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Sufficient conditions for the conditional stability of trivial solutions for quadratic systems of ordinary differential equations
are obtained. These conditions are then used to design linear control laws on the output for a bilinear system of any order.
In the case of a homogeneous system, a domain of the conditional stability is also indicated (it is a cone). Some examples
are given.
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1. Introduction

Consider a quadratic control system the state equation of
which is

ẋ(t)=
(
A0 +

n∑
i=1

xi(t)Ai +
m+n∑

i=n+1

ui−n(t)Ai

)
x(t), (1)

where

x(t) =
(
x1(t), . . . , xn(t)

)T ∈ Rn,

u(t) =
(
u1(t), . . . , um(t)

)T ∈ Rm,

and the observation equation has the form

y(t) = Cx(t), y(t) = (y1(t), . . . , yp(t))T ∈ Rp,

y(0) = (y10, . . . , yp0)T . (2)

Here Rn, Rm, Rp are real vector spaces of column vec-
tors, x(t),u(t),y(t) are vectors of states, inputs and
outputs, respectively,y(0) is a vector of initial values,
Ai : Rn → Rn and C : Rn → Rp are real linear map-
pings of appropriate real spaces,i = 0, . . . , n + m. (If
Ai = 0, ∀ i ∈ {1, . . . , n}, then the system (1) is called a
bilinear control system.)

In what follows, we shall continue to study the prob-
lem, the research on which was started earlier. Therefore,
for the reader’s convenience, we shall recall some results
from the paper (Belozyorov, 2001).

Definition 1. If A0 = 0, then the system (1) is called
homogeneous. Otherwise, it is callednon-homogeneous.

Fixing bases in spacesRn and Rp, we denote the
matrices of operatorsAi and C in the selected bases as
Ai and C = (c1, . . . , cn), respectively. Herec1, . . . , cn

are columns of the matrixC; i = 0, . . . , n+m. For arbi-
trary column vectorsa and b, we denote by(a,b) their
scalar product; besides, we denote by‖x‖ =

√
(x,x)

the Euclidean norm of any vectorx ∈ Rn. Let us recall
the definition of the conditional stability of solutions to a
system of differential equations (Demidovich, 1967).

Definition 2. The trivial solutionx(t) ≡ 0 of the system
of differential equations

ẋ(t) = F
(
t,x(t)

)
,

with the vector of initial valuesx(0) = (x10, . . . , xn0)T ,
where F(t,x) = (F1(t, x1, . . . , xn), . . . , Fn(t, x1, . . . ,
xn))T ∈ Rn is a vector function, is calledconditionally
stableif there exists a variety of initial valuesΘ ⊂ Rn

such that for any solutionx(t) satisfying the conditions

x(0) ∈ Θ and ‖x(0)‖ < δ(ε),

the inequality
‖x(t)‖ < ε

is satisfied fort > 0. If also

lim
t→∞

‖x(t)‖ = 0,

then the solutionx(t) ≡ 0 is calledconditionally asymp-
totically stable. (Here ε and δ are positive numbers,
where ε is given andδ = δ(ε) is a function ofε.)
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In what follows, the structure of a varietyΘ is not
investigated. Note only that we shall deal with varieties of
two types: it will be either an open sphere or an open cone
with its top at the origin.

Now for the system (1), (2) let us formulate the fol-
lowing problem of mathematical control theory.

Problem of the synthesis of a static feedback law:Con-
struct a matrixK = (kT

1 , . . . , kT
m)T ∈ Rm×p of a linear

control law u(t) = Ky(t), where k1, . . . , km are row
vectors, such that the trivial solution of the closed-loop
system

ẋ(t) =
(
A0 +

n∑
i=1

xi(t)Ai

+
n∑

i=1

n+m∑
j=n+1

xi(t)(kj−n, ci)Aj

)
x(t), (3)

with the vector of initial valuesx0 = {x10, . . . , xn0} ∈
Θ such thaty0(t) = Cx0, would be asymptotically sta-
ble (at least conditionally).

Now, two practical examples of bilinear systems are
given.

Control problem by the nuclear reactor on thermal
neutrons: The kinetic equations of such a reactor can
be presented in the following form (Bowen and Mas-
ters,1959):

dr1

dt
= k2β1

N

l
− λ1r1,

...

dr6

dt
= k2β6

N

l
− λ6r6,

dN

dt
= k1

N

l
− k2

N

l

6∑
i=1

βi +
6∑

i=1

λiri.

(4)

Here N is the density of neutrons,λi is the disintegra-
tion constant for the nuclei of groupi (there exist six such
groups),ri is the density of the nuclei of groupi, l is the
average effective time of the life of neutrons,βi is part
of lagging neutrons originating from a nucleus of groupi,
k1 is the excess reproduction coefficient, characterizing
the affixed perturbation, andk2 is the effective reproduc-
tion coefficient.

Usually, it is considered that coefficientsk1 and k2

are linear functions of the movements of graphite rods in
the reactor, which play the role of controls. In other words,
k1 = b1v1 + · · · + bsvs, k2 = d1v1 + · · · + dsvs, where
s is the number of rods in the reactor,vi is the magni-
tude of the movement of thei-th rod, bi and di are some
numerical coefficients,i = 1, . . . , s.

With the help of controlsv1, . . . , vs it is required to
stabilize the work of the reactor in a neighbourhood of
some nominal values of variablesN0, r10, . . . , r60.

Introduce the notationβ =
∑6

i=1 βi, k1 = u1, k2 =
u2, N = x7, ri = xi, i = 1, . . . , 6. Then we will obtain
the system (1), in whichn = 7,m = 2 and

A0 =


−λ1 · · · 0 0

...
...

...
...

0 · · · −λ6 0
λ1 · · · λ6 0

 ,

A1 =


0 · · · 0 0
...

...
...

...

0 · · · 0 0
0 · · · 0 1/l

 ,

A2 =


0 · · · 0 −β1/l
...

...
...

...

0 · · · 0 −β6/l

0 · · · 0 −β/l

 .

Problem of a navigation officer: Any space curveγ in
a fixed coordinate systemOXYZcan be given by means
of the variable radius vectorr = r(s), where s is the
magnitude of the movement along the curve from the ori-
gin. (The representation of the radius vector in the form
r = r(s) is called the natural parametrization of the curve
γ.) Let P ∈ γ be any point on this curve with radius
vector r. Let us denote byn, t and b the unit vectors
which are normal, tangent and binormal to curveγ, out-
going from the pointP and having the same orientation
as coordinate axesX, Y , Z, respectively. These vectors
satisfy the differential equations

dt
ds

= kn,
dn
ds

= −kt− τb,
db
ds

= τn,

which are known as Frenet’s formulae. Herek is the cur-
vature of the curveγ at the pointP , and τ is the torsion
of the curveγ at the pointP .

Let us look at the pointP as at some flight vehicle,
whose barycentre is located at the pointP and the con-
trol is realized in the plane(t,b) (the pitch) and in the
plane (n, t) (the yaw). Setk = u1, τ = u2, x1 = n,
x2 = t, x3 = b and x = (xT

1 ,xT
2 ,xT

3 )T . Then Frenet’s
equations will turn into the bilinear system (1), for which
n = 9, m = 2 and

A0 = 0, A1 =

 0 −I3 0
I3 0 0
0 0 0

 ,
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Fig. 1. Coordinate axes for the problem of
the navigation officer.

A2 =

 0 0 −I3

0 0 0
I3 0 0

 .

(Here I3 is the identity matrix of the third order.)

At any time moment the orientation of axesn, t and
b at the pointP is assumed to be known:n = x1(s),
t = x2(s) and b = x3(s). (Here s = s(t) is a known
function of time.) It is necessary to stabilize the motion of
a flight vehicle via linear feedback in a neighbourhood of
the nominal valuesxi0 of vectorsxi(s), i = 1, 2, 3.

2. Some Generic Properties of Solutions of
Homogeneous Quadratic Systems

It is obvious that the system of differential equations (3)
can be rewritten as follows:

ẋ1(t) =
n∑

j=1

d1jxj(t) + xT (t)B1x(t),

...

ẋn(t) =
n∑

j=1

dnjxj(t) + xT (t)Bnx(t).

(5)

Here D = (dij), B1, . . . , Bn ∈ Rn×n are real matrixes
and B1, . . . , Bn are also symmetric.

Definition 3. The system of equations (5) is called
quadratic; if D = 0, then we call (5)homogeneous
quadratic.

Definition 4. The homogeneous quadratic system (5) is
calledregular if there are no real constantsτ1, . . . , τn (at
least one being non-zero) such that∀x ∈ Rn xT (τ1B1 +
· · · + τnBn)x = 0. Otherwise, (5) is called asingularor
aspecialsystem.

In this section we will study regular homogeneous
quadratic systems of ordern:

ẋ1(t) = xT (t)B1x(t),
...

ẋn(t) = xT (t)Bnx(t),

(6)

with the vector of initial valuesxT (0) = (x10, . . . , xn0).
Consider the matrixρ1B1 + · · · + ρnBn ∈ Rn×n,

where ρ1, . . . , ρn are arbitrary real parameters. Intro-
duce basic symmetric functions for this matrix (Gant-
macher, 1990): σ1(ρ1, . . . , ρn) = tr (ρ1B1 + · · · +
ρnBn) = {it is the sum of all principal minors of the
first order}, σ2(ρ1, . . . , ρn) = {it is the sum of all prin-
cipal minors of the second order}, . . . , σn(ρ1, . . . , ρn) =
det(ρ1B1 + · · ·+ ρnBn).

