, S, δ, λ) is a Mealy automaton
and B is the set of symbols, the projectionΠB on the
automatonM is

ΠB : M −→ M ′,

M ′ := (I,O′, S, δ, λ′) with O′ := O ∩ B and λ :
(i, s) → o, where i ∈ I, s ∈ S, o ∈ O and o = ε
if o /∈ B.

A. Speck et al.584

The application of this projection onMI results in

ΠO1(MI) := M ′
I with O′ = {r1} and

λ′ := {(m2, s0) 7→ r1, (i, s) 7→ ε}

ΠO2(MI) := M ′′
I with O′′ = {r2, r3, r4, r5, r6, c1, c2}

andλ′′ := {(m3, s1) 7→ r2r3r4,

(c1m4, s2) 7→ c1r5, (c2m4, s2) 7→ c2r6,

(i, s) 7→ ε}

Various alternatives exist for the comparison of the
extendedInPort automaton with theOutPort automaton;
an example can be state equivalence, which is applied by
symbolic model checking.

The result of these approaches is the same. Since we
applied the model checking toolRAVEN(Ruf, 2001), we
use state equivalence. In (McMillan, 1992) state equiv-
alence is defined as: “. . . the greatest relation between
states such that ifx is equivalent toy, then for all in-
puts, the output in statex is equal to the output in statey,
and the successor state ofx is equivalent to the successor
state ofy.”

In order to achieve state equivalence, we reduce the de-
finition area of automataMO1 andMO2 to the represent-
ative input sequence of the extendedInPort automaton.2

Figure 4 depicts theRAVEN input module defining
Case 4 of Section 2.1. The branched responsec1m4 7−→
c1r5; c2m4 7−→ c2r6 is processed by a specific automaton.
Additionally, another automaton is defined which generates
random conditionsc1 or c2 and triggers the branched
response with either the messagec1m4 or c2m4.

The command line call and the execution result of
RAVENare shown in Fig. 5.

3. Component Interactions

The goal of our approach is not only to verify single com-
ponents versus their specifications. Moreover, we would
like to describe and validate the composition of compo-
nents. In this section we first introduce the model of com-
ponent composition, and then present our approach to val-
idating such a composition.

3.1. Validation Issues

The description of a component architecture in logical
formulas provides tool support for the validation of a
composed system. Some important questions that may be

2 Alternatively, the input ofM ′
I can be simulated by another au-

tomaton Minput, with Iinput := {ε}. The pair of automaton
Minput connected withM ′

I can be proven to be in state equiva-
lence with theOutPortautomaton.

MODULE input
SIGNAL s : { s1 s2 s3 s4 s5 end }
INPUT c := random.s

m3 := inmessage.m3
m4 := inmessage.m4

DEFINE
r2 := (s=s1)
r3 := (s=s2)
r5 := (s=s4)
r6 := (s=s5)
c1 := (s=s3) & c
c2 := (s=s3) & !c

INIT s=s1
TRANS

|- s=s1 -- (m3) --> s:=s2
|- s=s2 -- TRUE --> s:=s3
|- s=s3 -- (m4) & c --> s:=s4
|- s=s3 -- (m4) & !c --> s:=s4
|- s=s4 -- TRUE --> s:=end
|- s=s5 -- TRUE --> s:=end
|- s=end-- TRUE --> s:=end

END

SPEC
eq := AG ((output.r2=input.r2) &

(output.r3=input.r3) &
(output.r5=input.r4) &
(output.r6=input.r6) &
(output.c1=input.c1) &
(output.c2=input.c2))

Fig. 4. Input forRAVEN.

examples/ril> raven raven_sample.txt
parse
init encodings
expand
compose
reduce
minimize
check eq:

use time abstraction
eq is true

RESOURCES:
time = 0.06 sec
parsing time = 0.03 sec
composition time = 0.02 sec
minimization = 0.01 sec

BDD nodes for trans : 29
before minimization : 29 (100%)
PROCESS-MEMORY : 1.3 MB

Fig. 5. Execution of theRAVENexample.

automatically answered are by applying model checking:

• Is it possible that two specific components may interact?

• Which environment is needed for a specific compo-
nent?

