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A BOUNDARY–VALUE PROBLEM FOR LINEAR PDAEs
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We analyze a boundary-value problem for linear partial differential algebraic equations, or PDAEs, by using the method of
the separation of variables. The analysis is based on the Kronecker-Weierstrass form of the matrix pencil[A,−λnB]. A
new theorem is proved and two illustrative examples are given.
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1. Introduction

Recently there has been great interest in the analysis of
coupled systems of differential and algebraic equations.
Initially, most physical plants are modeled by systems of
ordinary and/or partial differential equations coupled with
algebraic constraints. Such systems are usually called par-
tial differential algebraic equations, or PDAEs, and have
found numerous applications as models of electrical, me-
chanical (constrained), and chemical engineering prob-
lems (Brenanet al., 1996; Campbell, 1982; Griepentrog
and März, 1986; Lewis, 1986; Pipilis, 1990).

In (Campbell and Marszałek, 1999; Marszałek and
Trzaska, 1995) linear PDAEs were analyzed using the
method of the separation of variables (modal analysis),
and in (Campbell and Marszałek, 1999) a detailed anal-
ysis of theindexof PDAEs was given. Interesting appli-
cations of PDAEs to traveling wave solutions in magne-
tohydrodynamics were studied in (Campbell and Marsza-
łek, 1997; Marszałek and Campbell, 1999). A numeri-
cal solution of boundary value problems (BVPs) for linear
time-varying differential algebraic equations, or DAEs for
short, was considered in (Clark and Petzold, 1989), and
a necessary and sufficient condition for the existence of
the solution was given in terms of the invertibility of the
shooting matrix (Clark and Petzold, 1989, Thm. 3.1). In
this paper we shall analytically solve a two-point BVP for
linear time-invariant PDAEs using the modal analysis of
(Campbell and Marszałek, 1996; Marszałek and Trzaska,
1995). This BVP for the PDAE problem differs in many

ways from the conventional BVPs considered in the lit-
erature on DAEs. Also, the convergence analysis of the
separable method we provide differs slightly from the con-
ventional convergence analysis (Haberman, 1998; Strauss,
1992) as it fully utilizes the Kronecker-Weierstrass form
of the matrix pencil.

2. Linear PDAEs

Consider the following system of linear PDAEs:

Aut + Buxx = f(x, t) (1)

for 0 ≤ x ≤ L, with

M1u(x, t)|x=0 = 0, M2u(x, t)|x=L = 0, (2)

where linear operatorsMi, i = 1, 2 specify the bound-
ary conditions. The initial and final conditions are related
through

Q1u(x, 0) + Q2u(x, T ) = β(x), (3)

whereQ1 and Q2 denote the appropriate matrices.

We allow A to be singular, and assume that the
boundary conditions (2) yield a set of real eigenvaluesλn

and the corresponding orthogonal eigenfunctionsφn(x),
n = 0, 1, 2, . . . . In most applications, the matrixB
in (1) is positive definite, andβ(x) =

∑∞
n=0 βnφn(x),

βn ∈ Rrn with rn being the core-rank ofAn,s, where
An,s = (sA − λnB)−1A (Clark and Petzold, 1989). We
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also assume that the rank conditions of matricesQ1 and
Q2 are satisfied (Clark and Petzold, 1989).

The modal analysis of (1) and (2) yields the follow-
ing DAEs:

Au′n − λnBun = fn, (4)

where un(t) and fn(t) result from the modal series of
u(x, t) and f(x, t), respectively. Our further analysis of
the problem is based on the analysis of the series of matrix
pencils [A,−λnB], n = 0, 1, 2, . . . .

A similar BVP for DAEs was considered in (Clark
and Petzold, 1989), where theshootingtheory and a nu-
merical approach were used. Iff(x, t) ≡ 0, β(x) ≡ 0,
and (2) yields the zero eigenvalue, sayλ0 = 0, then the
BVP for (1) has a non-unique solution, as is shown by the
following example.

Example 1. Consider (1) withf(x, t) ≡ 0, β(x) ≡ 0,
T = 1 and

A =

 1 0 0
0 1 0
0 0 0

 , B =
2
3π

 0 1 0
−1 0 0
0 0 1

 ,

Q1 =

[
−1 0 0
0 1 0

]
, Q2 =

[
1 1 0
0 0 1

]
,

(5)

with M1 = ∂/∂x, M2 = I, for 0 ≤ x ≤ 1.