Consider the set of equations

σ1(ρ1, . . . , ρn) = r, σ2(ρ1, . . . , ρn) = 0,

. . . , σn(ρ1, . . . , ρn) = 0, (7)

with respect to the unknownsρ1, . . . , ρn and a known
arbitrary non-zero constantr ∈ R.

It is easy to show (Gantmacher, 1990) that, for
generic matricesB1, . . . , Bn, the system (7) hasn lin-
early independent solutions

f1 = (ρ11, ρ12, . . . , ρ1n), f2 = (ρ21, ρ22, . . . , ρ2n),

. . . , fn = (ρn1, ρn2, . . . , ρnn)

(generally speaking, they are complex).

Let us find these solutions and form the non-singular
matrix F−1 = (f1T , . . . , fnT )T ∈ C n×n, and then in-
troduce into (6) the new variablev(t) = (v1(t), . . . ,
vn(t))T ∈ Cn using the formulax(t) = Fv(t). Then, as
shown by Belozyorov (2001), the system (6) can be pre-
sented as

v̇1(t)
...

v̇n(t)

 =

 (p11v1 + · · ·+ p1nvn)2

. . . . . . . . . . . . . . . . . . . . . .

(pn1v1 + · · ·+ pnnvn)2

 ,

where pij are complex numbers;v(0) = F−1x(0) =
(v10, . . . , vn0)T .

After the change of variablesv(t) = Pz(t), where
P = (pij) ∈ Cn×n, the last system takes the form

ż1(t)
ż2(t)

...

żn(t)

=


−β11 β12 . . . β1n

β21 −β22 . . . β2n

. . . . . . . . . . . . . . . . . . . . .

βn1 βn2 . . . −βnn




z2
1(t)

z2
2(t)
...

z2
n(t)

, (8)

whereβij are complex numbers,z(0) = (FP )−1x(0) =
(z10, . . . , zn0)T .
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Definition 5. The regular system (6) is called asys-
tem without invariant submanifolds(WIS system) if there
exists no non-singular transformationS ∈ Cn×n such
that, after the replacementx = Sw, where w =
(w1, . . . , wn)T , the system (6) takes the particular form
(8):

ẇ =



ẇ1

...

ẇk

ẇk+1

...

ẇn


= S−1

 wT ST B1Sw
. . . . . . . . . . . .

wT ST BnSw



=



n∑
j=1

α1jw
2
j

...
n∑

j=1

αkjw
2
j

n∑
j=k+1

αk+1,jw
2
j

...
n∑

j=k+1

αnjw
2
j



.

Here α11, . . . , αnn are complex numbers.

Denote byΨ the set of all homogeneous quadratic
systems of ordern. In Appendix it will be shown that the
set of all WIS systems contains open subset everywhere
dense inΨ. Thus, the systems (6) being WIS systems are
generic.

Denote by a1, a2, . . . , ak all real singular points
such as the pole of some solution of the regular WIS
system (8). Letdi be the multiplicity of the pointai,
i = 1, . . . , k.

Theorem 1.Let (8) be a regular WIS system. Then all real
singular points of any solution of such a system coincide
with a1, a2, . . . , ak, where the multiplicity of the pointai

is di, i = 1, . . . , k.

Proof. For simplicity, assume thatn = 2 and all poles of
the solutionz1(t) are equal toa1, . . . , al, and all poles of
the solutionz2(t) coincide with pointsal+1, . . . , ak.

Also assume thatz1(t) = f1(t)/(t − a1)d is the
pole of multiplicity d, f1(a1) 6= 0 and the pointa1 is
not a pole ofz2(t). Then, ast → a1, the second equa-
tion of the system (8) can be rewritten aslimt→a1(t −
a1)2dż2(t) = β21f

2
1 (a1) − β22 limt→a1(t − a1)2dz2

2(t).
Since (8) is a WIS system, we haveβ21 6= 0. Therefore
from the last relation it follows that eitherf1(a1) = 0
or limt→a1(t − a1)2d(ż2(t) + β22z

2
2(t)) = const 6= 0.

The first expression contradicts the assumption and the
second is equivalent to the relatioṅz2(t) + β22z

2
2(t) =

g(t)/(t − a1)2d, where g(a1) 6= 0. From this it follows
that z2(t) = g1(t)/(t− a1)d, where againg1(a1) 6= 0.

Repeating the same process for pointsa2, . . . , al, we
can prove that the points are poles corresponding to the
ordinals of the functionz2(t). It is obvious that a similar
statement holds true for functionz1(t), with poles at the
points al+1, . . . , ak.

Generally, let a be the pole of solutionszt, . . . ,
zn−1(t). Then zi(t) = fi(t)/(t− a)d, wherefi(a) 6= 0,
i = 1, . . . , n − 1. Substituting these relations into the
last equation of the system (8) and passing to the limit as
t →∞, we obtainlimt→a(t−a)2d(żn(t)+βnnz2

n(t)) =
const 6= 0. The general case ofn 6= 2 can be con-
sidered in much the same way. The proof is thus com-
pleted.

Rewrite the system of equations (8) in the following
form:

ẋ(t) = BX(t)x(t), (9)

where

B =


−β11 β12 . . . β1n

β21 −β22 . . . β2n

. . . . . . . . . . . . . . . . . . . . . . . . .

βn1 βn2 . . . −βnn

 ,

X(t) =


x1(t) 0 . . . 0

0 x2(t) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . xn(t)

 .

Estimate the solution to the system (9), using the
Taylor expansion. In the sequel, in order to denote the
time derivative, symbols ‘· ’ or ‘ ′ ’ will be used.

Note that∀ k ∈ Z+, ‖X(k)‖ = ‖x(k)‖. Then from
(9) we have

‖x′‖ ≤ ‖B‖‖x‖2,

x′′ = ˙(BX)x + (BX)ẋ = BẊx + (BX)(BX)x

= BXẋ + (BX)2x = 2!(BX)2x,

‖x′′‖ ≤ 2!‖B‖2‖x‖3,

x′′′ = 2(BẊ)(BX)x + 2(BX)(BẊ)x + 2(BX)2ẋ,

‖x′′′‖ ≤ 3!‖B‖3‖x‖4, . . . .

It is obvious that for arbitraryk ∈ Z+ we have

‖x(k)‖ ≤ k!‖B‖k‖x‖k+1.
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Represent formally the function‖x(t)‖ as a Taylor
series and estimate it:

‖x(t)‖ ≤ ‖x(t0)‖+ ‖B‖‖x(t0)‖2(t− t0) + · · ·

+ ‖B‖k‖x(t0)‖k+1(t− t0)k + · · ·

= (1 + ‖B‖‖x(t0)‖(t− t0) + · · ·

+ ‖B‖k‖x(t0)‖k(t−t0)k+· · · )‖x(t0)‖. (10)

As is well known, the series (10) converges for allt
satisfying the condition‖B‖‖x(t0)(t − t0)‖ < 1 or for
any t ∈ [t0, t0 + (‖B‖‖x(t0)‖)−1). If the last restriction
is satisfied, then the series on the right-hand side of (10)
converges; this sum is calculated using the formula for the
geometric series and the estimate (10) takes the form

‖x(t)‖ ≤ ‖x(t0)‖
1− ‖B‖‖x(t0)‖t

. (11)

Theorem 2. Let (6) be a regular WIS system. Then
one of the following statements holds true: (a)∀ k ∈
{1, . . . , n} limt→∞ xk(t) = 0, (b) for all k ∈ {1, . . . , n}
limt→a |xk(t)| = ∞, wherea is some positive pole.

Proof. (a) Assume that for anyk ∈ {1, . . . , n} we have
limt→∞ xk(t) = ck, where at least oneck 6= 0. Then the
system (6) can be rewritten as

xT (∞)B1x(∞) = 0,
...

xT (∞)Bnx(∞) = 0.

It is known (Fulton, 1984) that a system of equations
which consists of linearly independent forms has only a
trivial solution. Therefore we should havec1 = · · · =
ck = 0, which proves the first statement of Theorem 2.

(b) Again, for simplicity, assume thatn = 2 and let
limt→a x1(t) = ∞ and limt→a x2(t) = c2 = const.
Since (6) is a WIS system, the second equation takes
the form 0 = b11x

2
1(a) + b12x1(a)x2(a) + b22x

2
2(a)

as t → ∞, where b11 6= 0 or b12 6= 0. In this
case x1(a)/x2(a) is a finite non-zero number. From
the condition limt→a x2(t) = c2 6= ∞ it follows that
lim
t→a

x1(t) = c1 6= ∞ holds true. The last relation contra-

dicts the assumption of the second part of Theorem 1.

Generally, the proof proceeds as follows. According
to Theorem 1, any solution (6) can be represented as

xi(t) =
fi(t)

(t− a1)d1 · · · (t− ak)dk
,

where polesa1, . . . , ak and their multiplicitiesd1, . . . ,
dk are the same for all solutions. These poles depend on
an initial vectorx0 (the so-called moving poles).

It is obvious that if some equationt − ai(x0) =
0 has a solution in the interval[0,∞), then ∀j,
limt→∞ |xj(t)| = ∞. If none of these solutions belongs
to the indicated interval, then from the formula (11) it fol-
lows that limt→∞ xk(t) = 0.

