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We study a thermo-mechanical system consisting of an elastic membrane to which a shape-memory rod is glued. The slow
movements of the membrane are controlled by the motions of the attached rods. A quasi-static model is used. We include the
elastic feedback of the membrane on the rods. This results in investigating an elliptic boundary value problem in a domain
Ω ⊂ R2 with a cut, coupled with non-linear equations for the vertical motions of the rod and the temperature on the rod.
We prove the existence of a unique global weak solution to this problem using a fixed point argument.
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1. Introduction

In this note we investigate a model where one or more thin
linear rods of shape memory alloy are attached to an elas-
tic membrane. Heating these rods can be used to change
their shape and, in turn, to deform the membrane. We
assume that the reference domain for the membrane is a
bounded domainΩ ⊂ R2. The motions of the membrane
are governed by a linear wave equation. However, we will
assume that the motions of the rod and the membrane are
slow compared with the vibrations of the membrane, and
will therefore restrict ourselves to a quasi-static model,
i.e. we will model the membrane statically and the actuat-
ing rod dynamically. The membrane itself will act on the
rod via the elastic force. The feedback of the structure on
the actuator will change the system dynamics. A precur-
sor of this model was previously introduced by Horn and
Sokołowski (2000), where a proof of a local existence the-
orem was sketched. In the present paper we will conduct
a more thorough investigation of the analytic properties of
this model.

The rod could be either attached to the boundary or
in the interior of the membrane. The boundary case is
less complicated and its mathematical properties follow
directly from the case when the actuating rod is attached
to the interior. The case of a finite number of rods is anal-
ogous to the case when there is only one rod. We will also
assume that the membrane does not conduct heat.

Section 2 of this paper contains a comprehensive de-
scription of the model at hand. We will introduce the nec-
essary terminology and state the major results, a local ex-
istence and uniqueness theorem, as well as a global ver-
sion of the same. Since this situation involves the solution
of an elliptic boundary value problem in a domain con-
taining a cut, the solutions will have less regularity than
the results known for one-dimensional models of shape
memory alloys (Brokate and Sprekels, 1996; Bubner and
Sprekels, 1998; Sprekels and Zheng, 1989). It will there-
fore be necessary to consider a weak formulation of the
problem.

In Section 3 we will prove the local existence and
uniqueness of weak solutions. This was outlined for a
somewhat simpler model by Horn and Sokołowski (2000).
We will adapt this outline to the analysed situation and
provide the necessary details. In Section 4 we will prove
uniforma-priori estimates to extend the local solutions to
the global ones.

Throughout the article we will use the same model
for shape memory alloys as in the papers cited above. We
refer the reader to those papers and the works cited therein
for a derivation of this model and its properties. The ba-
sic techniques of the present paper are also following the
techniques of these earlier papers, but in the present situ-
ation we have to perform many of the steps with signifi-
cantly less regularity because of the low regularity of the
feedback term.
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Several authors have studied related questions. A
one-dimensional model of an adaptive structure was intro-
duced in Bubneret al. (2001). Two-dimensional models
can be found in (Hoffmann anḋZochowski, 1992; Pawłow
andŻochowski, 2000;̇Zochowski, 1992). However, these
models differ from the present one in that they use visco-
elastic shape memory materials, and that they do not con-
sider the feedback of the structure (in our case the mem-
brane) on the actuator.

2. Model Description

In this section we will discuss the situation with an actua-
tor in the interior of the domain. We assume thatΩ ⊂ R2

is a bounded connected domain with aC1 boundaryΓ.
Let Q be a line segment which lies in the interior ofΩ.
We will assume thatQ = {x ∈ Ω: 0 ≤ x ≤ 1, y =
0}. Furthermore, we assume that we can extendQ to a
smooth non-self-intersecting curveγ which intersectsΓ
transversally at two points and dividesΩ into two sub-
domainsΩ+ and Ω− with Lipschitz boundaries as indi-
cated in Fig. 1. This will allow us to apply Green’s for-
mula type arguments. The vertical displacementU of the

Q

Γ

γ

γ

Ω+

Ω−

Fig. 1. DomainΩ.

membrane satisfies

−∆U = f(x, t) for x = (x, y) ∈ Ω \Q, (1)

U(x, t)|Q = v(x, t), (2)

U(x, t)|Γ = w(x, t), (3)

for all 0 ≤ t ≤ T . We will also assume thatf ∈
C1([0, T ];H1(Ω)) andw ∈ C1([0, T ];H

5
2 (Γ)).

