Int. J. Appl. Math. Comput. Sci., 2002, Vol.12, No.4, 581-589 ‘ amcs

COMPONENT COMPOSITION VALIDATION

ANDREAS SPECK:, ELKE PULVERMULLER**
MICHAEL JERGER**, BOGDAN FRANCZY K****

* Intershop Research, Intershop Tower
D-07740 Jena, Germany
e-mail:a.speck@intershop.com

** Fakultat fur Informatik, IPD, Universitat Karlsruhe
D-76128 Karlsruhe, Germany
e-mail: pulvermueller@acm.org

*** sLAB oHG, Otto-Lilienthal Str. 36
D-71034 Boblingen, Germany
e-mail:jerger@jerger.org

**** Institute of Technical and Computer Education
University of Zielona Géra
65-762 Zielona Goéra, Poland, and

Universitat Leipzig
Lehrstuhl fur Informationsmanagement
D-04109 Leipzig, Germany
e-mail: franczyk@wifa.uni-leipzig.de

Many approaches such as component technologies have been invented in order to support software reuse. Based on these
technologies a large variety of techniques have been introduced to connect components. However, there is little experience
concerning the validation of component systems. We know how to plug components together, but we do need ways to check
whether that works. In this paper we introduce an approach to validating component compositions and showing how such a
process can be supported by tools. We introduce a way to compare the interface specification of components automatically
against the code. Furthermore, we demonstrate how compositions of components can be specified by logical formulas,
allowing us to automatically validate these compositions.

Keywords: composition verification, component composition, feature interaction, model checking

1. Introduction to compose these parts which may come from different
vendors. Reusing components has the potential to reduce

Component-driven approaches to software developmenttime-to-market ratios and to improve quality. The com-
are becoming more and more important. As with objects, posing can be realised by structuring sets of functional-
there exist various definitions of components, and the oneity (sub-components) to form a larger component (super-
best known is given in (Szyperski, 1997). Components component) forming a hierarchy, or by inserting commu-
and their compositions are supported by various tech- nication between components.

nologies such as CORBA, COM/DCOM (COM+) or Java A major problem regarding components is that the

Beans. Components are more_than anissue of'research. Ahechanisms of component combination on the code-level
the moment various commercial vendors provide compo- gre well known, while there is little experience concerning

nents as building blocks (e.g., Enterprise Beans) for indus-the modeling of relationships between components and
trial systems, trying to establish component marketplacestheir communication.

(Componentsource, 2001). In this paper, we present an approach to modeling

Building systems from components allows us to components and component compositions. Moreover, we
reuse software units on an industrial scale. It is possible provide a technique for defining the communication se-
to buy, instead of making, parts of the whole system, and quences between and inside the components. The compo-

amcs @

A. Speck et al.

sition and its dynamic interactions can be validated by a
verification tool based on symbolic model checking.

The internal activities of components are described

as follows: We start from each state in the componént’s

Section 2 presents the basic component model of thePortsand connect them with their resulti@utPortstates:
approach and demonstrates how single components can be) := {m}, m is a symbol of the input alphabet of the

automatically verified against their specification. In Sec-
tion 3 general issues of composition validation are dis-
cussed, and our composition model and validation process
are introduced. Some related work can be found in Sec-
tion 4.

2. Component Validation

Before we start validating communication between com-
ponents, first we have to check each component by com-
paring its specification with implementation.

InPort Component ‘

Example

xamp InPort 1 ‘ ‘OutPorH
‘ InPort n ‘ ‘OutPonn

Fig. 1. Component wittnPortsandOutPorts

To describe the capabilities of a component, we dis-
tinguish the component’s input (representedliiyorts),
its output QutPortg and its internal behavior (c.f., Fig. 1).
The concept of the interface specification witiPorts
and OutPortsis based on the module interface concept

InPort automata; we considern. as a message;

R := {r}, r is one symbol of the output alphabet of all
OutPortautomata of the respective component;

C :={c}, c is a Boolean expression.