In what follows, for an arbitrary non-negative integer
k we write x(tk) = xk, X(tk) = Xk. Construct a for-
mal expansion of some vector functionv(t) in the Taylor
series in a neighbourhood of the time pointtk:

v(t) =
[
E + (BXk)(t− tk)

+ · · ·+ (BXk)n(t− tk)n + · · ·
]
xk. (12)

Assume now thatk = 1. Then x(t1) = x1, where
t1 is selected taking account of the unique restriction

t0 ≤ t1 < t0 +
1

‖BX0‖
.

It is obvious that in this case the series (12) converges for
all t satisfying the condition

t1 ≤ t < t1 +
1

‖BX1‖
.

If we continue this procedure further, then, finally, we
derive that ∀ k ∈ Z+, the series (12) converges∀ t
∈ [tk, tk + (‖BXk‖)−1), and the next valuetk+1 is se-
lected from the range

tk ≤ tk+1 < tk +
1

‖BXk‖
.

In the case of the convergence of the series (12), the sum
of the series is computed using the following well-known
formula from functional analysis:

v(t) =
[
E − (BXk)(t− tk)

]−1
xk. (13)

It is easy to check that in the case of the convergence
for the function v(t), the same estimate (11) as for the
function x(t) is correct:

‖v(t)‖ ≤ ‖x(t0)‖
1− ‖B‖‖x(t0)‖t

.

Again, we will search for the solution of the system (9)
using the Taylor expansion in the vector form. For this
purpose, we estimate the limit values of solutions of the
system (9) at critical pointsa1, . . . , ak and ast → ∞.
Here the following result is required.

Theorem 3. Assume that a regular WIS system is re-
duced to the form (9). Letξ be one from singular points
a1, . . . , ak or the symbol±∞. Then

lim
t→ξ

Ẋ(t)BX(t) = lim
t→ξ

X(t)BẊ(t).
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Proof. It is obvious that the last equality is equivalent to
the set of equationslimt→ξ(ẋi(t)xj(t)−xi(t)ẋj(t)) = 0,
i, j = 1, . . . , n. According to Theorems 1 and 2, ei-
ther ∀ i ∈ {1, . . . , n}, limt→ξ xi(t) = 0, or ∀ i ∈
{1, . . . , n}, limt→ξ |xi(t)| = ∞. In both these cases, ac-
cording to the L’Hospital rule, we have

lim
t→ξ

ẋi(t)
ẋj(t)

= lim
t→ξ

xi(t)
xj(t)

= cij 6= 0.

But then we havelimt→ξ ẋi(t) = cij limt→ξ ẋj(t),
limt→ξ xi(t) = cij limt→ξ xj(t), and the limit system
limt→ξ(ẋi(t)xj(t) − xi(t)ẋj(t)) = 0, i, j = 1, . . . , n,
is satisfied.

Starting from Theorem 3, we havelim t → ξx′′

= limt→ξ( ˙(BX)x + (BX)ẋ) = limt→ξ(BẊx +
(BX)(BX)x) = limt→ξ(BXẋ + (BX)2x) =
2! limt→ξ(BX)2x; limt→ξ x′′′ = limt→ξ(4(BX)BẊx
+2(BX)2ẋ) = limt→ξ(4(BX)3x + 2(BX)2(BX)x) =
3! limt→ξ(BX)3x, . . . . It is obvious that for anyn ∈ Z+

we havelimt→ξ x(n) = n! limt→ξ(BX)nx.

It is clear that the formal expansion of the solution
x(t) in the Talor series, in a neighbourhood of the point
tk = ξ, has the form (12) and the convergence of this
series is guaranteed by the above-mentioned conditions.

Thus we havelimt→ξ ‖v(t) − x(t)‖ = 0 and the
function x(t) is asymptotically equivalent to the function
v(t) (Demidovich, 1967). Therefore it is possible to study
the behaviour ofx(t) for t → ξ via the functionv(t).

From the above deliberations one can conclude that
0 ≤ t0 < t1 < · · · < tm < · · · and hence the sequence
{tm,m = 0, 1, . . . } is monotonically increasing. There-
fore there exists a (finite or infinite) limitlimt→ξ tm = ts
of this sequence. It is obvious that ifts = ai for some
i ∈ {1, . . . , k}, then ts is a singular point of the solution
of the system (9), so thatlimt→ts

‖x(t)‖ = ∞. Other-
wise, if ts = ∞, then lim

t→ts

‖x(t)‖ = 0. Indeed, it is

possible to show that the values of the functionv(tm) at
the point tm can be calculated using the formula

v(tm) =
m∏

i=1

[
E − (BXi−1)(ti − ti−1)

]−1
x(0).

Then, from the definition of the inverse matrix, it follows
that the degree of the numerator in (13) with respect to the
variable t is less than the degree of the denominator. It
also reduces to the last limit.

Theorem 4. Let B ∈ Rn×n and let all the coordinates
of the vector of the initial datax0 = (x10, . . . , xn0)T

be positive. Then for the conditional asymptotic stability
of the system (9) it is sufficient that for∀λ ≥ 0 all the
elements of the inverse matrix[E−(BX0)(λ)]−1 be non-
negative.

Corollary 1. For the conditional asymptotic stability of
the system (9) it is necessary that the polynomialf(λ) =
det(E − (BX0)λ) have only negative real roots.

Proof. Let us investigate the behaviour of solutions to
the system (9) ast → ∞. So, form positive differences
∆tk = tk+1 − tk, k = 0, 1, . . . . Then the formula (13)
shows that each term of the sequencexk is a rational
function with the denominator

f(λ) = 1 + (β11xk1 + · · ·+ βnnxkn)∆tk

+ · · ·+ (−1)n(detB)(xk1 · · ·xkn)(∆tk)n.

It is obvious that to satisfy conditions of Theo-
rem 4 it is sufficient that the functionf(λ) be posi-
tive simultaneously with all the cofactors of the matrix
[E − (BX0)(λ)]−1. If these conditions are fulfilled, then
the proof of the stability of solutions follows from Theo-
rem 2 in (Belozyorov, 2001). The proof of the corollary is
then straightforward.

3. Construction of Domains of Conditional
Stability for Homogeneous Quadratic
Systems of the Second Order

Theorem 4 can be strengthened forn = 2. For that pur-
pose we take advantage of the asymptotic equivalence of
functionsx(t) and v(t). Let t− t0 = ∆t. (Here t0 6= ξ,
where ξ is a singular point or symbol∞.) Then on the
interval [t0, ξ), where the magnitude|t0−ξ| 6= 0 is small
enough, the coordinates of the function (13) are given by
the formulae

v1(t) =
x1t + (x1tx2tβ22 + x2

2tβ12)∆t

1+(β11x1t+β22x2t)∆t+(β11β22−β12β21)x1tx2t(∆t)2
, (14)

v2(t) =
x2t + (x1tx2tβ11 + x2

1tβ21)∆t

1+(β11x1t+β22x2t)∆t+(β11β22−β12β21)x1tx2t(∆t)2
. (15)

Here x1t and x2t are coordinates of the solutionx(t) at
instant t 6= ξ.

It is obvious that from the point of view of stabil-
ity, the most desirable situation is when the denomina-
tors of the functionsv1(t) and v2(t) are not equal to
zero. In other words, on the interval[t0, ξ) the function
f(λ) does not have real roots (orf(λ) has only negative
roots on the real axis). According to the Routh-Hurwitz
criterion, the last restriction is achieved in the case of
(β11x1t+β22x2t) > 0 and (β11β22−β12β21)x1tx2t > 0.

With no loss of generality it is possible to setβ11 =
β22 = 1 in (9). (This can always be achieved via a
suitable change of variables.) We introduce the notation
β12 = p and β21 = q. Then, using Corollary 1, we will
obtain the following result.
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Theorem 5. Assume that in (9) we haven = 2 and
β11β22 − β12β21 = 1 − pq > 0, p > 0, q > 0. Then
any of the conditions:

(a) x10 > 0, x20 > 0;

(b) x10 > 0, x20 < 0, x20 + qx10 > 0,

det

(
x10 x20

ẋ10 ẋ20

)
= −x20(−x2

10+px2
20)

+ x10(−x2
20 + qx2

10) > 0;

(c) x10 < 0, x20 > 0, x10 + px20 > 0,

det

(
x10 x20

ẋ10 ẋ20

)
= −x20(−x2

10+px2
20)

+ x10(−x2
20 + qx2

10) > 0

is sufficient for the conditional stability of (9).

Proof. If (a) is true, the proof of the stability of the
system (9) is reduced to the proof given by Belozyorov
(2001).

Consider a solution to (9) in a small neighbourhood
δ of any singular pointξ. Assume now thatx1t > 0 and
x2t < 0 if |t − ξ| < δ. Then, according to Theorem 1
of (Belozyorov, 2001), a solution to (9) is conditionally
stable if for somet∗ > 0 we havex2(t∗) ≥ 0. Indeed, in
this casex1(t) > 0 and x2(t) > 0 for any t > t∗ and
we have a situation described by condition (a). For this
condition, it is obvious enough that in (15) the magnitude

∆t = t− t∗ = − x2t

x1tx2t + qx2
1t

is positive. In turn, this inequality is equivalent tox2t +
qx1t > 0. In addition, it is necessary for the denominator
of the function (15) to be positive on the analysed interval
[t∗, ξ):

1 + (β11x1t + β22x2t)∆t

+ (β11β22 − β12β21)x1tx2t(∆t)2

= 1− (x1t + x2t)x2t

x1tx2t + qx2
1t

+(1− pq)x1tx2t
x2

2t

(x1tx2t + qx2
1t)2

> 0.