The functionv(x, t) is the vertical displacement of
the actuator. It satisfies the non-linear system for shape
memory rods given in (Sprekels and Zheng, 1989):

vtt −
(
σ(θ, vx)

)
x

+Rvxxxx = f1, (4)

θt − κθxx − θ
(
σ(θ, vx)

)
θ
vxt = g. (5)

Hereθ is the absolute temperature of the rod and the func-
tion σ is given by

σ(θ, vx) = γ (θ1 − θ) vx − βv3
x + αv5

x. (6)

θ1, α, β, γ, κ and R are positive constants. We refer
the reader to (Sprekels and Zheng, 1989) for a detailed
investigation of this model. The functionv can be inter-
preted as either the tangential (as in the work cited above)
or the normal displacement (as in (Żochowski, 1992), for
example). We will interpret it here as the normal dis-
placement. The functiong represents an external heat
source. As in the previous papers, we will assume that
g ∈ L2(0, T ;L2(Q)) and thatg(x, t) ≥ 0 on Q× [0, T ].
This positivity condition is necessary to apply the maxi-
mum principle to (5).

The functionf1 represents an external force on the
rod. In this paper we assume that the only external force is
the elastic force acting on the rod from the deformation of
the membrane. Following Hooke’s law, the elastic force is
proportional to the normal derivative of the displacement

f1 = c

[
∂U

∂y

]
, (7)

where [
∂U

∂y

]
=

(
− lim

y→0+

∂U

∂y
+ lim

y→0−

∂U

∂y

)
. (8)

To simplify the notation we will assume thatc = 1.

The system of equations (4), (5) is augmented by the
following set of initial and boundary conditions:

θx(0, t) = θx(1, t) = 0, (9)

v(0, t) = v(1, t) = vxx(0, t) = vxx(1, t) = 0, (10)

θ(x, 0) = θ0(x), (11)

v(x, 0) = v0(x), vt(x, 0) = v1(x). (12)

These boundary conditions, especiallyv(0, t) = v(1, t)=
0, are rather restrictive. In order to get a more general
model, we will assume that the actuator is glued to the
membrane and moves with it even if it is not deformed.
For this, the vertical displacementU of the membrane
is composed of two parts:U(x, t) = û(x, t) + u(x, t),
where the functionû is smooth acrossQ and does not
contribute to the force acting on the rod. This function
will satisfy the system

−∆û = 0 on Ω \Q, (13)[
∂û

∂y

]
Q

= 0, (14)

û|Γ = w. (15)
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The functionu, which is the second part ofU , describes
the part of the vertical displacement that acts on the rod.
This part will be used to model the entire interaction be-
tween the membrane and the rod. The functionu(x, t)
satisfies

−∆u = 0 on Ω \Q, (16)

u|Q = v, (17)

u|Γ = 0. (18)

The system for̂u can be treated separately. Any function
û ∈ H2(Ω) which satisfies

−∆û = 0 on Ω,

û|Γ = w,

will automatically satisfy the boundary condition onQ.
The classical elliptic regularity theory guarantees the ex-
istence of a unique solution̂u on the smooth domainΩ.

We will therefore only consider (16), (18) coupled
with the non-linear system (4)–(5) via the force

f1 =
[
∂u

∂y

]
. (19)

For any v ∈ H1(Q) the solutions to (16)–(18) are only
in H1(Ω \ Q), and thereforef1 ∈ (H

1
2 (Q))′. It is thus

necessary to definef1 as a linear functional. We follow
the approach used in (Hazounet and Joly, 1979). Then for
any φ ∈ H1

0 (Ω), define

〈f1, φ〉 = −
∫

Ω

∇u∇φdx, (20)

whereu satisfies (16)–(18). Formally, this is Green’s for-
mula, and

〈f1, φ〉 =
∫

Q

[
∂u

∂y

]
φdx.