Component

“y InPort 1
? [istObject | [2ndObject| [irdObject |

m1

OutPort 1
L

“yInPort 2
, m3
o

“yInPort 3

(c1 | c2)m4

OutPort 3

Fig. 2. Communication sequences between
InPortsandOutPorts

In general, we can distinguish four different cases,

(Gouthier and Pont, 1970). Its application is described in which are depicted in Fig. 2 (the figure presents these ac-

various papers (Lauder and Kent, 199@PortsandOut-
Ports are finite state machines which represent the proto-
col of the input and output communication of a compo-
nent.

2.1. Description of the Internal Behavior

The internal behavior of components is triggered by ex-
ternal requests according to the protocol defined by the
component’dnPorts, and has to result in responses of the

component defined by tHeutPorts

There are several ways of discribing the internal con-
trol flow between ports: finite state automata likeGo-
CoNut(Heuzeroth and Reussner, 1999), which is based on
the experiences of the application of finite state automata
in the design and verification of network communication
protocols (Holzmann, 1990), or UML sequence diagrams
(Vanderperren and Wydaeghe, 2001). Since the automatic
generation of UML sequence charts is supported by var-

ious tools, the second alternative is advantageous; hence

we concentrate on this alternative.

tivities in an arbitrary temporal order):

1. Empty output (no resulting response):
fi M—e. Q)
For example, the messagel causes no response:

mlr— €.

2. Exactly one response:

f: M—R. 2
The message:2 results in one response:
m2— rl.
3. Sequence of responses:
fi M — R, ®3)
R* ={rg,rky .- -7k, | Th; € RU{e};

k; € {0,1,2,3,...}}.

Component composition validation @ ames

If n = 0, Cases 1 and 2 are covered by the above 2.2. Verification of Internal Communication
equation. Components

A sample reaction to message3 can be Before validating a component system, the components

themselves have to be verified, which means compar-
ing the components’ inputs and outputs with th®ort
andOutPort specifications. The internal communication
of the components is implicitly checked here.

f: CoM — CoR" (4) The concrete steps are as follows: The input inter-
face relying on thénPort documentation is verified. This
can be done simply by comparing the real interface in the
code with the specification. A specific order between the
method calls which correspond to &mPort automaton

m3 +—— r2r3ra.

4. Branched response:

An extension of (4) results in a more generic equa-
tion, which covers Cases 1, 2 and 3:

f: C' oM —C'oR", (5) has to be indicated by annotations in the code.
) In the second step tHaPort automaton is extended
C"=CU{e}. by the internal communication sequences (c.f. the se-

. . qguence chart in Fig. 2). The resulting extenda&ort
The reaction to the received messageé may result 3utomaton is then compared with the correspon@uog-
N any sequence of responses depending on the CoNpy 4 tomaton. Such a comparison can be automatically
dition [c]. An example can be performed with a model checking tool.

clmd — clr5, We apply Mealy automata (Kohavi, 1978). How-
ever, Moore automata (Moore, 1956) may be applied as
2md — c2r6. well, since they are equivalent to tiéealy automaton

(Hopcroft and Ullman, 1979). AMealy automaton M
In addition, conditions may be the means to expressis a quintupleM = (1,0, S,§,\) with I,0,S as non-
and thus check the synchronisation of component ex- empty finite sets of input and output symbols as well as
ecution. states, respectively:

. o input functiond: I x S — S (state transition),
In order to compress the internal communication of P — 5)

a component (c.f., Fig. 3)nPorts and OutPortsmay be output functionX: 7 x5 — O,
connected directly, considering only the order of state while I := C’" UM andO := C' U R* is valid.
transitions (ininPorts and OutPortg triggered by incom- The extensions of th&nPort automaton follow the

ing messages. Such a compression of internal informa-ryles given in Section 2.1. Extensions of the examples
tion! leads to better comprehension of the component ca-gre:

pabilities and an overview of the components’ capabili-

ties without being overwhelmed with internal details. The ml — ¢,

possibility of hiding the internal details is crucial for the

concept of super-components as introduced in Section 3.2. m2 — rl,
Inflation m3 — r2r3rd,

Component Component clm4 > clrb,
InPort 1 OutPort 1 InPort 1 OutPort 1

mi

c2md — c2r6.