(This guarantees that the convergence conditions of the
series (12) are satisfied.)

Thus, after a transformation of the last inequality, we
arrive at the system of inequalities

x2t + qx1t > 0,

− x2t(−x2
1t + px2

2t) + x1t(−x2
2t + qx2

1t) > 0.
(16)

Assume thatu = x2t/x1t. Then, from (16), we obtain the
system

0 > u > −q, −pu3 − u2 + u + q > 0.

At the beginning, consider equationg(u) = −pu3−
u2 + u + q = 0. According to the Descartes Theo-
rem (Demidovich and Maron, 1966), it has one positive
root. Further, for a sufficiently small negativeu we have
g(u) > 0, and if u = −q, we haveg(−q) = q2(pq−1) <
0 . Thus, becauseg(u) is a polynomial of the third de-
gree, we come to the conclusion that there are two neg-
ative roots of this polynomial. Let us denote byλmax

(resp.λmin) the greater (resp. the smaller) of these roots.

Thus, if for somet∗ ∈ [t, ξ) inequalities (16) are
fulfilled, x1(t∗) > 0 and x2(t∗) > 0 and therefore the
singular point t = ξ does not exist. Repeating similar
reasoning for all singular points, including the first posi-
tive a1+, we arrive at the conclusion that this point does
not exist if a pointt∗∗ such thatx1(t∗∗) > 0 is found and
x2(t∗∗) > 0. Therefore it is possible to setx1t = x10 and
x2t = x20 in (14) and (15).

Note that taking advantage of the L’Hospital rule, the
equationg(u) = 0 can be also obtained from the limit

lim
t→a1+

ẋ2(t)
ẋ1(t)

= lim
t→a1+

x2(t)
x1(t)

= lim
t→a1+

qx2
1(t)− x2

2(t)
−x2

1(t) + px2
2(t)

,

with

u = lim
t→a1+

x2(t)
x1(t)

.

As the equationg(u) = 0 has one positive root, the
segment[0, a1+) belongs to the domain of the conver-
gence of the series (12), and fort ∈ [0, a1+) we have
w = x2(t)/x1(t) ∈ (λmax, 0] and −pw3 − w2 + w +
q > 0. (In particular, this is also true forx20/x10 ∈
(λmax, 0].) From the previous analysis it is clear that
λmin < −q < λmax. This completes the proof of Case
(2a) and Theorem 5 if we take into account that the proof
of Case (2b) (using (14)) reduces to the same result.

Denote by λq the maximum negative solution of
−pu3−u2 +u+q = 0 and byλp the maximum negative
solution of−qv3− v2 + v + p = 0. Then, from Theorem
5, it is possible to derive the following result.

Theorem 6.Let in (9) n = 2, β11β22−β12β21 = 1−pq >
0, p > 0, q > 0. Then in the planex1x2 the domain of
the conditional stabilityΩ of (9) represents a cone, which
is the geometric place of the points described by

Ω = {x1 − λpx2 ≥ 0} ∩ {x2 − λqx1 ≥ 0}.

In addition, the apex angle of the coneΩ does not ex-
ceedπ.
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4. Domain of the Conditional Stability of
Regular Homogeneous Quadratic Systems

Let

h1(v1, . . . , vn) = 0, . . . , hn(v1, . . . , vn) = 0 (17)

be a regular system ofn algebraic equations with re-
spect ton unknownsv1, . . . , vn. (This system is called
regular if its Jacobi determinant is not identically zero.)
As is known from elimination theory (Fulton, 1984),
using new variablesz1 = w1(v1, . . . , vn), . . . , zn =
wn(v1, . . . , vn) and equivalent transformations of the ini-
tial system, it is possible to get one equation concerning
one unknown (e.g.,z1):

ξ0z
k
1 + ξ1z

k−1
1 + · · ·+ ξk = 0,

where the coefficientsξi, i = 1, . . . , k are complex num-
bers. Thus all the remaining unknownszi, i = 2, . . . , n
are polynomials inz1. It is obvious that in general the
number of solutions to (17) will equalk. The setΦ of all
solutions to (17) is called an algebraic variety. The num-
ber k of all elements of this set is called its degree. The
degree of the algebraic variety is denoted byk =degCΦ
(Fulton, 1984).

Consider the following system of real quadratic
equations with respect to the unknown vectorv =
(v1, . . . , vn)T :

−v1 = vT B1v, . . . , −vn = vT Bnv. (18)

Let W ⊂ Cn be the algebraic variety of all solutions
to (18). Its degree equals degCW.

Definition 6. The system of equations (18) is called com-
plete if degCW =degCV, whereV ⊂ Cn is the variety
of all solutions to (18), for which it is supposed that all
n2(n + 1)/2 of the elements of matricesB1, . . . , Bn are
not numbers but independent parameters.

Theorem 7. Every complete system (18) has at least one
nontrivial real solution.

Proof. Assume that one from among variablesv1, . . . , vn

(e.g., vn) is not equal to zero. Then the system (18) can
be represented as

w1

wn
=

wT B1w
wT Bnw

, . . . ,
wn−1

wn
=

wT Bn−1w
wT Bnw

or, equivalently, as

f1(w1, . . . , wn) = 0, . . . , fn−1(w1, . . . , wn) = 0,
(19)

where, by virtue of the completeness of the system (18),
all forms f1, . . . , fn−1 are cubic with respect ton vari-
ables. Again, by virtue of completeness, numbersβi ∈ R
can be always found such that

n−1∑
i=1

βifi(w1, . . . , wn)

= γ1w
3
1 + · · ·+ γnw3

n + Q(w1, . . . , wn). (20)

Here the degree of any variable included in the formQ
does not exceed 2. (Note that in (20) allγi 6= 0.) Then
from (Fulton, 1984) it follows that the system (19) (and,
consequently, (18)) has at least one nontrivial real solu-
tion.

Let, e.g., the system (6) be regular and complete.
Then it is easy to check that forn = 2 we have
degCW = 3. On the other hand, if forn = 2vT B1v =
(δ1v1 + δ2v2)(ν1v1 + ν2v2) and vT B2v = (δ1v1 +
δ2v2)(ξ1v1 + ξ2v2), where both forms have a common
linear factor andδ1, δ2, ξ1, ξ2, ν1, ν2 ∈ R, then the sys-
tem (6) is incomplete; for this casedegCW = 2 and a
nontrivial real solution cannot exist.

In what follows, we will need the following trivial
corollary of Theorem 2 taken from (Belozyorov, 2001).

Theorem 8. Assume that for a regular system (6) the fol-
lowing conditions are fulfilled:

(a) initial values xi0 ≥ 0;

(b) forms (x1, . . . , xi−1, 0, xi+1, . . . , xn)Bi(x1, . . . ,
xi−1, 0, xi+1, . . . , xn)T are positive definite;

(c) positive numbersri can be found such that the
form xT

∑n
i=1 riBi)x is negative definite,i, j =

1, . . . , n.

Then any solution to (6) is conditionally asymptotically
stable.

Assume that (6) is reduced to the form (9), where the
matrix B is real.

Corollary 2. Assume that for a regular system (9) the
following conditions are fulfilled:

(a) initial values xi0 ≥ 0;

(b) bij ≥ 0 (i 6= j) and bii > 0;

(c) the elements of the matrix(−B)−1 are non-
negative,i, j = 1, . . . , n.

Then any solution to (9) is conditionally asymptotically
stable.
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Set µ1 = w1/wn, . . . , µn−1 = wn−1/wn and
transform (19) to the form

g1(µ1, . . . , µn−1) = 0, . . . ,

gn−1(µ1, . . . , µn−1) = 0. (21)

The following result establishes one important prop-
erty of the solutions to (21).

Theorem 9. Under the conditions of Theorem 8 the sys-
tem (21) has a solutionµ = (µ1, . . . , µn) such that
µi > 0, i = 1, . . . , n− 1.

Proof. From Theorem 8 it follows that in (6) we have
limt→∞ x(t) = 000. Then the system (21) is obtained
from (6) via dividing all equations by the last one and
passing to the limit ast → ∞. Since in (6) it follows
that xi(t) > 0, ∀ t ≥ 0, it is clear that the limit relations
w1/wn, . . . , w1/wn being solutions to (21), also possess
this property.

Assume now thatxn0 > 0. Then under the condi-
tions of Theorem 8 we havexn(t) > 0. It is clear that the
limit limt→∞ xi(t)/xn(t), i = 1, . . . , n− 1 is a solution
to (21). Therefore ifµi > 0, then xi(t) > 0.

Theorem 10.Under the conditions of Theorem 8, among
the coordinatesv1, . . . , vn of the solutionv to (18) there
is at least one positive.