• Could specific paths (e.g., methods of component ob-
jects) orInPort andOutPortstates be reached within
a composition?

Component composition validation 585

(c1|c2)m1

m2

InPort A

r2

(c1|c2)r1
OutPort A

Component A

Component B
InPort B
(c1|c2)m3

OutPort B

c2r4

c1r3

Component D
InPort D

c1m5

OutPort D
c1r5

Component E
InPort E

c2m6

OutPort E
c2r6

(c1|c2)r1 −>
 (c1|c2)m3

c1r3 −> c1m5

c2r4 −> c2m6

...

Component C
InPort C

m4

r2 −> m4

Fig. 6. Communication paths through components.

The first question has already been addressed by the
CoCoNutapproach. In (Schmidt and Reussner, 2000)
the adaptability of components concerning their interfaces
was investigated. The proposed mechanisms can be ap-
plied to our approach, too.

The second question focuses on the services a com-
ponent requires from the other components of a system,
or if there are any components in the system that do nega-
tively interfere. This can be verified by checking the con-
ditions directly related to the specific component.

In the remainder of this paper, we will focus on the
verification of paths within a composed system, which is
a very important problem. Figure 6 depicts a set of com-
municating components. In this example it might be of
interest which condition (c1 or c2) connected with mes-
sagem1 at InPort results in which response (eitherc1r5
of Component D or c2r6 of Component E).

Figure 6 shows a uni-directional communication.
Renaming componentD with A would show what a
two-way interaction would look like. However, there is
no need to treat componentA as two separate compo-
nents. That is to say, in this case, merging and mapping
of componentA and componentD would be possible
and useful. Potential cycles (in the sense of endless loops)
have to be resolved by a fix-point analysis, or (if this is
impossible) by time-out or other appropriate means.

3.2. Composition Model

The basis of composition is the validated specification of
the components (cf., Sections 2.1 and 2.2). The composi-
tion can be described by logical formulas. These logical
formulas of a composition can be automatically compared
with the specific knowledge related to a component. For

example, a communication component may bear knowl-
edge in which context it may be applied. The knowledge
is expressed in logical operations. A detailed example of
this approach can be found in (Klaerenet al., 2000).

These logical operations constitute the basis for a
more finely grained definition of the relation between
components. The composition itself can be defined as the
quintuple

CM := (IP,OP,A, τ, C)

with a set ofInPorts IP , a set ofOutPortsOP , anActor
A ∈ OP , a set of transitionsτ : OP → IP and the
conditions for the composition C.

The Actors are other components or human beings
sending messages to the composed system triggering cer-
tain behavior. The transitions represent communication
via the relationships between components. In each com-
position the output of theOutPort automaton of anOut-
Port ol of a transitionτm : ol 7→ ik has to be accepted by
an InPort automaton of the cooperating component’sIn-
Ports ik. Composition conditions can be used to express
rules of a composed system’s validity (c.f., Section 3.2.2).

This composition concept has been derived from
an approach to combining aspects with components de-
scribed in (Pulvermülleret al., 2001). Details of com-
ponent combination can by found in (Speck and Pulver-
müller, 2001).

3.2.1. Super-Components

In our approach we apply two abstract types of compo-
nent composition representing real component composi-
tion mechanisms. First, components are hierarchically
structured into super-components and sub-components. A
well-known principle in software engineering of dealing

A. Speck et al.586

InPort A

OutPort B

Super−Component

[Condition]Mapping

Mapping

1
0

InPort A OutPort A

Sub−Component
A0

0

InPort B OutPort B

Sub−Component
B0

1

InPort C OutPort C

Sub−Component
C0

2

Fig. 7. Component composition example.

with complexity is modularizing and forming hierarchies.
Our approach is based on these hierarchies independent
of whether these hierarchies are on the level of objects or
sub-systems. In the following, we abstract from these lev-
els by using the terminologysub-componentsandsuper-
components.

Second, components may be composed (or interact)
on the same level (e.g., the sub-componentsA0

0, B0
1 and

C0
2 in Fig. 7). In much the same way as for the hierar-

chical issue, we abstract from the technology realizing the
communication.