The extension of thénPort automaton)M; is per-
formed by projectiorly;. This projection is defined as
follows: If M = (I,0,5,6,\) is a Mealy automaton
and B is the set of symbols, the projectidig on the
automaton is

__>
Compression

Fig. 3. Compression of internal communication. Mp: M— M,

! !/ I i ! .

1 We would like to call it compression according to (Coplien, 2000) M T (I’O 5, 5’./\) with O’ := O N B and A :

since compressing implies that the information is not lost but may (i,s) — o,wherei € I, s € S, 0 € O ando = ¢
be restored when required. if o ¢ B.

A. Speck et al.

amcs €

The application of this projection oi/; results in

IIo, (My) = M with O’ = {r1} and
N o= {(m27 SO) = T17 (Z7 5) = E}

o, (M) = M} with O” = {r2,r3,7r4,75,76, cl, 2}
and)\” := {(m3, s1) — r2r3r4,
(c1lmd, s3) — clrb, (c2md, s3) — 216,
(i,5) > €}
Various alternatives exist for the comparison of the
extendednPort automaton with théOutPort automaton;

an example can be state equivalence, which is applied by

symbolic model checking.

The result of these approaches is the same. Since we

applied the model checking toBIAVEN(Ruf, 2001), we
use state equivalence. In (McMillan, 1992) state equiv-

MODULE input
SIGNAL s : { s1 s2 s3 s4 s5 end }
INPUT c¢ := random.s
inmessage.m3
inmessage.m4

= (s=s3) & ¢
c2 = (s=s3) & lc

INIT s=sl1

TRANS
- s=s1 --

,
(o]
[T L L L]

(m3) --> s:i=s2
TRUE --> s:=s3
(m4) & ¢ --> si=s4
(m4) & !c --> si=s4
- s=s4 -- TRUE --> s:=end

- s=s5 -- TRUE --> s:=zend

- s=end-- TRUE --> s:=end

I

|- s=s2 --
|- s=s3 --
|- s=83 --
|
I
I

alence is defined as:. . the greatest relation between END

states such that ifc is equivalent toy, then for all in-
puts, the output in state is equal to the output in statg
and the successor state ofis equivalent to the successor
state ofy.”

In order to achieve state equivalence, we reduce the de-

finition area of automatd/,, and M- to the represent-
ative input sequence of the extenda®ort automatort.

Figure 4 depicts th&®@AVENIinput module defining
Case 4 of Section 2.1. The branched respaotise4 —

SPEC

eq = AG ((output.r2=input.r2) &
(output.r3=input.r3) &
(output.r5=input.rd) &
(output.ré=input.ré) &
(output.cl=input.cl) &
(output.c2=input.c2))

Fig. 4. Input forRAVEN

examples/ril> raven raven_sample.txt

clrb; c2m4 — ¢2r6 is processed by a specific automaton. Parse

Additionally, another automaton is defined which generates

init encodings
expand

random conditionscl or ¢2 and triggers the branched compose
reduce

response with either the messagen4 or c¢2m4.
. . minimize
The command line call and the execution result of check eq:

RAVENare shown in Fig. 5.

3. Component Interactions

The goal of our approach is not only to verify single com-

ponents versus their specifications. Moreover, we would

like to describe and validate the composition of compo-
nents. In this section we first introduce the model of com-

ponent composition, and then present our approach to val-

idating such a composition.

3.1. Validation Issues

The description of a component architecture in logical
formulas provides tool support for the validation of a

composed system. Some important questions that may be

2 Alternatively, the input of M} can be simulated by another au-
tomaton Minput, With Iinpye := {€}. The pair of automaton
Minput connected withM; can be proven to be in state equiva-
lence with theOutPortautomaton.

use time abstraction

eq is true

RESOURCES:
time = 0.06 sec
parsing time = 0.03 sec
composition time = 0.02 sec
minimization = 0.01 sec
BDD nodes for trans : 29
before minimization : 29 (100%)
PROCESS-MEMORY 1.3 MB

Fig. 5. Execution of th&@ AVENexample.

automatically answered are by applying model checking:

¢ |sit possible that two specific components may interact?

e Which environment is needed for a specific compo-
nent?

e Could specific paths (e.g., methods of component ob-
jects) orlnPort andOutPortstates be reached within
a composition?