Note that the matricesA and B are already in
Kronecker-Weierstrass form (see Section 3 for details
about this form). Also,λ0 = 0 is one of the eigenval-
ues of the spatial problem. It yields the non-uniqueness
of the solution of the nilpotent part of the DAEs (see (11)
below). Additionally, some of the non-zero eigenvalues
λn 6= 0 yield the non-uniqueness of the solution of the
regular part of the DAE. The analysis is as follows:

Let

u(x, t) =
∞∑

n=0

un(t)φn(x),

and

un(t) ≡

[
un,reg(t)
un,nil(t)

]
,

i.e. un(t) is partitioned into the regular and nilpotent
parts. The boundary condition (2) givesλ0 = 0, λn =
(π2/4)(2n−1)2, n = 1, 2, . . . . The eigenvaluesλn with
n = 2, 5, 8, . . . are responsible for the non-uniqueness of
the solution of the regular part of the DAEs. The remain-
ing eigenvalues do not cause any problems. This is easily
seen if we consider the regular part of the DAEs (5):

u′n,reg(t)−
2
3π

[
0 1
−1 0

]
π2

4
(2n−1)2un,reg(t) = 0, (6)

whereun,reg(t) ∈ R2, n = 2, 5, 8, . . . .

If we assume thatun,nil(T ) = 0 (this is true, e.g., if
f(x, t) ≡ 0), then the first two columns ofQ1 and Q2

together with (5) yield([
−1 0
0 1

]
+

[
1 1
0 0

]
exp

(
2
3π

[
0 1
−1 0

]
π2

4
(2n−1)2

))
× un,reg(0)=0, (7)

which gives [
0 −1
0 1

]
un,reg(0) = 0, (8)

for n = 2, 5, 8, . . . . Therefore the eigenvaluesλn, n =
2, 5, 8, . . . of the spatial spectrum allow the first compo-
nent of un,reg(0) ∈ R2 to be any non-zero numbers. This
gives the non-uniqueness of the solution of (6) and, as a
consequence, the non-uniqueness ofu2(x, t), one of the
components of the vectoru in (1). One can easily check
that

ureg(x, t)=



a2 cos
(

3π

2
t

)
cos
(

3π

2
x

)
+a5 cos

(
27π

2
t

)
cos
(

9π

2
x

)
+· · ·

- - - - - - - - - - - - - - - - - - - - - - - - -

−a2 sin
(

3π

2
t

)
cos
(

3π

2
x

)
−a5 sin

(
27π

2
t

)
cos
(

9π

2
x

)
+· · ·


(9)

is a solution of the above two-point BVP for any real num-
bersa2, a5, . . . . �

3. Analytical Solution of the BVP for PDAEs

In what follows we shall assume that each pencil
[A,−λnB] is regular and the initial-value problem for
each DAE with the pencil[A,−λnB] is impulse-free.

Recall that a DAE is of the Kronecker-Weierstrass
form if

[A,−λnB] =

([
I 0
0 J0

]
,

[
Jλn 0
0 Iλn

])
, (10)

where J ∈ Rn1 is of the Jordan form with finite eigen-
values,J0 ∈ Rn2 is nilpotent withindex n0n, and I is
the identity matrix.



A boundary-value problem for linear PDAEs 489

The impulse-free response of such a system is

un,reg(t) = e−Jλntun,reg(0)

+
∫ t

0

e−Jλn(t−s)fn,reg(s) ds,

un,nil(t) =
n0n∑
i=1

(−1)i+1J i−1
0 λ−i

n f
(i−1)
n,nil (t),

(11)

where fn,reg(t) and fn,nil(t) are the components of
fn(t) in f(x, t) =

∑
n fn(t)φn(x) corresponding to the

partition of the vectorun(t) into the regular and nilpotent
parts.

Let Q1 andQ2 in (3) be partitioned according to the
partition of the vectorun(t) into the regular and nilpotent
parts, i.e.Q1 = [Qn1

1 Qn2
1 ] and Q2 = [Qn1

2 Qn2
2 ], where

n1 and n2 are the dimensions of the regular and nilpotent
parts, respectively.

Theorem 1.The BVP for the PDAE problem (1) with

un(t) =

[
un,reg(t)
un,nil(t)

]

and det[Qn1
1 + Qn1

2 e−JλnT ] 6= 0 has the solution
u(x, t) =

∑
n un(t)φn(x), where[

Qn1
1 + Qn1

2 e−JλnT
]
eJλntun,reg(t)

=
n0n∑
i=1

(−1)iλ−i
n

[
Qn2

1 J i−1
0 f

(i−1)
n,nil (0)

+Qn2
2 J i−1

0 f
(i−1)
n,nil (T )

]
+Qn1

1

∫ t

0

eJλnsfn,reg(s) ds

−Qn1
2 e−JλnT

∫ T

t

eJλnsfn,reg(s) ds + βn (12)

and un,nil(t) is given by (11).