The advantage of the abstract description of compo-
nent relationships is that different mechanisms are cap-
tured which may be mapped on both abstract composition
relationships. Specific mechanisms and levels may have
the need to solve additional detailed problems. However,
this will always be only a specialized refinement of the
presented approach.

The application of super-components as super-sets
containing one or more composed sub-components is
quite a common approach used in software engineering to
express the hierarchy. The distinction between these two
types of components (super- and sub-component) allows
us to define different levels of granularity.

A component can be defined labelled asCk
i , where

k represents the granularity (0 represents the lowest level
of granularity) andi gives the index distinguishing be-
tween components on the same level of granularity within
the same super-component (c.f., Fig. 7).

The advantage of the concept of a super-component
containing a set of other components is that it allows us
to minimize the number of interfaces of this set of com-
ponents. The sum of all interfaces of the contained com-
ponents does not have to be taken into account when the
component set is considered; only the interfaces defined
by the super-component do.

The concept of super-components containing sub-
components and the relationships between components
of the same level can be realized by the COM mecha-
nismsContainmentand Aggregation, see, e.g., (Szyper-
ski, 1997).

3.2.2. Composition Conditions

In the same way as we used conditions to express deci-
sions in branched responses within components (c.f., Sec-
tion 2.1, Case 4.) we now use conditions to define the
validity of a component within a given context. The com-
position conditions can be considered as a special case of
more dynamic branched response conditions. For exam-
ple, if there is no branch to a specific component within a
super-component, the composition condition for this com-
ponent can be that this component must not be part of the
super-component.

Composition conditions are concepts defining differ-
ent component versions within a system family (Pulver-
müller et al., 2001). This leads to an inductive definition
of the construction of components:

Component C0
i = 1 ∧ Cond0

i ,

whereCond0
i represents the condition3 that has to be true

for one versionC0
i on level 0.

We haveC0
i ∈ C0, where

C0 =
{ ∞⋃

j=1

C0
j

}
is the set of all versions on level0.

Similarly, we can define the induction step:

Super-componentC(n+1)
i =

m∧
j=l

Cn
j ∧ Cond

(n+1)
i

3 Several conditions may be unified in one condition.

Component composition validation 587

with

Cond(n+1)
i is true, 1 ≤ l ≤ m ≤ |Cn|, Cn

j ∈ Cn.

A super-component is a set of conditions (unification
of the particular conditions of a certain super-component
and all conditions of the sub-components contained in
the super-component). Each condition is presented as a
Boolean expression.

An example of a super-component can be

C
(2)
1 =

(
C

(1)
1 ∧ ¬Cond1

)
∧

(
C

(1)
1 ∧ ¬Cond1) ∨Cond4

)
.

3.2.3. Temporal Relationships

When the set of components within a super-component is
defined, the temporal relationships among these compo-
nents have to be taken into account. The temporal se-
quence of communication between the components are
modeled with sequence charts. Since a super-component
may be considered as a component on its own, the super-
component’s internal relations may be defined as depicted
in Fig. 2.

Symbolic model checking applies temporal logic in
order to express the temporal order of the sequences
of communication between the components (McMillan,
1992).

3.3. Validation Procedure

In order to verify the composition of component systems,
we apply the model checking toolRAVEN. The composi-
tion (c.f., Section 3.2) is expressed inComputation Tree
Logic (CTL), which is defined in (McMillan, 1992).

Some examples of requirements described with CTL
may be:

– “If Actor A sends the messageB.m1 it can trigger
the functionC.r1 in the componentC.”

CTL : B.m1 → E(true U C.r1)).

– “If Actor A sends messageB.m2 it must trigger
the functionC.r2 in componentC.”

CTL : B.m2 → A(true U C.r2)).

According to the composition model of a component
system, the relations and transitions between the compo-
nents (c.f., Section 3.2) have to be modeled in CTL. In
general, this can be done as with the communication se-
quences betweenInPortsandOutPorts. We have already
introduced this procedure in Section 2.2. The rules ap-
plied to the internal communication of components have

to be extended in order to describe inter-component com-
munication to avoid name clashes. Additionally, theIn-
Port name and component ID of each message are to be
attached to the message name. Therefore theInPort name
and component ID specify a name space for each message
which allows us to identify it explicitly. It separates mes-
sages with the same names by adding the corresponding
InPort.