Proof. Let as take advantage of Condition 3 of Theo-
rem 8. It is possible to find as much collections of pos-
itive numbersr1, . . . , rn as desired, such that the form
xT (

∑n
i=1 riBi)x is negative definite. In other words,

there is a solutionv = (v1, . . . , vn)T to the system of
inequalities  r11, . . . , r1n

. . . . . . . . . . .

rn1, . . . , rnn

v > 000,

where rij ≥ 0 and the rows of the last matrix are lin-
early independent fori, j = 1, . . . , n. Hence there is no
solution v = (v1, . . . , vn)T such that∀ i ∈ {1, . . . , n},
vi ≤ 0.

Theorem 11. Under conditions (b) and (c) of Theorem 8
there are2n − 1 vector solutions to (18). What is more,
all these solutions are real.

Proof. Let the coordinates of the vector of initial datax0

satisfy the conditionsxi10 > 0, . . . , xir0 > 0, xir+10 <
0, . . . , xin0 < 0. (Here {i1, . . . , in} ∈ {1, . . . , n} is a
permutation andr is the number of the positive coordi-
nates of the initial vector.)

According to Theorem 8, ifxj0 ≥ 0, then xj(t) ≥
0. If xj0 < 0, there are two possibilities: either a moment
t∗ can be found such thatxj(t∗) ≥ 0 for any t ≥ t∗, or
for any t > 0 we havexj(t) < 0. Thus, if xj0 < 0 and
the number|xj0| > 0 is large enough, thenxj(t) < 0
for t < a1, wherea1 is the first positive pole ofxj(t).

Fix the initial data so that the magnitudes
|xir+1 |, . . . , |xin

| are large enough. Then the sign of
xi(t) coincides with the sign ofxi0 for any t < a1,
i = 1, . . . , n. (In other words, the solution to (6) does
not fall beyond the limits of the appropriate orthant.)

Consider the limits

lim
t→ξ

xi(t)
xj(t)

, i, j = 1, . . . , n, i 6= j,

where the variableξ runs through all real poles of func-
tions xi(t) and ∞. (Since we consider only WIS sys-
tems, then all the coordinates of vector solutions to (6)
have the same poles.) It is obvious that all these limits are
defined by the equations of (18), and therefore they do not
depend on the initial data, but only on the forms of ma-
trices B1, . . . , Bn. Then, according to Theorem 10, there
are as many real vector solutions to (21) as numbers of
orthants in then-dimensional system of coordinates mi-
nus 1, i.e.2n − 1. (No solutionv to (18) exists such that
vi < 0, i = 1, . . . , n.)

It is possible to obtain the proof of this theorem
for (9) in a more straightforward manner. (Forn = 2
the proof is given in Theorem 5.)

Rewrite (18) in the form

(−B)−1


v1

v2

...

vn

 = −


v2
1

v2
2

...

v2
n

 .

Let v∗ = (v∗1 , . . . , v∗n)T 6= 0 be a solution to (18), for
which v∗i ≥ 0, i = 1, . . . , n. (According to Theorem 9,
such a solution always exists.) Introduce the variableu =
v1/v2 and suppose thatv3 = v∗3 , . . . , vn = v∗n. Now we
will devide the first equation of this system by the second
one. Then we obtain

v2
1

v2
2

=
p11v1 + p12v2 + · · ·+ p1nvn

p21v1 + p22v2 + · · ·+ p2nvn
= u2 =

p11u + q1

p21u + q2
,

wherep11 > 0, p21 > 0, q1 > 0, q2 > 0.

The last relation can be rewritten asg(u) = 0, where

g(u) =
p11u + q1

p21u + q2
− u2. (22)

Let u = 0. Then g(u) > 0. Denote respectively byu1 =
−p12/p11 < 0 and u1 = −p22/p21 < 0 the roots of
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the numerator and the denominator of the fraction which
is included in (22). Assume thatu1 < u2 < 0. If ur ∈
(u1, u2), we obtaing(ur) < 0, and a negative solution to

−p21u
3 − q2u

2 + p11u + q1 = 0

exists in the interval(0, ur).
According to the Descartes Theorem (Demidovich

and Maron, 1966), the last equation has one positive root
u∗1. It was shown above that in the interval(0, ur) there
is one negative root. But by virtue of the cube of (22), in
reality there exist two such roots. Thusu∗1 = (v1/v2)∗1 >
0, u∗2 = (v1/v2)∗2 < 0, u∗3 = (v1/v2)∗3 < 0.

Let, e.g.,n = 3. Then from the last section it follows
that the vector solutionsv = (v1, v2, v3)T to (18) can be
distinguished as follows:

(a) v∗3 > 0 and the fractionv1/v2 is investigated;
then the coordinates of the vector solutions have
signs (+,+,+)T , (+,−,+)T , (−,−,+)T and
(−,+,+)T ;

(b) v∗2 > 0 and the fractionv1/v3 is investigated;
then the coordinates of the vector solutions have
signs (+,+,+)T , (−,+,+)T , (−,+,−)T and
(−,+,+)T ;

(c) v∗1 > 0 and the fractionv2/v3 is investigated;
then the coordinates of the vector solutions have
signs (+,+,+)T , (+,+,−)T , (+,−,+)T and
(+,−,−)T .

From these combinations of sign coordinates of the
vector solutions to (18) it follows that the number of var-
ious vectors can be only7 = 23 − 1. This completes the
proof.

Let us now go on to the construction of stability do-
mains of (6) for an arbitraryn. Assume thatr coordi-
nates of the initial vector are positive (then the remaining
n − r coordinates are negative). Additionally, we shall
assume that (6) is a regular WIS system.

To investigate the system (6), we will use the iterated
Euler method:

xi+1 = xi +


xT

i B1xi

...

xT
i Bnxi

∆t, i = 0, 1 . . . ,

where∆t > 0 is a sufficiently small integration step.

Definition 7. Assume thata,b ∈ Rn are arbitrary vec-
tors. Thena ≥ b means thatai − bi ≥ 0, i = 1, . . . , n.

From Theorem 8 it follows that ifx(t∗) > 000 for
some t∗, then the solution to (6) is conditionally stable.

Therefore if for somei and a sufficiently small∆t the
conditions 

x1,i + xT
i B1xi∆t > 0,

...

xn,i + xT
i Bnxi∆t > 0

are satisfied, then the solution to (6) will be conditionally
stable.

Thus the investigation of stability is reduced to that
of set solutions for the system of inequalities

x1 + λxT B1x > 0,
...

xn + λxT Bnx > 0

(23)

in the orthant given by the relations

xi1 > 0, . . . , xir
> 0,

xir+1 < 0, . . . , xin
< 0.

(24)

Here (i1, . . . , in) ∈ {1, . . . , n} is a permutation andr is
the number of the positive coordinates of the initial vector;
λ is some positive parameter.

For simplicity, assume thatx1 > 0 and xr < 0.
Then the first and ther-th inequality of (23) can be trans-
formed into the form x1xr + λxrxT B1x < 0,

xrx1 + λx1xT Brx > 0.

Hence

−λx1xT Brx < x1xr < −λxrxT B1x

and, asλ > 0,

xT (x1Br − xrB1)x > 0.

Using similar reasoning, ifr 6= 0 or r 6= n, it is
possible to get the following system of inequalities:

xT (xkBl − xlBk)x > 0, (25)

where k ∈ (i1, . . . , ir), l ∈ (ir+1, . . . , in), and
(i1, . . . , in) is a permutation ofn positive integers. It
is obvious that, in all, there arer(n− r) inequalities (25)
of which only n− 1 are independent.

It is known that the set of solutions to a homogeneous
system of inequalities is a cone. Therefore, taking account
of (24), the set of solutions to (23) constitutes a cone be-
longing to an appropriate orthant. Since there are2n or-
thants, r 6= 0 and r 6= n, we get d = 2n − 2 of such
cones. Let us mark these cones asΩ1, . . . ,Ωd. Besides,
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we shall denote byΩ0 the cone of vectors with positive
coordinates.

In what follows, a central role will be played by the
cone

Ω =
d⋃

i=0

Ωi.

Consider the operatorD : Rn+1 → Rn, acting as

∀x ∈ Rn, ∀λ ∈ R+ : D(x, λ) = x+λ


xT B1x

...

xT Bnx

 .

Theorem 12. The coneΩ is invariant with respect to
the action of the operatorD (∀x ∈ Ω, ∀λ ∈ R+,
D(x, λ) ∈ Ω).

Proof. Suppose that the system (6) is reduced to the
form (9). Besides, for simplicity, we consider the case
n = 2. Only such an approach allows us to demonstrate
all the details valid for an arbitraryn.

Let, e.g., x10 < 0 and x20 > 0, where x0 =
(x10, x20)T ∈ Ω. Then one of the inequalities (25) can
be written down as

xT
0 (x20B1 − x10B2)x0 > 0. (26)

If we express it through the variableu = x10/x20, then
for any u < 0 we obtain the inequalityg(u) > 0, where
g(u) is defined in (22). The behaviour of the cubic curve
g(u) implies µ−1 < (x10/x20) < µ+, where µ−1 is the
maximum negative root ofg(u) = 0, and µ+ is the posi-
tive root of the same equation.

Return now to the inequalities (23) and construct the
first iteration of Euler’s process:(

x11

x21

)
=

(
x10

x20

)
+ ∆t

(
xT

0 B1x0

xT
0 B2x0

)
. (27)

Then from the first two equations of (27) and the inequal-
ity (26) the following inequality can be obtained:

x11x20 − x21x10 = ∆t(xT
0 (x20B1 − x10B2)x0) > 0.

