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DESIGN OF LINEAR FEEDBACK FOR BILINEAR CONTROL SYSTEMS
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Sufficient conditions for the conditional stability of trivial solutions for quadratic systems of ordinary differential equations
are obtained. These conditions are then used to design linear control laws on the output for a bilinear system of any order.
In the case of a homogeneous system, a domain of the conditional stability is also indicated (it is a cone). Some examples
are given.
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1. Introduction Fixing bases in spaceR™ and R?, we denote the
. . . matrices of operators\; and C in the selected bases as
Cops@er a quadratic control system the state equation ofAZ_ and C = (ci,...,c,), respectively. Herey, ..., c,
which is are columns of the matrixC; i = 0, ..., n+m. For arbi-
n m+n trary column vectorsx and b, we denote by(a, b) their
x(t)= (AO +Z zi(t)A; +Z uin(t)Ai>X(t); (1) scalar product; besides, we denote || = /(x,x)
i=1 i=n+1 the Euclidean norm of any vector € R™. Let us recall

the definition of the conditional stability of solutions to a

where system of differential equations (Demidovich, 1967).
x(t) = (21(), ..., wn ()" €R™, - B ,
Definition 2. The trivial solutionx(¢) = 0 of the system
u(t) = (wi(t),. .. ,um(t))T cR™, of differential equations
and the observation equation has the form x(t) = F(t,x(1)),
y(t) = Cx(t), y(t) = (y1(t),...,yp(t))" € RP, with the vector of initial values<(0) = (210, ..., Zn0)7,
T where F(t,X) = (Fl(t,xl, e ,I’n), ey Fn(t,$1, cey
y(0) = (410, yp0) " - (2) z,))?T € R™ is a vector function, is calledonditionally

stableif there exists a variety of initial value® c R”

n m P -
Here R", R™,R¥ are rea| vector spaces of column vec such that for any solutiox(¢) satisfying the conditions

tors, x(¢),u(t),y(t) are vectors of states, inputs and
outputs, respectivelyy(0) is a vector of initial values,
A, : R" - R"™ and C : R™ — RP are real linear map- x(0) € © and [x(0)] < 6(c),
pings of appropriate real spaces= 0,...,n + m. (If
A; =0, Vie{l,...,n}, then the system (1) is called a
bilinear control system.)

In what follows, we shall continue to study the prob- is satisfied fort > 0. If also
lem, the research on which was started earlier. Therefore, .
for the reader's convenience, we shall recall some results di [[x(8)[ = 0,
from the paper (Belozyorov, 2001).

the inequality
Ix(®) <€

then the solutionk(¢) = 0 is calledconditionally asymp-
Definition 1. If Ay = 0, then the system (1) is called totically stable (Here ¢ and ¢ are positive numbers,
homogeneou®therwise, it is callethon-homogeneous wheree is given andd = §(¢) is a function ofe.)



amcs Q)

V.Ye. Belozyorov

In what follows, the structure of a variet§ is not
investigated. Note only that we shall deal with varieties of

two types: it will be either an open sphere or an open cone some nominal values of variable¥, 1, . . .

with its top at the origin.

Now for the system (1), (2) let us formulate the fol-
lowing problem of mathematical control theory.

Problem of the synthesis of a static feedback lanCon-
struct a matrixK = (kf',... kI)T € R™*P of a linear
control law u(t) = Ky(t), where k1,...,k,, are row
vectors, such that the trivial solution of the closed-loop
system

X(t) = (Ao + sz(t)Az

n n+m

Y xz«(t)(kj_yb,ci)Aj)x<t>, @)

i=1 j=n+1

with the vector of initial valuesxg = {x10,...,Zn0} €
© such thatyy(t) = Cxg, would be asymptotically sta-
ble (at least conditionally).

Now, two practical examples of bilinear systems are
given.

Control problem by the nuclear reactor on thermal
neutrons: The kinetic equations of such a reactor can
be presented in the following form (Bowen and Mas-
ters,1959):

dT1 N
ﬁ = k2617—>\17"1,
drg N (4)
Frle k2567—>\67“6,
6 6
dN N N
e N Y T
a TR ;5 +; '

Here N is the density of neutrons); is the disintegra-
tion constant for the nuclei of group(there exist six such
groups),r; is the density of the nuclei of grouj [ is the
average effective time of the life of neutrons; is part
of lagging neutrons originating from a nucleus of graip

With the help of controlsyy, ..., vs itis required to
stabilize the work of the reactor in a neighbourhood of

» 760+
Introduce the notations = 30, 6, k1 = u1, kg =
ug, N = x7,7; = x;,1 = 1,...,6. Then we will obtain

the system (1), in whiclh = 7, m = 2 and

“A - 0 0
Ag = e 7
0 - =X 0
A X 0
0 0 O
A1: . . . .
0o -+ 0 1/
0 - 0 =i/l
A= | - Lo :
0 - 0 —f6/l
0 -~ 0 -8/

Problem of a navigation officer: Any space curvey in

a fixed coordinate syste@XYZcan be given by means
of the variable radius vector = r(s), where s is the
magnitude of the movement along the curve from the ori-
gin. (The representation of the radius vector in the form
r = r(s) is called the natural parametrization of the curve
~.) Let P € « be any point on this curve with radius
vector r. Let us denote byn,t and b the unit vectors
which are normal, tangent and binormal to curyeout-
going from the pointP and having the same orientation
as coordinate axeX, Y, Z, respectively. These vectors
satisfy the differential equations

a _,  dn db _
ds o ds ds ™,
which are known as Frenet's formulae. Hérds the cur-

vature of the curvey at the pointP, and 7 is the torsion
of the curve~ at the pointP.