The functionalf1 is supported onQ. We can therefore
restrict it to functionsφ̂ ∈ H

1
2 (Q) as follows, by taking

φ ∈ H1
0 (Ω), an extension of̂φ to Ω. We denote by

〈f1, φ〉
(H

1
2 (Q))′×H

1
2 (Q)

the action byf1 on H
1
2 (Q). In order to write a weak

formulation of (4), (5) we introduce the following spaces:

X1(t) = C
(
0, t;H3(Q)

)
∩ C1

(
0, t;H1(Q)

)
, (21)

X2(t) = L2
(
0, t;H2(Q)

)
∩ C

(
0, t;H1(Q)

)
∩ C1

(
0, t;L2(Q)

)
. (22)

These spaces are Banach spaces with the following norms:

‖u‖X1(t)

= max
{

max
0≤s≤t

‖u(s)‖H3(Q) , max
0≤s≤t

‖ut(s)‖H1(Q)

}
,

‖u‖X2(t)

= max
{ (∫ t

0

‖u(s)‖2
H2(Q) ds

) 1
2

,

max
0≤s≤t

‖u(s)‖H1(Q) , max
0≤s≤t

‖ut(s)‖
}
.

For notational simplicity, we denote by‖ · ‖ without any
subscripts the norm onL(Q) .

We say that a pair(v, θ) ∈ X1(t)×X2(t) is a weak
solution to (4), (5) together with the initial and boundary
conditions if (v, θ) satisfies the initial conditions and∫ t

0

(
〈vt, φt〉+ 〈σ, φx〉 −R〈vxxx, φx〉

)
ds

= 〈v1, φ〉 −
∫ t

0

〈f1, φ〉
(H

1
2 (Q))′×H

1
2 (Q)

ds, (23)

∫ t

0

(〈θt, ψ〉+ κ〈θx, ψx〉 − 〈σθvxtθ, ψ〉) ds

=
∫ t

0

〈g, ψ〉ds, (24)

for every pair(φ, ψ) ∈ X̂1(t)× X̂2(t). Here

X̂1(t) =
{
φ ∈ H1

(
0, t;H1

0 (Q)
)

: φ(x, 0) = 0
}
, (25)

X̂2(t) = L2
(
0, t;H1(Q)

)
. (26)

We can now state the main results of this paper. In Sec-
tion 3 we will prove the following local existence theorem:

Proposition 1. For a sufficiently smallt > 0 there exists
a unique triple

(u, v, θ) ∈ C
(
0, t;H1(Ω)

)
×X1(t)×X2(t)

such thatu solves (16)–(18), and(v, θ) satisfies the ini-
tial conditions and (23), (24).

In Section 4 we will prove uniforma-priori esti-
mates for the weak solutions which will give the following
global existence result:

Proposition 2. For any givenT > 0, there exists a unique
triple

(u, v, θ) ∈ C
(
0, T ;H1(Ω)

)
×X1(T )×X2(T ),

such thatu solves (16)–(18), and(v, θ) satisfies the ini-
tial conditions and (23)–(24).
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Remark 1. We could also investigate this situation by
using weighted Sobolev space methods as described in
(Kondrat’ev, 1967; Kondrat’ev and Oleinik, 1983; Kozlov
et al., 1997; Kozlov and Maz’ya, 1999). In particular, the
solution u to (16)–(18) satisfies

u ∈ V l+1
β (Ω \Q)

for |β − l| < 1/2. Its trace on the boundary(∂Ω) ∪ Q
satisfies

u ∈ V l+ 1
2

β (∂Ω ∪Q).