But since x20x21 > 0, from the last inequality it fol-
lows that x11/x21 > x10/x20. Here two cases can be
distinguished: eitherx11 ≥ 0, x21 > 0 or x11 < 0,
x21 > 0 and µ−1 < (x11/x21) < µ+. In the first case,
we havex1 = (x11, x21) ∈ Ω. In the second case, we get
xT

1 (x21B1 − x11B2)x1 > 0. Hence alsox1 ∈ Ω.

It is obvious that after thei-th iteration we get a
monotonically increasing sequence

x10

x20
<

x11

x21
< · · · < x1,i

x2,i
.

Taking into account the fact that in the interval(µ−1 , µ+)
there are no zeros ofg(u), it is clear that∀i, µ−1 <
(x1,i/x2,i) < µ+. Considering similarly all the situations
for which xi,0 < 0, we finally get the statement of the
theorem.

Theorem 13. If x0 ∈ Ω, then under conditions (b) and
(c) of Theorem 8 the trivial solution of the regular system
(6) is conditionally asymptotically stable.

Proof. From Theorem 12 it follows thatlimi→∞
x1,i/x2,i = µ+ > 0. Hence, starting from somei, we
obtain x2,i > 0 and x1,i > 0. The satisfaction of the last
inequalities guarantees conditional stability.

The cone of stabilityΩ has a nonlinear directrix.
This is not suitable for practical purposes. Therefore we
shall construct a coneΩΛ ⊂ Ω with rectilinear directri-
ces.

Consider the set of equations similar to the sys-
tem (21):

gi1(µi1, . . . , µi,j−1, µi,j+1, . . . , µi,n) = 0,
...

gi,k−1(µi1, . . . , µi,j−1, µi,j+1, . . . , µi,n) = 0,

gi,k+1(µi1, . . . , µi,j−1, µi,j+1, . . . , µi,n) = 0,
...

gi,n(µi1, . . . , µi,j−1, µi,j+1, . . . , µi,n) = 0,

(28)

whereµij = xj/xi for i, j, k = 1, . . . , n, j 6= i, k 6= i,
j − 1 > 0, k − 1 > 0. (It is clear that, in all, there
are n such systems. Any such system depends onn− 1
unknownsµij .)

Denote byd = degCWi the degree of the variety of
solutions to these systems. (Above it was shown that these
degrees are really identical for complete systems and they
are equal tod = 2n − 1.) Then there exist exactlyd
(n− 1)-dimensional vectors

(µi1, . . . , µi,j−1, µi,j+1, . . . , µi,n)k

being solutions to (28),k = 1, . . . , d.

Delete from the set of these vectors the vector hav-
ing all positive coordinates. Furthermore, any(n − 1)-
dimensional vector with coordinatesµij is substituted for
the n-dimensional vector with the same coordinates, but
in place ofi we have 1. Then the remainingd−1 vectors
will be placed ind − 1 orthants, except for the orthants
with only positive and only negative coordinates. Denote
these orthants byΩ0 and Ωd. From the resultingd − 1
n-dimensional vectors we selectn − 1 vectors such that
the (n− 1)-dimensional hyperplane spanned on them in-
tersects orthantsΩ0 and Ωd only at zero. There will be
exactly d− 1 such hyperplanes. The sum of these hyper-
planes forms the required coneΩΛ.
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5. Lyapunov Stability of Non-Homogeneous
Quadratic Systems with Singular
Linear Part

Return now to the study of the system (5). In addition, we
will assume thatdet A0 = 0, whereA0 is the matrix of
the operatorA0. (In the case ofdetA0 6= 0 the solution
to the problem is well known (Khalil, 1995): for the local
stability of the system (5) the matrixA0 has to be Hur-
witz.) Besides, in the given section we will assume that
A0 is diagonalizable in the field of complex numbersC.
Using a nonsingular transformationL ∈ Rn×n the ma-
trix A0 can be reduced to the form

L−1A0L=



α1

... 000
αr

β1 γ1

−γ1 β1

...

000 βs γs

−γs βs

000



, (29)

where the dimension of the zero diagonal block is equal
to n− r − 2s.

Perform the change of variablesx → Lx. Then
the matrix A0 will be replaced withL−1A0L. Below,
in order to simplify the notation, we will retain the for-
mer notationA0 for the matrixL−1A0L. Similarly, after
the application of the transformationL, we will retain the
notation Bi, i = 1, . . . , n for the matrices of quadratic
forms of the system (5).

Introduce Lyapunov’s function as the positive defi-
nite quadratic form (Khalil, 1995):

F = x2
1 + · · ·+ x2

n.

Then the derivativedf/dt, calculated on the basis of (5),
has the form

df

dt
= α1x

2
1 + · · ·+ αrx

2
r + β1x

2
r+1

+ β1x
2
r+2 + · · ·+ βsx

2
r+2s−1

+ βsx
2
r+2s + xT(x1B1 + · · ·+ xnBn)x.

Rewrite the last formula as follows:

df

dt
= (α1 +

n∑
i=1

ξ1ixi)x2
1 + · · ·+ (αr +

n∑
i=1

ξrixi)x2
r

+ (β1 +
n∑

i=1

τ1ixi)x2
r+1

+ (β1 +
n∑

i=1

υ1ixi)x2
r+2 + · · ·

+ (βs +
n∑

i=1

τsixi)x2
r+2s−1

+ (βs +
n∑

i=1

υsixi)x2
r+2s

+ (
n∑

i=1

ρr+2s+1,ixi)x2
r+2s+1 + · · ·

+ (
n∑

i=1

ρn,ixi)x2
n. (30)

It is clear that df/dt will be nonpositive in some
small neighbourhood of the point0 if the following
conditions are fulfilled: α1 < 0, . . . , αr < 0, β1 <
0, . . . , βs < 0 and the(n− r − 2s)× n-matrix

J =

 ρr+2s+1,1, . . . , ρr+2s+1,n

. . . . . . . . . . . . . . . . . . . . . . .

ρn,1, . . . , ρn,n

 (31)

is the null matrix.

The last result can be used to design stable con-
trol laws for the system (1),(2). For that purpose we
introduce linear feedbacku = KLy into the last sys-
tem; then we get (3). Further, we reduceA0 to the
form (29). (It is clear thatJ will be linearly dependent
on KL : J = J(KL).) Finally, we obtain the system
J(KL) = 0, which consists of(n − r − 2s) × n linear
equations with respect to them × p unknown elements
of the matrix KL. The solutions to this system will give
the required gains. If the systemJ(KL) = 0 is incom-
patible, there does not exist linear feedback ensuring the
stability of the closed system (3) (even if all the nonzero
eigenvalues of matrixA0 have negative real parts).

Denote byKerA0 the kernel of the operatorA0

and by A0f the restriction operatorA0 on the quotient
spaceRn/KerA0.

Theorem 14.Assume that the matrix of the operatorA0f

is diagonalizable and all its eigenvalues have negative
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real parts. Then for the stability of the solutions to the
system (5) it is sufficient thatmp > (n− r − 2s)× n.

In the present section we will suppose thatn = 2.
Rewrite (5) in the following form:

ẋ1(t) = d11x1(t) + d12x2(t)

+b111x
2
1(t) + b112x1(t)x2(t)

+b121x2(t)x1(t) + b122x
2
2(t),

ẋ2(t) = d21x1(t) + d22x2(t)

+b211x
2
1(t) + b212x1(t)x2(t)

+b221x2(t)x1(t) + b222x
2
2(t).

(32)

Here b112 = b121 andb212 = b221.

Let us show that for a generic system of the second
order the design of control laws on the output, ensuring
the stability of a closed-loop system, it is not possible.

Suppose that the matrixA0 is diagonalizable and
detA0 = 0. Then the following cases are possible:
(a)mp = 2, r = 1, s = 0, (b) mp = 2, r = 0, s = 0.

It is easy to show that for these cases the condi-
tions of Theorem 14 are not fulfilled. Therefore there is a
unique possibility: (c)mp = 4, r = 1, s = 0 (state feed-
back). In the remaining cases it is possible to speak only
about the conditional stability of the closed-loop system.

6. Algorithms for the Design of Linear
Control Laws for Bilinear Systems

6.1. Design for Homogeneous Systems
of the Second Order

We will assume that in the system (1), (2) we haven = 2
and A0 = 0.

1. Introduce the feedbacku = KCx into the sys-
tem (1), whereK ∈ Rm×p is an unknown matrix.
Thus we will get (32), in whichdij = 0 and the
coefficientsbijk depend onK.

2. Set

U =

(
b111 b122

b211 b222

)
, U1 =

(
b111 b112

b211 b212

)
,

U2 =

(
b121 b122

b221 b222

)
, U3 =

(
b111 b112

b112 b122

)
,

U4 =

(
b211 b212

b212 b222

)
, U5 =

(
b211 b212

b112 b122

)
.

As for the invariants J1, J2 and J3 (Belozy-
orov,2001), we have

J1(K) = det(U2)− 4 det(U1U2),

J2(K) = det(U1U2 − U2U1),

J3(K) = tr(U2
2 )(detU1 + detU4)

+ tr(U2
1 )(detU2 + detU3)

+ tr(U1U2 + U2U1) det U5.

These are polynomials of the fourth degree with re-
spect to the elements of the matrixK.

3. Form the system of inequalities

J1(K) > 0, J2(K) > 0, J3(K) < 0 (33)

and find the domainZ ⊂ Rm×p (or its part), deter-
mined by this system.