Proof. From (3) with partitioned matricesQ1 and Q2,
we obtain

Qn1
1 un,reg(0) + Qn2

1 un,nil(0)

+Qn1
2 un,reg(T ) + Qn2

2 un,nil(T ) = βn. (13)

Here un,nil(0), un,nil(T ) and un,reg(T ) can easily be
computed from (11) and substituted into (13). We get
exactly the same formula as we would get from (12) for
t = 0. In addition, differentiating (12) yields (note that the

expression in the square brackets on the right-hand side of
(12) is constant):[

Qn1
1 + Qn1

2 e−JλnT
]
JλneJλntun,reg(t)

+
[
Qn1

1 + Qn1
2 e−JλnT

]
eJλntu′n,reg(t)

= Qn1
1 eJλntfn,reg(t)

−Qn1
2 e−JλnT

[
−eJλntfn,regf(t)

]
. (14)

Dividing both sides of (14) by common factors, we obtain

u′n,reg(t) + Jλnun,reg(t) = fn,reg(t), (15)

which is the regular part for each DAE of the Kronecker-
Weierstrass form. It is an easy exercise to show that
un,nil(t) in (11) satisfies the equation

J0u
′
n,nil(t) + λnun,nil(t) = fn,nil(t). (16)

This completes the proof.

Corollary 1. If f(x, t) ≡ 0 and β(x) ≡ 0,
then the BVP has a non-zero solution if and only if[
Qn1

1 + Qn1
2 e−JλnT

]
is singular for at least oneλn, n =

0, 1, 2, . . . . The solution is not unique.

Proof. It follows immediately from (12) with the zero
right-hand side.

Remark 1. Equation (12) depends only on the initial and
final values offn,nil(t). The above analysis can also be
extended to the case when (1) isAut + Buxx + Cu =
f(x, t). Then−λnB in (4) is replaced with−λnB + C,
as was shown in (Campbell and Marszałek, 1996; Marsza-
łek and Trzaska, 1995).

4. Convergence Properties and Error
Analysis

We shall assume that no zero eigenvalue appears among
the eigenvalues generated by the conditions (2) and that
every matrix [Qn1

1 + Qn1
2 e−λnJT ] is non-singular for

n = 0, 1, . . . . Also, we assume that the orthog-
onal series expansions

∑∞
n=0 βnφn(x) and the input∑∞

n=0 fn(t)φn(x) are convergent in theL2 sense to
β(x), 0 ≤ x ≤ L and f(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ T ,
respectively.

The convergence properties of the above method can
be analyzed by noticing that the Kronecker-Weierstrass
decomposition of matrices

A ≡

[
I 0
0 J0

]
and B ≡

[
J 0
0 I

]
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effectively splits the problem into two linear equations:

∂ureg

∂t
+ J

∂2ureg

∂x2
= freg(x, t),

J0
∂unil

∂t
+

∂2unil

∂x2
= fnil(x, t),

(17)

with J and J0 described in the previous section, and
where freg(x, t) and fnil(x, t) follow from the transfor-
mation of f(x, t) into two vectors corresponding to the
Kronecker-Weierstrass decomposition ofu(x, t) into the
regular andnilpotentvectors. Also, we can use the parti-
tion of

u(x, t) =

[
ureg(x, t)
unil(x, t)

]
to rewrite (3) as

Qn1
1 ureg(x, 0) + Qn2

1 unil(x, 0)

+Qn1
2 ureg(x, T ) + Qn2

2 unil(x, T ) = β(x). (18)

Thus the vectorsureg(x, t) and unil(x, t), which would
normally be separated (see (17)), are in fact linked to-
gether through (18).

Let ureg(x, t) and unil(x, t) be the exact solutions
of (17) and suppose that the method of the separation of
variables yields the solutions

ūreg(x, t) =
∞∑

n=0

un,reg(t)φn(x)

and

ūnil(x, t) =
∞∑

n=0

un,nil(t)φn(x)

for theregularandnilpotentparts, respectively.

Consider the mean-square convergence (also known
as theL2 convergence (Watkins, 1991)) of the solution as
measured by∫

Ω

∥∥∥∥[ ureg(x, t)
unil(x, t)

]
−
[

ūreg(x, t)
ūnil(x, t)

]∥∥∥∥2

dxdt,

whereΩ ≡ {(x, t) | 0 ≤ x ≤ L, 0 ≤ t ≤ T} and for any
vector a ∈ Rq we have‖a‖ =

√∑q
i=1 |ai|2.