In this situation the weighted Sobolev spacesV l+1
β (Ω \

Q) are endowed with the following norm:

‖u‖2
V l

β(Ω\Q) = ‖(1− ζ1 − ζ2)u‖2
Hl(Ω\Q)

+
2∑

j=1

∫
Ω

∑
|α|≤l

|x− xj |2(β−l+|α|)

× |Dα
x (ζju)|2 dx,

wherex1 and x2 denote the endpoints of the rodQ and
ζj are C∞-functions equal to one in a neighborhood of
xj and vanish outside a neighborhood ofxj . Here α =
(α1, α2) is a multi-index.

However, this approach would require re-
establishing the existence and uniqueness theorems
for the evolutionary system (4), (5) in the setting of
weighted Sobolev spaces. This might be worth undertak-
ing in its own right, but it would be beyond the framework
of this paper.

For more on the theory of weighted Sobolev spaces
and its application to elliptic problems in non-smooth do-
mains, we refer the reader to the cited works.

3. Proof of Proposition 1

Before proving this result we need to get some preliminary
results. To do this, define the following linear pseudo-
differential operator associated with the elliptic system
(16)–(18):

F : v 7→ f1 =
[
∂u

∂y

]
. (27)

This operator involves the solution of (16)–(18). The next
lemma gives a result about the regularity ofF . For this,
let (H

1
2 (Q))′ denote the usual dual space ofH

1
2 (Q).

Lemma 1. The operator

F : C1
(
0, t;H

1
2 (Q)

)
→ C1

(
0, t;

(
H

1
2 (Q)

)′)

is bounded, i.e. there are constantsC1, C2 which depend
only on Ω and Q such that

‖F(v)‖
(H

1
2 (Q))′

≤ C1 ‖v‖
H

1
2 (Q)

, (28)∥∥(
F(v)

)
t

∥∥
(H

1
2 (Q))′

≤ C2 ‖vt‖
H

1
2 (Q)

. (29)

Proof. Elliptic regularity theory implies (Lions and Ma-
genes, 1972; Nazarov and Plamenevsky, 1994):

‖u‖H1(Ω\Q) ≤ C ‖v‖
H

1
2 (Q)

. (30)

We combine this estimate with the trace theorem and the
compact inclusionH1(Q) ⊂ H

1
2 (Q), and get the first

estimate of the lemma.

Next observe thatut satisfies

−∆ut = 0 on Ω \Q, (31)

ut(x, t)|Q = vt(x, t), (32)

ut(x, t)|Γ = 0. (33)

We apply the same reasoning as above to this elliptic equa-
tion to get the second inequality in the lemma.

Proof of Proposition 1. It suffices to show that (4), (5)
admit a weak solution in the sense (23), (24) for any
right-hand sideF(v) ∈ C1(0, t; (H

1
2 (Q))′). We start

with two observations: First, forσ given by (6) and
(v̂, θ̂) ∈ X1(t)×X2(t), we haveσ ∈ L2(0, t;H2(Q)) ∩
C(0, t;H1(Q)). Second, iff1 ∈ C1(0, t; (H

1
2 (Q))′) and

g ∈ C(0, t;H1(Q)), we can define the linear formL(g)
as follows:

L(g) = 〈f1(t), g(t)〉
(H

1
2 (Q))′×H

1
2 (Q)

− 〈f1(0), g(0)〉
(H

1
2 (Q))′×H

1
2 (Q)

−
∫ t

0

〈f1t, g〉
(H

1
2 (Q))′×H

1
2 (Q)

ds

=
∫ t

0

〈f1, gt〉
(H

1
2 (Q))′×H

1
2 (Q)

ds. (34)

Observe that the definition ofL(g) involves onlyf1 and
f1t acting ong, but not gt. Formally, this is equivalent to
integration by parts in the variablet.

To prove the proposition, we consider the following
linear problem:

vtt +Rvxxxx = f1 +
(
σ(θ̂, v̂x)

)
x
, (35)

θt − κθxx = θ̂(σ
(
θ̂, v̂x)

)
θ̂
v̂xt − g, (36)

where
f1 = F(v̂). (37)
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These equations are augmented by the initial and bound-
ary conditions. Since the right-hand side of (35) contains
f1 ∈ C1(0, t; (H

1
2 (Q))′), the solutions to this equations

are not classical solutions, and this equation must be un-
derstood in the weak sense as (23).