The following steps of the algorithm are in-
tended for the determination of the cone of condi-
tional stability.

4. Fix a feedback matrixK0 ∈ Z and write down the
system (6) for this matrix.

5. Form the equations (7) with respect to the unknowns
ρ1 and ρ2 (it is possible to setr = 1).

6. Find the solutionsf1 = (ρ11, ρ12) and f2 =
(ρ21, ρ22) to (7) (they are necessarily real) and form
the matrix

F =

(
ρ11 ρ12

ρ21 ρ22

)−1

.

7. Use x = FPz to reduce (6) to the form (8).

8. Once again, changing the variablesz = F1v, where
F1 = diag (signβ11, signβ22) is a diagonal matrix,
make all diagonal elements negative in the matrixB
of the system (8). In this case the matrix

B =

(
−β11 β12

β21 −β22

)

of the system (9) will satisfy the properties (b) and
(c) of Corollary 2.

9. Calculate the maximum negative rootλ = v2/v1 of
the equationβ12λ

3+β22λ
2−β11λ−β21 = 0 and the

maximum negative rootµ = v1/v2 of the equation
β21µ

3 + β11µ
2 − β22µ− β12 = 0.
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10. Calculate generators of the stability cone; they will
be the vectorsd1 = (1, λ)T and d2 = (µ, 1)T .

11. Find any solutionw = (w1, w2)T to the system of
the inequalities(d1,w) ≥ 0, (d2,w) ≥ 0.

12. Define the generators of the stability cone in the ini-
tial system of coordinates under the formulaexi =
FPF1di, i = 1, 2. They divide thex1x2 plane into
four sectors. Take the sector which contains the point
FPF1w. It will be the stability coneΩ(K0) de-
pending on the feedback matrixK0.

6.2. Design for the Non-Homogeneous System
of Any Order

1. Compose the matrixL reducing the matrixA0 to
the form (29).

2. Transform the system (1) using the formulax = Lz.

3. Introduce feedback into the transformed system (1)
using the formulau = KCLz, whereK ∈ Rm×p

is an unknown matrix.

4. Introduce the functionf and calculate its derivative
df/dt (it depends onK) using (30).

5. Write down the system of the linear equations
J(KL) = 0, where the matrixJ(KL) has the form
(31). (If output feedback is sought, thenK = KL;
if state feedback is sought, thenK = KLL−1.) Let
KL 6= 0 be one of nontrivial solutions. (If the sys-
tem J(KL) = 0 is unsolvable, then finish the design
procedure.)

6. Substitute the matrixKL into the derivative (30).

7. Let α1 < 0, . . . , αr < 0, β1 < 0, . . . , βs < 0. Us-
ing (30), form the following system of linear inequal-
ities:

n∑
i=1

ξ1izi < |α1|, . . . ,
n∑

i=1

ξrizi < |αr|,

n∑
i=1

τ1izi < |β1|,
n∑

i=1

v1izi < |β1|, . . . ,

n∑
i=1

τsizi < |βs|,
n∑

i=1

vsixi < |βs|.

8. Using the Cauchy inequality, estimate the sizes of the
domain H in which df/dt < 0, according to the

formula

‖z‖ < min

 |α1|√
n∑

i=1

ξ2
1i

, . . . ,
|αr|√
n∑

i=1

ξ2
ri

,
|β1|√
n∑

i=1

τ2
1i

,

|β1|√
n∑

i=1

v2
1i

, . . . ,
|βs|√
n∑

i=1

τ2
si

,
|βs|√
n∑

i=1

v2
si

 .

The sizes ofH for a variablex are determined from
‖x‖ ≤ ‖z‖/‖L−1‖. The domain of the initial values
Y , for which the closed-loop system (by feedback
K0) will be stable in the Lyapunov sense, is included
in H.

It is necessary to note that, generally speaking,Y
6= H. Therefore for the definition ofY it is necessary to
take some points fromH and, based on these points, to
estimate sizesY .

7. Examples

Below we shall consider some examples in which Algo-
rithms 6.1 and 6.2 are used in a simplified form.

Example 1.Assume that a bilinear system is given by the
equations

ẋ1 = −4x1 + 6x2 + (11x1 − 15x2)u1

+(−10x1 + 19x2)u2,

ẋ2 = −2x1 + 3x2 + (7x1 − 10x2)u1

+(−7x1 + 13x2)u2.

It is required to construct a feedback matrixK of the lin-
ear control lawu = Kx, ensuring the stability of the
trivial solution of the closed-loop system. (In the given
example, the control law must be only by law on the state).

We start with the matrixL transforming the linear
part of the system (32) into the diagonal form:

L =

(
2 3
1 2

)
, L−1 =

(
2 −3

−1 2

)
.

Then, after the substitution ofx = Lz, the required sys-
tem can be transformed into the form{

ż1 = −z1 + (2z1 + 3z2)u1 + (z1 + z2)u2,

ż2 = (z1 − z2)u1 + (−z1 + 2z2)u2.
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Let u1 = k11z1 + k12z2 and u2 = k21z1 + k22z2.
Let us construct the Lyapunov functionf = z2

1+z2
2 . Then

ḟt = z2
1 [−1 + (2k11 + k21)z1 + (2k12 + k22 + 4k11)z2]

+ z2
2 [(4k12 − k11 + 2k21)z1 + (2k22 − k12)z2].

Thus, if the following two conditions are satisfied:

4k12 − k11 + 2k21 = 0, 2k22 − k12 = 0,

then the matrixJ(KL) is a null matrix.

In the sequel, we have

KL =

(
8k22 + 2k21 2k22

k21 k22

)
6= 000.

Let, e.g.,k22 = 0.1 and k21 = −0.4. Then k12 = 0.2,
k11 = 0 and

KL =

(
0 0.2

−0.4 0.1

)
.

Going back to the initial basis ofR2, we obtain the
feedback matrix

K = KLL−1 =

(
−0.2 0.4
−0.9 1.4

)
.

The system closed by this type of feedback is represented
in the form ẋ1 = −4x1 + 6x2 + 6.8x2

1 − 23.7x1x2 + 20.6x2
2,

ẋ2 = −2x1 + 3x2 + 4.9x2
1 − 13.7x1x2 + 14.2x2

2.

The domain of the negative definitenessH for the
function ḟt is determined by the inequality

‖x‖≤ 1√
18
√

(16k22+5k21)2+(37k22+8k21)2
<0.5.

The behaviour of solutions to the last system for var-
ious initial data is represented in Figs. 2–5:

Thus the trivial solution is stable (but only locally).
Besides, the domain of stabilityY = Y (x0) is deter-
mined by the inequality‖x0‖ ≤ 0.4. �

Example 2.Suppose that a bilinear system is given by the
equations {

ẋ1 = x1u1 + (−x1 − x2)u2,

ẋ2 = (2x1 + x2)u1 + x2u2.

Similary to the previous example, it is required to con-
struct a feedback matrixK of the control lawu = Kx
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Fig. 4. Solutions of the quadratic system
for x10 = −0.4 and x20 = 0.4.

on the state. It is clear that the system closed by this type
of feedback should have a nonzero domain of conditional
stability. (Stability in the Lyapunov sense in the given ex-
ample is impossible (even locally).)
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Fig. 5. Solutions of the quadratic system
for x10 = −0.4 and x20 = −0.4.

The system closed by the state feedback has the form:
ẋ1 = (k11 − k21)x2

1 + (k12 − k22 − k21)x1x2

−k22x
2
2,

ẋ2 = 2k11x
2
1 + (2k12 + k11 + k21)x1x2

+(k12 + k22)x2
2.

(34)

Thus in (32) we haveb111 = k11 − k21, b112 =
b121 = (k12 − k22 − k21)/2, b122 = −k22, b211 =
2k11, b212 = b221 = (2k12 + k11 + k21)/2, b222 =
k12 + k22 (the linear part is missing).

For the solution of the design problem, the inequali-
ties (33) are used. Assume thatk12 − k22 − k21 = 0 and
2k12 +k11 +k21 = 0. (Then we can avoid the analysis for
polynomial inequalities of the 4-th degree.) Thus we ob-
tain the domain given by the inequalitiesk22 + 2k21 > 0,
2k22 + 3k21 ≥ 0, k22 ≤ 0, k21 + k22 < 0 and
k2
21 + 4k21k22 + 2k2

22 < 0.

It is easy to check that this domain is non-empty. (For
example, the pointk11 = 0.4, k12 = −0.8, |, k21 = 1.2,
k22 = −2 belongs to the domain.) Then the system (34)
closed by the feedback

K =

 0.4 −0.8

1.2 −2


reduces to the form ẋ1 = −0.8x2

1 + 2x2
2,

ẋ2 = 0.8x2
1 − 2.8x2

2.

Calculating µ = −0.6720 and λ = −0.4762 of
Step 9 of Algorithm 6.1, we conclude that the last sys-
tem is conditionally stable in the domainΩ = {x1 +
0.6720x2 > 0}

⋂
{x2 + 0.4762x1 > 0}. (Here a sim-

plified variant of Steps 4–12 of Algorithm 6.1 is used.)

The computation of the invariantsJ1 = 0.4096 > 0,
J2 = 1.024 > 0, J3 = −13.4656 < 0 shows that for
the given example the conditions (33) are fulfilled.