Let us look at the pointP as at some flight vehicle,

= —kt — 7b,

ki1 is the excess reproduction coefficient, characterizing whose barycentre is located at the poidtand the con-

the affixed perturbation, ank, is the effective reproduc-
tion coefficient.

Usually, it is considered that coefficients and k-

trol is realized in the planét,b) (the pitch) and in the
plane (n,t) (the yaw). Setk = uy, 7 = ug, x; = n,
xg = t, x3 = b andx = (x¥,xI, x1)T. Then Frenet's

are linear functions of the movements of graphite rods in equations will turn into the bilinear system (1), for which

the reactor, which play the role of controls. In other words,
k1 = byvy +--- + byvg, kg = dyvy + - - - + dsvs, Where

s is the number of rods in the reactar; is the magni-
tude of the movement of theth rod, b; and d; are some
numerical coefficients; = 1,...,s.

n=9,m=2 and

0 —Is 0
AO =0, Al = I3 0 0 )
0o 0 O
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b

Fig. 1. Coordinate axes for the problem of
the navigation officer.

0 0 —Is
Ay = 0 0 O
Is; 0 0

(Here I3 is the identity matrix of the third order.)

At any time moment the orientation of axes t and
b at the point P is assumed to be knowm = x;(s),
t = x3(s) and b = x3(s). (Here s = s(t) is a known
function of time.) It is necessary to stabilize the motion of
a flight vehicle via linear feedback in a neighbourhood of
the nominal values;, of vectorsx;(s), i = 1,2, 3.

2. Some Generic Properties of Solutions of
Homogeneous Quadratic Systems

It is obvious that the system of differential equations (3)
can be rewritten as follows:

#1(t) = Y dijzi(t) + X" (1) Bix(t),
j=1

()

din(t) = Zdnjxj(t) + xT(t) Bux(t).

Here D = (di;), B1,..., B, € R™™"™ are real matrixes
and By, ..., B, are also symmetric.

Definition 3.
quadratic if D
quadratic

The system of equations (5) is called
0, then we call (5)homogeneous

Definition 4. The homogeneous quadratic system (5) is
calledregular if there are no real constants, ..., r, (at
least one being non-zero) such thax € R x* (1, By +

-+ + 7, B, )x = 0. Otherwise, (5) is called singularor
aspecialsystem.

G

In this section we will study regular homogeneous
quadratic systems of order.

i1 (t) = xT(t)B1x(t),
: (6)
in(t) = xT(t)B,x(t),

with the vector of initial value” (0) = (10, - . ., Zno)-

Consider the matrixpy B1 + - - - + pn B, € R™*™,
where p1,...,p, are arbitrary real parameters. Intro-
duce basic symmetric functions for this matrix (Gant-
macher, 1990): o1 (p1,-..,pn) = tr (;1B1 + -+ +
pnBr) = {itis the sum of all principal minors of the
first orden, o2 (p1, ..., pn) = {itis the sum of all prin-

cipal minors of the second order .., 0, (p1,...,pn) =
det(p1B1 + -+ + pnBy).
Consider the set of equations
Ul(pla"'vpn):Ta 02(p17---7pn)207
coy on(p1y..oypn) =0, @)

with respect to the unknowng, ...
arbitrary non-zero constante R.

It is easy to show (Gantmacher, 1990) that, for
generic matricesBy, ..., B,, the system (7) has lin-
early independent solutions

,pn.a@nd a known

fi = (P117P12a cee 7/)171,)’ fo = (0217P227 cee ;Pzn)7

s Prn)

(generally speaking, they are complex).

Let us find these solutions and form the non-singular
matrix F~' = (f;7,...,f,7)7 € C ™™, and then in-
troduce into (6) the new variable’(t) = (v1(¢),...,
vn(t))T € C™ using the formulax(t) = Fv(t). Then, as
shown by Belozyorov (2001), the system (6) can be pre-
sented as

) fn:(pnhana"-

1 (t) (p11v1 +--- +p1n'Un)2

’Un(t) (inl 4 +pnnvn)2
where p;; are complex numbersy(0) = F~1x(0) =
(Ul(), e ,’Uno)T.