The linear system (35)–(37) defines a map

G : (v̂, θ̂) 7→ (v, θ). (38)

To continue, for positive constantsM0 and M1 define
the following subset ofX1(h)×X2(h):

B =
{
‖v‖X1(h) ≤M0, ‖θ‖X2(h) ≤M1, θ > 0

}
. (39)

We will show that for a sufficiently smallh the mapG is
a contraction

G : B → B. (40)

We do this in several steps.

Step 1.We multiply (35) byvt, integrate overQ× (0, t)
and obtain after integration by parts

1
2

(
‖vt(t)‖2 +R ‖vxx(t)‖2

)
≤ 1

2

(
‖v1‖2 +R ‖v0xx‖2

)
+

∫ t

0

∥∥∥σ(θ̂, v̂)x

∥∥∥ ‖vt‖ ds

+
∫ t

0

〈f1, vt〉
(H

1
2 (Q))′×H

1
2 (Q)

ds. (41)

We apply (34) with Hölder’s and Young’s inequalities to
the last term on the right-hand side to get

1
2

(
‖vt(t)‖2 +R ‖vxx(t)‖2

)
≤ 1

2

(
‖v1‖2 +R ‖v0xx‖2

)
+ C1t+

1
2

∫ t

0

‖vt‖2 ds

+
1
2

∫ t

0

‖F(v̂t)‖2
H−1(Q) ds+

1
2

∫ t

0

‖v‖2
H1(Q) ds

+ 〈F
(
v̂(t)

)
, v(t)〉

(H
1
2 (Q))′×H

1
2 (Q)

− 〈F(v̂0), v0〉
(H

1
2 (Q))′×H

1
2 (Q)

, (42)

for an appropriate constantC1. The second to last
term can be treated via Hölder’s and Young’s inequalities
again. The last term is bounded byC2 ‖v0‖2

H1(Q). Since
v(0, s) = v(1, s) = 0, for eachs ∈ [0, t] there is aξ ∈ Q
such thatvx(ξ, s) = 0. We can therefore apply Poincaré’s
inequality to bothv and vx to obtain

‖v‖H1(Q) ≤ C3 ‖vxx‖ , (43)

for an appropriateC3 (see (Bubner, 1995) for details).
Combining these results, we get

1
2

(
‖vt(t)‖2 + R̂ ‖vxx(t)‖2

)
≤ 1

2

(
‖v1‖2 +R ‖v0xx‖2

)
+C4t+

∫ t

0

(
‖vt‖2 + ‖vxx‖2

)
ds,

for an appropriate suitable positive constantC4 which de-
pends only on the initial data and(θ̂, v̂) ∈ B. Applying
Gronwall’s inequality, we get

‖vt(t)‖2 + R̂ ‖vxx(t)‖2

≤ et
(
‖v1‖2 +R ‖v0xx‖2 + C5t

)
, (44)

whereC5 depends only onM0 andM1.

Step 2.We multiply (36) byθ to get, after integration by
parts,

1
2
‖θ(t)‖2 +

∫ t

0

‖θx‖2 ds

≤ 1
2
‖θ0‖+ C6 +

∫ t

0

‖θ‖2 ds, (45)

for an appropriate constantC6. Next we multiply (36)
by θt and obtain by applying integration by parts and
Young’s inequality

1
2
‖θx(t)‖2 +

∫ t

0

‖θt‖2 ds ≤ 1
2
‖θ0x‖+ C7, (46)

for an appropriate constantC7. We combine these last
two results and apply Gronwall’s lemma to get

‖θ(t)‖2
H1(Q) ≤ et

(
‖θ0‖2

H1(Q) + tC3

)
, (47)

whereC3 again depends only onM0 andM1.