Solutions of the closed-loop system for various ini-
tial data are given in Figs. 6–9. For the first three cases
we havex0 ∈ Ω and in the last case we getx0 6∈ Ω. It
is clear that in the first three cases the solution is condi-
tionally stable and in the fourth one it is unstable. �
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Fig. 6. Solutions of the quadratic system for
x10 = 1.0 and x20 = 2.0.
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Fig. 7. Solutions of the quadratic system for
x10 = 1.0 and x20 = −0.4.

Example 3.Consider an example of the construction of the
stability domain for the following homogeneous system of
the third order:

ẋ1 = −2x2
1 + x2

2,

ẋ2 = x2
1 − 2x2

2 + x2
3,

ẋ3 = x2
1 + x2

2 − 2x2
3.

(It is easy to verify that the system satisfies Conditions (b)
and (c) of Theorem 8.)
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Fig. 9. Solutions of the quadratic system for
x10 = −0.1 and x20 = −0.2.

Define vectors forming the stability cone. For
this purpose, we introduce new variablesx1/x3 = u,
x2/x3 = v and consider the system (28):

u =
−2u2 + v2

u2 + v2 − 2
, v =

u2 − 2v2 + 1
u2 + v2 − 2

.

Eliminating the variablev from the last system, we obtain
the following equation:

18u7+27u6−57u5−39u4+55u3+11u2−13u−1 = 0.

Furthermore, the unknownv is defined by

v =
3u3 + 3u2 − 3u− 1

−3u2 + 2
.

Thus we have seven vectorsdi = (ui, vi, 1)T , i =
1, . . . , 7, out of which six (except for the vector with posi-
tive coordinates) give vectors forming the cone in the rect-

angular system of coordinatesx1x2x3:

d1 =

 −2.247
1.000
1

 , d2 =

 −1.089
−1.249

1

 ,

d3 =

 −0.555
1.000
1

 , d4 =

 0.891
−2.175

1

 ,

d5 =

 0.772
−0.691

1

 , d6 =

 −0.074
−0.384

1

 .

Note that all these vectors are real.

It is required that these vectors be placed in six var-
ious orthants. (If it is not the case, then an appropri-
ate vector is multiplied by−1. Taking into account the
last remark, we obtain vectorsa1 = −d1, a2 = −d2,
a3 = d3, a4 = −d4, a5 = d5, a6 = d6.

Now we can construct the edges of the cone from
these vectors. (It should be noted that the cone has to con-
tain the first orthant.) Thus the edges of the cone are gen-
erated by vectors{a3,a6}(I), {a6,a5}(II), {a4,a2}(III),
{a2,a1}(IV), {a5,a1}(V), {a3,a4}(VI).

From analytical geometry it is known that the plane
passing through three points with coordinates(f1, f2, f3),
(g1, g2, g3), (h1, h2, h3) in the rectanguler system of co-
ordinatesx1x2x3 is defined by the equation

det

 x1 − f1 x2 − f2 x3 − f3

g1 g2 g3

h1 h2 h3

 = 0.

The last formula can be used to obtain equations
for the edges of the cone. Assume that(f1, f2, f3) =
(0, 0, 0), and instead of coordinates(g1, g2, g3) and
(h1, h2, h3) we substitute coordinates of the vectors
forming planes (I), . . . , (VI). The required stability cone
ΩΛ can be defined by the following system of linear in-
equalities:

1.385 0.481 0.287
0.307 0.846 0.348
0.926 1.981 3.483
2.249 1.158 3.896
1.691 3.019 0.781
3.175 1.446 0.316


 x1

x2

x3

 ≥ 0.

�
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8. Conclusion

Conditions (33) allow us to state that when they are met
(for an appropriate matrixK), there exists a domain of
conditional stability for the homogeneous system (32).
This domain is also defined by the set of equations (19),
which (unfortunately) is not invariant with respect to the
transformations of system coordinates. However, non-
satisfied conditions (33) for anyK mean that the appro-
priate closed control system cannot be made condition-
ally stable via linear feedback for any initial data. This
involves the following problem: For what homogeneous
regular complete systems (32) is the system of inequali-
ties (33) solvable? A similar problem can be formulated
for control systems of any order.
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Appendix

Any quadratic form on the right-hand side of the sys-
tem (6) can be represented as follows:

xT Bix = (ri1, . . . , rin) · (x1xT , . . . , xnxT )T ,

where ri1, . . . , rin are n-dimensional row vectors of the
matrix Bi, i = 1, . . . , n. Thus any system (6) can be
presented as

ẋ(t) = T ·
(
x(t)⊗ x(t)

)
,

where

T =


r11, . . . , r1n

... . . .
...

rn1, . . . , rnn

 ∈ Rn×n2
(A1)

is a mixed tensor once contravalent and twice covalent.
The new vectorx⊗ x = (x1xT , . . . , xnxT )T is a tensor
product of the vectorx by itself. (Here the tensorT is
realized as the space of matrices of sizesn × n2. The
spaceΨ of such tensors has dimensionn2(n + 1)/2.)

Let GL(n, C) be a complete linear group of all
square invertible matrices of sizesn × n with elements
from the field of complex numbersC. Introduce a new
variable z into (A1) according to the formulax(t) =
Sz(t), where S ∈ GL(n,C). Then we get an operation
GL(n, C) : Ψ → Ψ of the group on the space of tensors,
acting as follows:

∀ T ∈ Ψ, ∀S ∈ GL(n,C) : S(T) = S−1 ·T · (S ⊗ S),

whereS = (sij) for i, j = 1, . . . , n and

S ⊗ S =


s11 · S, . . . , s1n · S

... . . .
...

sn1 · S, . . . , snn · S

 .

Note that a polynomialg(T) is called an invariant of
weight l of the group GL(n,C) if ∀S ∈ GL(n,C),
g(S(T)) = (detS)l × g(T), where l is some integer.

Write

∆i =


r1i

...

rni

 ∈ Cn×n, i = 1, . . . , n.

Then we getT = (∆1, . . . ,∆n) ∈ Cn×n2
.

Construct the function

Jn(T) = det(
∑

1≤j1,...,jn≤n

(−1)σ∆j1∆j2 . . .∆jn),

where the summation is taken over all permutations
(j1, . . . , jn) of n numbers 1, 2, . . . , n; σ is number
of transpostions in permutation(j1, . . . , jn). (For ex-
ample, J2(T) = det(∆1∆2 − ∆2∆1), J3(T) =
det(∆1∆2∆3 + ∆2∆3∆1 + ∆3∆1∆2 − ∆1∆3∆2 −
∆2∆1∆3 −∆3∆2∆1).)

Theorem A1. The functionJn(T) is a relative invariant
of weight n of the groupsGL(n, C) with respect to the
operation mentioned above.
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Proof. Consider the sequence of transformations

S(T) = S−1 ·T · (S ⊗ S)

= S−1(∆1, . . . ,∆n) · (S ⊗ S)

= S−1(
n∑

i=1

∆isi1, . . . ,
n∑

i=1

∆isin)S.

The computation of the determinant of the last
matrix proves our assertion, i.e.,detS(T) =
(detS)nJn(T).

Changing variablesx(t) = Sz(t), we reduce (6) to
the form (8). Then the tensorT is transformed to a new
tensorQ.

Theorem A2. Jn(Q) = (det B)g(Q), where g(Q) is a
polynomial inQ.

Proof. Let det B 6= 0. It is obvious that

Q = (∆1(S), . . . ,∆n(S)),

where∆i(S) is an (n×n) matrix with a unique nonzero
column (β1i, . . . , βi−1,i, βii, . . . , βin)T , i = 1, . . . , n.

As detB 6= 0, the function (detB)−1 · Jn(Q)
is well defined. Then taking into account the fact that
S−1S = In, we obtain

(detB)−1 · Jn(Q)

= det
( ∑

1≤j1,...,jn≤n

(−1)σB−1∆j1(S)∆j2(S)

· · ·∆jn
(S)
)
.

But for any ∀ j1 ∈ {1, . . . , n} the matrixB−1∆j1 has a
unique nonzero element equal to unity. Thus the function
(detB)−1 ·Jn(Q) = g(Q) is a polynomial. The proof of
Theorem A2 is thus completed.

Theorem A3. Assume that the tensorT0 defines a regu-
lar but non-WIS system. ThenJn(T0) = 0.

Proof. As T0 is not a WIS system, there exists a trans-
formation S such that while passing from the system (6)
to the system (8), the matrixB gets a block-triangular
structure. For simplicity, assume that in this matrix we
haveβ21 = · · · = βn1 = 0. Then∑

1≤j1,...,jn≤n

(−1)σ∆j1(S)∆j2(S) . . .∆jn
(S)

= M1∆1(S) + · · ·+ Mn∆n(S),

where in the matrixMi the i-th column is equal to zero
and in the matrix∆i(S) the i-th column is not equal to
zero. But the matrix∆1(S) has a unique nonzero ele-
ment−β11. ThereforeM1∆1(S) = 0, and in the matrix
M1∆1(S)+· · ·+Mn∆n(S) the first column is zero. This
completes the proof.

Theorems A1, A2 and A3 imply the following result:

Corollary A1. Let M ⊂ Ψ be the set of all tensors such
that if T ∈ M, thenJn(T) 6= 0. ThenM is an open and
everywhere dense invariant subset inΨ. Consequently,
any system fromM is a regular WIS system.
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