Component composition validation @ ames

Component D
\ilnF’ort D OutPort D

c1 3 —> cimb

Component B

InPort B
(cllc2)rt —>
Component A J4wX(ctle2)m3 |
p (c1lc2)m3,. . | c24 > c2me Component E

InPort A

[o

e,

OutPort B .,,)?InPort E OutPort E

A

c2mé /‘:‘Q c2ré
Component C O@‘“/’O‘ ©D>

2 - mi+) } InPort C
A

Cm4
O

Fig. 6. Communication paths through components.

The first question has already been addressed by theexample, a communication component may bear knowl-
CoCoNutapproach. In (Schmidt and Reussner, 2000) edge in which context it may be applied. The knowledge
the adaptability of components concerning their interfacesis expressed in logical operations. A detailed example of
was investigated. The proposed mechanisms can be apthis approach can be found in (Klaeretnal.,, 2000).

plied to our approach, too. These logical operations constitute the basis for a
The second question focuses on the services a com-more finely grained definition of the relation between

ponent requires from the other components of a system,components. The composition itself can be defined as the

or if there are any components in the system that do nega-quintuple

tively interfere. This can be verified by checking the con- CM :=(IP,OP,A,71,C)

ditions directly related to the specific component. .
with a set ofinPorts I P, a set ofOutPorts O P, anActor

In the remainder of this paper, we will focus on the A € OP, a set of transitionsr: OP — IP and the
verification of paths within a composed system, which is conditions for the composition C.
a very important problem. Figure 6 depicts a set of com-
municating components. In this example it might be of
interest which conditiondl or ¢2) connected with mes-
sagem]1 atInPort results in which response (eithelr5
of Component D or ¢2r6 of Component E).

The Actors are other components or human beings
sending messages to the composed system triggering cer-
tain behavior. The transitions represent communication
via the relationships between components. In each com-
position the output of th€©utPort automaton of arfOut-

Figure 6 shows a uni-directional communication. Port o, of a transitionr,, : o; — i; has to be accepted by
Renaming componenD with A would show what a anInPort automaton of the cooperating componerhtis
two-way interaction would look like. However, there is Portsi,. Composition conditions can be used to express
no need to treat component as two separate compo- rules of a composed system’s validity (c.f., Section 3.2.2).
nents. That is to say, in this case, merging and mapping This composition concept has been derived from

of componentA a_nd componentD would be possible an approach to combining aspects with components de-
and useful. Potential cycles (in the sense of endless Ioops)S

. . . > o Pscribed in (Pulvermilleet al, 2001). Details of com-
have to be resolved by a fix-point analysis, or (if this is ()

: . : ; ponent combination can by found in (Speck and Pulver-
impossible) by time-out or other appropriate means. miiller, 2001)

3.2. Composition Model 3.2.1. Super-Components

The basis of composition is the validated specification of In our approach we apply two abstract types of compo-
the components (cf., Sections 2.1 and 2.2). The composi-nent composition representing real component composi-
tion can be described by logical formulas. These logical tion mechanisms. First, components are hierarchically
formulas of a composition can be automatically compared structured into super-components and sub-components. A
with the specific knowledge related to a component. For well-known principle in software engineering of dealing

arms @ A. Speck et al.

Super-Component, Sub-Component
B1
InPort B OutPort B Mappingﬁ
InPort A e
Sub-Component .
A .7
. " OutPort B
Mapping‘ﬁ ULl OutPort A [Condition]
Sub-Component
C
InPort C OutPort C

Fig. 7. Component composition example.

with complexity is modularizing and forming hierarchies. The concept of super-components containing sub-
Our approach is based on these hierarchies independentomponents and the relationships between components
of whether these hierarchies are on the level of objects orof the same level can be realized by the COM mecha-
sub-systems. In the following, we abstract from these lev- nisms Containmentand Aggregation see, e.g., (Szyper-
els by using the terminologgub-componentand super- ski, 1997).

components

Second, components may be composed (or interact)3.2.2. Composition Conditions
on the same level (e.g., the sub-componess BY and
C? in Fig. 7). In much the same way as for the hierar-
chical issue, we abstract from the technology realizing the
communication.