4. Related Work

CoCoNut(Heuzeroth and Reussner, 1999) is an approach
which may be considered as complementary.CoCoNut
uses InPort and OutPort automata (Lauder and Kent,
1999) in the same way to express the external commu-
nication of components. In contrast to our approach, the
internal activities of components are modeled with finite
state automata. This concept of applying finite state au-
tomata to modeling and verifying has already been used
in the domain of communication protocols and network-
ing (Holzmann, 1990).

The OutPortsare developed by inserting the finite
state machines describing the internal behavior in theIn-
Port automata which may lead to a large number of states
(instead of projection). Compositions are modeled by
merging the automata of the components. If components
within a composed system are exchanged, such large fi-
nite state machines are used to determine adaptors for new
components (Schmidt and Reussner, 2000).

A similar approach is presented in (Vanderperren and
Wydaeghe, 2001). However, here all interactions between
and within the components are specified by UML se-
quence diagrams.

Our concept of modeling and validating component
compositions supports design processes such as those dis-
cussed in (Tekinerdogan, 2000). It gives a comparatively
fine-grained model for component relationships and pro-
vides tool support for validating design decisions.

Component composition can be implemented using
various approaches. Generators as they are proposed in
(Czarnecki and Eisenecker, 2000) can be applied to com-
bine the components. Focused on the GenVoca architec-
ture, in (Batory and Geraci, 1997) an approach to com-
position verification is presented. However, this approach
is more coarsely grained and mainly concentrates on lay-
ered systems. Moreover, the dynamic issues are not con-
sidered.

Aspect-Oriented ProgrammingAOP (Kiczaleset al.,
1997) andSubject-Oriented ProgrammingSOP (Ossher
and Tarr, 1999) provide new concepts of the modularisa-
tion and structuring of component systems. A concept of
model component-based systems according to these new
approaches is presented in (Pulvermülleret al., 2001).

A. Speck et al.588

The approach proposed in this paper can be imple-
mented by CORBA or COM/DCOM (COM+). However,
the usage of the COMIUnknowninterface cannot be ap-
plied to the implicit delegation of calls since only explicit
communication can be verified.

5. Conclusion

The paper discusses an approach to defining and validat-
ing component compositions. The approach we propose
allows us to reuse the already existing components in or-
der to construct new systems. The process of constructing
such component systems is as follows:

1. We identify the components we wish to use in com-
ponent systems. Therefore we examine the existing
components by comparing them with theirInPort and
OutPortspecifications. This is supported by tools.

2. The information gained in the first step is then used
for the design of a component system. Such a design
(like most design processes) has to be done manu-
ally. However, we provide a specific notation based
on logical equations to express the system design.
The structure of the component system is given by a
super-component mechanism and dynamic commu-
nication sequences.

3. The composition can then be validated by verifying
specific properties. Examples can be: Are two (or
more) components properly interacting? What is the
environment needed for a component? Are the spe-
cific paths or states inInPorts or OutPortsreached
within a composition with a given set of conditions?
These checks are tool-supported.

This concept intensively supports the development
of component-based systems. The existing components
can be reused. Components are grouped within super-
components with a limited and defined set of interfaces
which increases system modularity and therefore reduces
system complexity.

Additional work in the future can be done by apply-
ing temporal logic as extensions of sequence diagrams.
The temporal logic can be a base for additional verifica-
tion of dynamic behavior. Another important issue which
has to be addressed is the fact that it is not always possible
to express component relationships with crisp logical for-
mulas. A possible solution can be the application of fuzzy
techniques in order to deal with only partially specified
components.

Our first prototype implementations work with Java
Bean components of a Jini system. Prior to their com-
position with Jini, the components were verified. Based

on the components’ verification the intended composition
was validated.

Currently we assess the proposed approach by ap-
plying it to the area of e-business systems. In this domain
there is a high demand for flexible and reliable systems
built of software components.

References

Batory D. and Geraci B. (1997):Composition validation and
subjectivity in GenVoca generators. — IEEE Trans. Softw.
Eng., Vol. 23, No. 2, pp. 67–82.