Define the errorsyreg(x, t) ≡ ureg(x, t)− ūreg(x, t)
and ynil(x, t) ≡ unil(x, t) − ūnil(x, t). We shall show
that both the errors are equal to zero inΩ. Substi-
tuting ureg(x, t), unil(x, t) and the respective series of
freg(x, t) and fnil(x, t) into (17), we obtain that the er-
rors yreg(x, t) and ynil(x, t) satisfy the equations

∂yreg

∂t
+ J

∂2yreg

∂x2
= 0,

J0
∂ynil

∂t
+

∂2ynil

∂x2
= 0.

(19)

Moreover, the condition (18) for the errorsyreg(x, t) and
ynil(x, t) is

Qn1
1 yreg(x, 0) + Qn2

1 ynil(x, 0)

+Qn1
2 yreg(x, T ) + Qn2

2 ynil(x, T ) = 0. (20)

The second of the two equations (19), with the nilpotent
matrix J0, has only the trivial solutionynil(x, t) = 0. The
reason is as follows: Because of the zero right-hand side
of that equation and the block structure of the nilpotent
matrix J0, we have here many subsystems of equations of
various sizes, but a typical block, of size, says × s, has
the form

0 1 0 . . . 0
0 0 1 . . . 0

...

0 0 0 . . . 1
0 0 0 . . . 0


∂ynil(x, t)

∂t
+

∂2ynil(x, t)
∂x2

= 0. (21)

If we assume that̄ynil(x, t) =
∑∞

n=0 yn,nil(t)φn(x),
then yn,nil(t) is the solution of

J0y
′
n,nil(t) + λnyn,nil(t) = 0, (22)

where J0 is the nilpotents × s matrix of the left-hand
side of (21). Since the boundary conditions yield no
zero eigenvaluesλn, (22) has only the trivial solution
yn,nil(t) = 0 for n = 0, 1, . . . .

Since yn,nil(t) = 0 yields ynil(x, t) = 0, (20) re-
duces now toQn1

1 yreg(x, 0) + Qn1
2 yreg(x, T ) = 0. Also,

if Mi, i = 1, 2 in (2) are partitioned as

Mi =

[
Mi,reg

Mi,nil

]
,

then
M1,regyreg(x, t)|x=0 = 0

and
M2,regyreg(x, t)|x=L = 0.

Note that the initial and boundary conditions stated above
along with the first equation in (19) yieldyreg(x, t) =∑∞

n=0 Tn(t)φn(x), where Tn(t) = e−λnJtAn, An be-
ing constant vectors,n = 0, 1, . . . , and

∞∑
n=0

(
Qn1

1 + Qn1
2 e−λnJT

)
Anφn(x) = 0. (23)

Since every matrix[Qn1
1 + Qn1

2 e−λnJT ] was as-
sumed to be non-singular, (23) is satisfied if and only if
An = 0 for all n = 0, 1, . . . . This gives yreg(x, t) =
0. This fact combined withynil(x, t) = 0 implies
ureg(x, t)−ūreg(x, t) = 0 and unil(x, t)−ūnil(x, t) = 0,
which completes the convergence analysis.
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Example 2. Consider (1) withT = 1, f(x, t) ≡ 0, zero
Dirichlet conditions atx = 0 and x = 1, and

A =

 1 0 0
0 1 0
0 0 0

 , B =

 0 1 0
−1 0 0
0 0 1

 ,

Q1 =

[
−1 0 0
0 1 0

]
, Q2 =

[
0.5 0 0
0 0 1

]
,

β(x) =

[
1
2

]
sin(2πx). (24)

Sinceλn = (n + 1)2π2, n = 0, 1, 2, . . . and

J =

[
0 −1
1 0

]
,

we get that

Sn ≡
[
Qn1

1 + Qn1
2 e−JλnT

]
is non-singular for alln. However, sinceβ2 = [ 1 2 ]′,

βi = 0, i 6= 2, we haveu2,reg(t) = e−4π2JtS−1
2 β2,

ui,reg(t) = 0, i 6= 2, and

u(x, t) =

[
ureg(x, t)
unil(x, t)

]
∈ R3,

ureg(x, t) =u2,reg(t) sin(2πx), unil(x, t) = 0. �

5. Conclusion

This note determines a general solution to a linear BVP
for the PDAE problem. The analytical solution may not
be unique if [Qn1

1 + Qn1
2 e−JλnT ] is singular. This ma-

trix is equivalent to theshootingmatrix of the BVP for the
DAE problem considered in (Clark and Petzold, 1989).
The converegence properties of the modal method for this
linear BVP for the PDAE problem have also been estab-
lished.
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