In the same way as we used conditions to express deci-
sions in branched responses within components (c.f., Sec-
tion 2.1, Case 4.) we now use conditions to define the
validity of a component within a given context. The com-

The advantage of the abstract description of compo- position conditions can be considered as a special case of
nent relationships is that different mechanisms are cap-more dynamic branched response conditions. For exam-
tured which may be mapped on both abstract compositionple, if there is no branch to a specific component within a
relationships. Specific mechanisms and levels may havesuper-component, the composition condition for this com-
the need to solve additional detailed problems. However, ponent can be that this component must not be part of the
this will always be only a specialized refinement of the super-component.

presented approach. Composition conditions are concepts defining differ-

The application of super-components as super-sets€nt component versions within a system family (Pulver-
containing one or more composed sub-components ismulleret al, 2001). This leads to an inductive definition
quite a common approach used in software engineering toof the construction of components:
express the hierarchy. The distinction between these two Component C? = 1 A Cond’,
types of components (super- and sub-component) allows
us to define different levels of granularity. where Cond? represents the conditidthat has to be true

i 0
A component can be defined labelled @§, where for one versionC;” on level 0.

k represents the granularit§ fepresents the lowest level We haveCy € C°, where
of granularity) andi gives the index distinguishing be- oo
tween components on the same level of granularity within 0 = { U C;?}
the same super-component (c.f., Fig. 7). j=1

The advantage of the concept of a super-componentis the set of all versions on levél
containing a set of other components is that it allows us Similarly, we can define the induction step:
to minimize the number of interfaces of this set of com-
ponents. The sum of all interfaces of the contained com-
ponents does not have to be taken into account when the
component set is considered; only the interfaces defined
by the super-component do. 3 Several conditions may be unified in one condition.

Super-componertt," " = A\ €7 A Cond{"*"
j=l

Component composition validation @ ames

with to be extended in order to describe inter-component com-
1) - ., . . munication to avoid name clashes. Additionally, the
Cond istrue, 1<l<m<|C"|, C}eC™ Port name and component ID of each message are to be

_ » . attached to the message name. ThereforénRert name
A super-component is a set of conditions (unification and component ID specify a name space for each message
of the particular conditions of a certain super-component yhich allows us to identify it explicitly. It separates mes-

and all conditions of the sub-components contained in sages with the same names by adding the corresponding
the super-component). Each condition is presented as gnport.

Boolean expression.
An example of a super-component can be
4. Related Work

c@ = (¢ A =cond) A (CM A ~Condl) v Cond.
! (!) (!) 4) CoCoNut(Heuzeroth and Reussner, 1999) is an approach

which may be considered as complementaBoCoNut
usesInPort and OutPort automata (Lauder and Kent,
1999) in the same way to express the external commu-
When the set of components within a super-component ishication of components. In contrast to our approach, the
defined, the temporal relationships among these Compojnternal activities of components are modeled with finite
nents have to be taken into account. The temporal se-State automata. This concept of applying finite state au-
quence of communication between the components arefomata to modeling and verifying has already been used
modeled with sequence charts. Since a super-component? the domain of communication protocols and network-
may be considered as a component on its own, the superind (Holzmann, 1990).
component’s internal relations may be defined as depicted The OutPortsare developed by inserting the finite
in Fig. 2. state machines describing the internal behavior inithe
Symbolic model checking applies temporal logic in Port automata which may lead to a large number of states
order to express the temporal order of the sequencedinstead of projection). Compositions are modeled by

of communication between the components (McMillan, Merging the automata of the components. If components
1992). within a composed system are exchanged, such large fi-

nite state machines are used to determine adaptors for new
components (Schmidt and Reussner, 2000).