Step 3. In this step we multiply (35) by−vxxt, integrate
the result overQ × (0, t) and integrate it by parts. The
right-hand side of the resulting equation contains the term∫ t

0

〈f1, vxxt〉
(H

1
2 (Q))′×H

1
2 (Q)

ds,

which is again treated using (34). Using a similar argu-
ment to that of Step 1, we get

‖vxt(t)‖2 + R̃ ‖vxxx‖2

≤ et
(
‖v1x(t)‖2 + R̃ ‖v0xxx‖2 + tC8

)
, (48)

whereC8 depends only onM0 andM1.
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Step 4.We combine the first three steps to get the follow-
ing inequalities:

‖v‖2
X1(t)

≤ et
(
‖v0‖2

H3(Q) + ‖v1‖2
H1(Q) + tK1

)
, (49)

‖θ‖2
X2(t)

≤ et
(
‖θ0‖2

H1(Q) + tK2

)
, (50)

where K1 and K2 depend onM0 and M1. Further-
more, since (36) satisfies a maximum principle, we have
θ > 0. We can now pickM0, M1 and h such that the
map G satisfies

G : B → B. (51)

Step 5.It remains to be shown that the mapG is actually
a contraction. To do this, observe thatF is linear and
therefore we have∥∥F(v1 − v2)

∥∥
(H

1
2 (Q))′

≤ C1

∥∥v1 − v2
∥∥

H1(Q)
, (52)∥∥(

F(v1 − v2)
)
t

∥∥
(H

1
2 (Q))′

≤ C3

∥∥v1
t − v2

t

∥∥
H1(Q)

(53)

for any functionsv1 and v2 in C1(0, t;H1(Q)). To
prove thatG is a contraction, we will use similara-priori
estimates forG(v1, θ1) − G(v2, θ2) as in the previous
steps. The feedback term can be treated using (52), (53)
combined with the techniques of the previous steps. If
necessary, we can use smaller values forh, M0 andM1

in order to show thatG is a contraction.

We can now apply the Banach Fixed-Point Theorem
to obtain the existence of a unique pair(v, θ) ∈ X1(t) ×
X2(t) which solves (23) and (24). To get Proposition 1,
we solve (16) for the givenv.

4. Uniform A-Priori Estimates

In this section we will prove some uniforma-priori es-
timates which will then imply Proposition 2. In gen-
eral, these estimates follow the same lines as the esti-
mates in (Sprekels and Zheng, 1989). However, the au-
thors of that paper require the inhomogeneityf1 to be in
H1(0, T ;H1(Q)). In the present situation this function is
in C1(0, T ; (H

1
2 (Q))′). In other words, we have slightly

more regularity in time, but significantly less regularity in
space. We will therefore need to modify the approach. We
start with the following preliminary lemma. We will, how-
ever, only use the third assertion of this lemma, but we will
state and prove the others for the sake of completeness.

Lemma 2. Let u satisfy (16)–(18). Define the bi-linear
form

B : H
1
2 (Q)×H

1
2 (Q) → R

as follows:

B(φ, ψ) = 〈F(φ), ψ〉
(H

1
2 (Q))′×H

1
2 (Q)

.

Then the following estimates hold:

B(v, v) ≤ 0, (54)

|B(v, v)| ≤ C ‖v‖2
H1(Q) , (55)

∫ t

0

B(v, vt) ds ≤ 1
2
‖u(·, 0)‖2

H1(Ω\Q)

< Ĉ ‖v0‖2
H1(Q) , (56)∣∣∣∣∫ t

0

B(v, vt) ds
∣∣∣∣ ≤ C̃max

{
‖v(t)‖2

H1(Q) ,

‖v0‖2
H1(Q)

}
, (57)

where the constantsC, Ĉ and C̃ depend only on the
data.

Proof. For the first two assertions, observe that, by the
definition of B and (20), we have

B(v, v) = 〈F(v), v〉
(H

1
2 (Q))′×H

1
2 (Q)

= −
∫

Ω

|∇u|2 dx,

since u is an extension ofv to H1
0 (D). The result fol-

lows immediately.