Componentsource (2001): Marketplace and commu-
nity for software components. — Available at:
http://www.componentsource.com/ .

Coplien J. (2000):Data Compression versus abstraction. — Pri-
vate communication.

Czarnecki K. and Eisenecker U.(2000): Generative
Programming—Methods, Tools, and Applications. —
New York: Addison-Wesley.

Gouthier P. and Pont S. (1970):Designing Systems Programs.
— Englewood Clifs: Prentice Hall.

Heuzeroth D. and Reussner R. (1999):Dynamic coupling of
binary components and its technical support. — Proc.
GCSE’99 Young Researchers Workshop, Erfurt, pp. 30–
31.

Holzmann G. (1990):Design and Validation of Computer Pro-
tocols. — Englewood Clifs: Prentice Hall.

Hopcroft J. and Ullman J. (1979):Introduction to Automata The-
ory, Languages and Computation. — New York: Addison-
Wesley.

Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes
C., Loingtier J.-M. and Irwin J. (1997):Aspect-oriented
programming. — Proc.European Conference on Object-
Oriented Programming, ECOOP’97, Jyväskylä, Finland,
Berlin: Springer, LNCS 1241, pp. 220–241.

Klaeren H., Pulvermüller E., Rashid A. and Speck A. (2000):
Aspect composition applying the design by contract prin-
ciple. — Proc. 2nd Int. Symp.Generative and Component-
based Software Engineering (GCSE 2000), Erfurt, Ger-
many, Berlin, Springer, LNCS 2177, pp. 57–69 .

Kohavi Z. (1978): Switching and Finite Automata Theory. —
New York: McGraw-Hill, 2nd Edition.

Lauder A. and Kent S. (1999): EventPorts: Preventing
legacy componentware. — Proc. 3rd Int. Conf.Enterprise
Distributed Object Computing Conference (EDOC 99),
Mannheim, Germany, IEEE Publishing, pp. 224–232.

McMillan K. (1992): Symbolic Model Checking. — Ph.D. The-
sis, Carnegie Mellon University.

Moore E. (1956): Gedanken-experiments on sequential ma-
chines. — Ann. Math. Stud., Vol. 15, No. 4, pp. 129–153.

Component composition validation 589

Ossher H. and Tarr P. (1999):Using subject-oriented program-
ming to overcome common problems in object-oriented
software development/evolution. — Proc. 1999 Int. Conf.
Software Engineering, ICSE, Los Angeles CA, ACM
Press, pp. 687–688.

Pulvermüller E., Speck A. and Coplien J. (2001):A ver-
sion model for aspect dependency management. — Proc.
3rd Int. Conf. Generative and Component-based Soft-
ware Engineering (GCSE 2001), Erfurt, Germany, Berlin:
Springer, LNCS 2186, pp. 70–79.

Ruf J. (2001):RAVEN: Real-time analyzing and verification en-
vironment. — J. Univ. Comp. Sci., Vol. 7, No. 1, pp. 89–
104.

Schmidt H. and Reussner R. (2000):Automatic component
adaption by concurrent state machine retrofitting. — Tech.
Rep., No. 2000/81, School of Computer Science and Soft-
ware Engineering, Monash University, Melbourne.

Speck A. and Pulvermüller E. (2001):Versioning in software en-
gineering. — Proc. 27th Ann. Conf.IEEE Industrial Elec-
tronics Society, IECON’01, Denver, CO, IEEE Computer
Society Press, pp. 1856–1861.

Szyperski C. (1997)Component Software. — New York:
Addison-Wesley, ACM-Press.

Tekinerdogan B. (2000)Synthesis-based software architecture
design. — Ph.D. Thesis, Dept. Computer Science, Univer-
sity of Twente, Enschede, the Netherlands.

Vanderperren W. and Wydaeghe B. (2001):Towards a new com-
ponent composition process. — Proc. 8th AnnualIEEE In-
ternational Conference and Workshop on Engineering of
Computer Based Systems (ECBS), Washington DC, IEEE
Press, pp. 322–329

Received: 10 October 2001
Revised: 24 April 2002