A similar approach is presented in (Vanderperren and
In order to verify the composition of component systems, Wydaeghe, 2001). However, here all interactions between
we apply the model checking toRIAVEN The composi- and within the components are specified by UML se-
tion (c.f., Section 3.2) is expressed @omputation Tree quence diagrams.

3.2.3. Temporal Relationships

3.3. Validation Procedure

Logic (CTL), which is defined in (McMillan, 1992). Our concept of modeling and validating component
Some examples of requirements described with CTL compositions supports design processes such as those dis-
may be: cussed in (Tekinerdogan, 2000). It gives a comparatively

fine-grained model for component relationships and pro-
vides tool support for validating design decisions.

Component composition can be implemented using
various approaches. Generators as they are proposed in
CTL: B.ml— E(t UCrl)). . . h
ml — Btrue 1) (Czarnecki and Eisenecker, 2000) can be applied to com-
— “If Actor A sends messag®.m2 it must trigger bine the components. Focused on the GenVoca architec-

— “If Actor A sends the messag@.m1 it can trigger
the functionC.r1 in the componentC'”

the functionC.r2 in componentC'” ture, in (Batory and Geraci, 1997) an approach to com-
position verification is presented. However, this approach
CTL: B.m2— A(true U C.r2)). is more coarsely grained and mainly concentrates on lay-

ered systems. Moreover, the dynamic issues are not con-

According to the composition model of a component Sidered.
system, the relations and transitions between the compo- Aspect-Oriented Programmir@OP (Kiczaleset al,,
nents (c.f., Section 3.2) have to be modeled in CTL. In 1997) andSubject-Oriented Programmin§OP (Ossher
general, this can be done as with the communication se-and Tarr, 1999) provide new concepts of the modularisa-
guences betweemPorts and OutPorts We have already tion and structuring of component systems. A concept of
introduced this procedure in Section 2.2. The rules ap- model component-based systems according to these new
plied to the internal communication of components have approaches is presented in (Pulvermidieal., 2001).

AMNCS &tk A. Speck et al.

The approach proposed in this paper can be imple-on the components’ verification the intended composition
mented by CORBA or COM/DCOM (COM+). However, was validated.

the usage of the CONUnknowninterface cannot be ap- Currently we assess the proposed approach by ap-
plied to the implicit delegation of calls since only explicit p|ving it to the area of e-business systems. In this domain
communication can be verified. there is a high demand for flexible and reliable systems

built of software components.
5. Conclusion

The paper discusses an approach to defining and validat- References

ing component compositions. The approach we propose

allows us to reuse the already existing components in or-gatory D. and Geraci B. (1997)Composition validation and

der to construct new systems. The process of constructing subjectivity in GenVoca generators- IEEE Trans. Softw.

such component systems is as follows: Eng., Vol. 23, No. 2, pp. 67-82.

Componentsource (2001): Marketplace and commu-
nity for software components — Available at:
http://www.componentsource.com/

1. We identify the components we wish to use in com-
ponent systems. Therefore we examine the existing
components by comparing them with thigiPort and

OutPortspecifications. This is supported by tools. Coplien J. (2000)Data Compression versus abstracties Pri-

vate communication.

2. The information gained in the first step is then used cCzarnecki K. and Eisenecker U.(2000): Generative
for the design of a component system. Such a design Programming—Methods, Tools, and Applications-

(like most design processes) has to be done manu- New York: Addison-Wesley.
ally. prever, we provide a specific notation bas_ed Gouthier P. and Pont S. (1970Resigning Systems Programs
on logical equations to express the system design. — Englewood Clifs: Prentice Hall.

The structure of the component system is given by a
super-component mechapnism ani; d namg: Comgr/]u_Heuzeroth D. and Reussner R. (199%)ynamic coupling of
P P y binary components and its technical suppo#t Proc.

nication sequences. GCSE’99 Young Researchers Workshop, Erfurt, pp. 30—

3. The composition can then be validated by verifying 31

Speciﬁc propertiesl Examp|es can be: Are two (Or Holzmann G. (1990)Design and Validation of Computer Pro-

more) components properly interacting? What is the tocols — Englewood Clifs: Prentice Hall.

environment needed for a component? Are the spe-Hopcroft J. and Ullman J. (1979ntroduction to Automata The-

cific paths or states ilnPorts or OutPortsreached ory, Languages and Computation- New York: Addison-

within a composition with a given set of conditions? Wesley.