For the third and fourth assertions we have

B(v, vt) = 〈F(v), vt〉
(H

1
2 (Q))′×H

1
2 (Q)

= −
∫

Ω

∇u∇ut dx.

The result follows from integration over(0, t).

We can now proceed analogously to (Sprekels and
Zheng, 1989; Zheng, 1995). We will state the estimates.
However, we will not give the proofs unless there is a sig-
nificant difference. The only differences are due to the
terms involving inhomogeneityf1 = F(v).

Lemma 3. There exists a constantC which depends only
on the initial data andg such that

sup
0<t<T

(
‖vt(t)‖2 + ‖v(t)‖2

H2(Q) + ‖vx(t)‖6
L6(Q)

+ ‖vx(t)‖2
L∞(Q) + ‖θ‖L1(Q)

)
≤ C. (58)
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Proof. We start by multiplying (4) byvt and integrating
the result overQ to get

d
dt

(
1
2
‖vt‖2 +

c1
2
‖vx‖2 +

α

6
‖vx‖6

L6(Q) +
R

2
‖vxx‖2

)

= B(v, vt) +
β

4
d
dt
‖vx‖4

L4(Q) −
∫

Q

γθvxvxt dx.

Next we take (5) and integrate it overQ to get

d
dt
‖θ‖ =

∫
Q

g dx+
∫

Q

γθvxvxt dx.

By adding this equation to the equation above, the cou-
pling term ∫

Q

γθvxvxt dx

is cancelled. To continue, we integrate the result over
(0, t) and apply (56) to estimate the term

∫ t

0
B(v, vt) ds.

The L4 term on the right-hand side can be estimated
against theL6 term on the left. The same argument as
in Step 1 of the preceding section is used to estimate the
H2 norm with ‖vxx‖. The result then follows by tak-
ing the supremum over(0, T ) and applying the Sobolev
Imbedding Theorem tovx in order to get an estimate for
‖vx‖L∞(Q).

The next estimate is concerned only with the energy
balance (5). Thus its proof is identical to the proof in the
previous papers. We state the result for completeness.

Lemma 4. There exists a constantC which depends only
on the initial data and the inhomogeneityg such that

sup
0<t<T

‖θ(t)‖2+
∫ T

0

(
‖θx(s)‖2 + ‖θ(s)‖2

L∞(Q)

)
ds ≤ C.

(59)

We continue as in the proof of Lemma 2.6 of
(Sprekels and Zheng, 1989) by multiplying (4) by−vxxt

and (5) byθt. Only the term

−
∫ t

0

B(v, vxxt) ds

requires a difference from the treatment. For this term we
use (34) to get

−
∫ t

0

B(v, vxxt) ds =
∫ t

0

B(vt, vxx) ds

− B
(
v(t), vxx(t)

)
+ B(v0, v0xx).

The last two terms on the right-hand side are bounded by
virtue of Lemma 3. For the first term on the right-hand

side observe that∣∣∣∣∫ t

0

B(vt, vxx) ds
∣∣∣∣

≤ 1
2

∫ t

0

(
‖vt(s)‖2

H1(Q) + ‖vxx(s)‖2
H1(Q)

)
ds.

This term will be estimated by the application of Gron-
wall’s inequality using the terms

1
2

(
‖vxt(t)‖2 + ‖vxxx(t)‖2

)
,

which appear on the left. Continuing as in the previous
works we arrive at the following result:

Lemma 5. There exists a constantC which depends only
on the initial data andg such that

sup
0<t<T

(
‖vxt(t)‖2 + ‖vxxx(t)‖2 + ‖θx(t)‖2

)
+

∫ T

0

(
‖θt(s)‖2 + ‖θxx(s)‖2

)
ds ≤ C. (60)

Finally, we can combine all the previous estimates to
deduce that

sup
0<t<T

‖vtt(t)‖2
H−1(Q) ≤ C, (61)

for a constantC that depends only on the initial data
andg.

Proposition 2 follows immediately from these esti-
mates.
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