These checks are tool-supported. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes
C., Loingtier J.-M. and Irwin J. (1997)Aspect-oriented

This concept intensively supports the development programming — Proc. European Conference on Object-

of component-based systems. The existing components Oriented Programming, ECOOP’97, Jyvaskyla, Finland,
can be reused. Components are grouped within super- Berlin: Springer, LNCS 1241, pp. 220-241.
components with a limited and defined set of interfaces kjaeren H., Pulvermiiller E., Rashid A. and Speck A. (2000):
which increases system modularity and therefore reduces Aspect composition applying the design by contract prin-
system complexity. ciple. — Proc. 2nd Int. SympGenerative and Component-

Additional work in the future can be done by apply- based Software Engineering (GCSE 2000), Erfurt, Ger-
ing temporal logic as extensions of sequence diagrams. many, Berlin, Springer, LNCS 2177, pp. 57-69 .
The temporal logic can be a base for additional verifica- Kohavi Z. (1978): Switching and Finite Automata Theory-

tion of dynamic behavior. Another important issue which New York: McGraw-Hill, 2nd Edition.

has to be addressed is the fact that it is not always possibl@ auder A. and Kent S. (1999): EventPorts: Preventing

to express component relationships with crisp logical for- legacy componentware— Proc. 3rd Int. ConfEnterprise

mulas. A possible solution can be the application of fuzzy Distributed Object Computing Conference (EDOC 99),

techniques in order to deal with only partially specified Mannheim, Germany, IEEE Publishing, pp. 224-232.

components. McMillan K. (1992): Symbolic Model Checking— Ph.D. The-
Our first prototype implementations work with Java sis, Carnegie Mellon University.

Bean components of a Jini system. Prior to their com- Moore E. (1956): Gedanken-experiments on sequential ma-
position with Jini, the components were verified. Based chines — Ann. Math. Stud., Vol. 15, No. 4, pp. 129-153.

Component composition validation @ amcs

Ossher H. and Tarr P. (1999)sing subject-oriented program- Speck A. and Pulvermuller E. (200Nersioning in software en-

ming to overcome common problems in object-oriented gineering — Proc. 27th Ann. ConflEEE Industrial Elec-

software development/evolution- Proc. 1999 Int. Conf. tronics Society, IECON’01, Denver, CO, |IEEE Computer

Software Engineering, ICSE, Los Angeles CA, ACM Society Press, pp. 1856—1861.

Press, pp. 687-688. Szyperski C. (1997)Component Software— New York:
Pulvermdller E., Speck A. and Coplien J. (20014 ver- Addison-Wesley, ACM-Press.

sion model for aspect dependency managemenProc.
3rd Int. Conf. Generative and Component-based Soft-

ware Engineering (GCSE 2001), Erfurt, Germany, Berlin:
Springer, LNCS 2186, pp. 70-79.

Ruf J. (2001):RAVEN: Real-time analyzing and verification en-
vironment — J. Univ. Comp. Sci., Vol. 7, No. 1, pp. 89—

Tekinerdogan B. (2000pynthesis-based software architecture
design — Ph.D. Thesis, Dept. Computer Science, Univer-
sity of Twente, Enschede, the Netherlands.

Vanderperren W. and Wydaeghe B. (200Igwards a new com-
ponent composition process- Proc. 8th AnnualEEE In-
ternational Conference and Workshop on Engineering of

104. Computer Based Systems (ECBS), Washington DC, IEEE
Schmidt H. and Reussner R. (2000futomatic component Press, pp. 322-329

adaption by concurrent state machine retrofittinrg Tech.]

Rep., No. 2000/81, School of Computer Science and Soft- Received: 10 October 2001

ware Engineering, Monash University, Melbourne. Revised: 24 April 2002