After the change of variables(t) = Pz(t), where
P = (p;;) € C™*", the last system takes the form

4(0) B Bz ... B [ A1)
U ] e
,én.(t) Pnt Bnz - —Pan zﬁ.(t)
where 3;; are complex numberg(0) = (FP)~'x(0) =
(2105 - - - 2n0) L.
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Definition 5. The regular system (6) is called sys-
tem without invariant submanifold8VIS system) if there
exists no non-singular transformatiosy € C"**™ such
that, after the replacement = Sw, where w =
(wy,...,w,)T, the system (6) takes the particular form

(8):

=51

> agwy
=k

Here ayq, ..., a,, are complex numbers.

Denote by ¥ the set of all homogeneous quadratic

systems of orden. In Appendix it will be shown that the

set of all WIS systems contains open subset everywhere
dense inV. Thus, the systems (6) being WIS systems are

generic.

Denote by aq,as,...,a; all real singular points

such as the pole of some solution of the regular WIS

system (8). Letd; be the multiplicity of the pointa;,
i=1,...,k.

Theorem 1.Let (8) be aregular WIS system. Then all real

singular points of any solution of such a system coincide

with ay, as, . .., a, where the multiplicity of the poini;
is d“Z: 17...,k.

Proof. For simplicity, assume that = 2 and all poles of
the solutionz (¢) are equal taay, . . ., a;, and all poles of
the solutionzy(¢) coincide with pointsa;11, .. ., ak.

Also assume that,(t) = fi(t)/(t — a1)? is the
pole of multiplicity d, fi(a1) # 0 and the pointa; is
not a pole ofz;(t). Then, ast — a;, the second equa-
tion of the system (8) can be rewritten &isn; .., (t —
a1)**2(t) = Borfi(ar) — Bazlimyq, (¢ — a1)??25(t).
Since (8) is a WIS system, we hay#; # 0. Therefore
from the last relation it follows that eithef;(a;) = 0
or limt_ml (t — al)zd(é’g(t) + ﬁggzg(t)) = const # 0.

The first expression contradicts the assumption and the
second is equivalent to the relation (t) + [223(t) =
g(t)/(t — a1)??, where g(a;) # 0. From this it follows
that z3(t) = g1(t)/(t — a1)¢, where againg, (a;) # 0.
Repeating the same process for poiats. . . , a;, we
can prove that the points are poles corresponding to the
ordinals of the functionz,(¢). It is obvious that a similar
statement holds true for functiog (¢), with poles at the
points a;y1, ..., ak.

Generally, leta be the pole of solutionsz,. ..,
Zn—1(t). Then z(t) = fi(t)/(t — a)?, where f;(a) # 0,
i = 1,...,n — 1. Substituting these relations into the
last equation of the system (8) and passing to the limit as
t — oo, we obtainlim; ., (t — a)?4(2,(t) + Bunz2(t)) =
const # 0. The general case of # 2 can be con-
sidered in much the same way. The proof is thus com-
pleted. ]

Rewrite the system of equations (8) in the following
form:

() = BX()x(?), ©)
where
—B11 B2 Bin
B Bo1 22 Ban 7
. Bnl . ﬂm ........ 7@1"
x1(t) 0 0
X(t) = 0 x(t) 0
) O ...... O ......... xn(t)

Estimate the solution to the system (9), using the
Taylor expansion. In the sequel, in order to denote the
time derivative, symbols-” or * /" will be used.

Note thatV k& € Z*, || X*®)|| = ||x®)||. Then from
(9) we have
'l < 1B,
x" = (BX)x+ (BX)x = BXx + (BX)(BX)x
= BX% + (BX)*x = 2!/(BX)*x,
1" < 2! B 1%,
x" = 2(BX)(BX)x 4+ 2(BX)(BX)x + 2(BX)?x,
™| < 3Bl x|,
It is obvious that for arbitraryc € Z* we have

™ < kUBF )
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Represent formally the functiofix(¢)|| as a Taylor It is obvious that if some equation — a;(xg) =
series and estimate it: 0 has a solution in the interval0,o00), then Vj,
) lim;_. |2 (t)| = oo. If none of these solutions belongs
Ix(@)I < [lx(to)ll + [ BllIx(to)I*(t — to) +--- to the indicated interval, then from the formula (11) it fol-
+ HBHkHX(to)Hk—H(t—to)k+--- lows thatlim;_, ij(t) = 0. |

In what follows, for an arbitrary non-negative integer
= (L+[[Bllx(to)I(t = to) + - - k we write x(t) = xj, X(t;) = X;. Construct a for-
T IBIFIx(t) I* (t—tg )+ - - i (10 ma! ex_pansio_n of some vector fun_ctie/n{t)_ in the Taylor
IBIFlx(to)lI"(t=to) Jx(to)ll- (10) series in a neighbourhood of the time point
As is well known, the series (10) converges forall
satisfying the condition| B||||x(to)(t — to)|| < 1 or for
any t € [to, to + (|| B|||x(to)||)~"). If the last restriction bt (BX) (= t)" + x4 (12)
is satisfied, then the series on the right-hand side of (10)
converges; this sum is calculated using the formula for the Assume now that: = 1. Thenx(¢;) = x1, where
geometric series and the estimate (10) takes the form ¢, s selected taking account of the unique restriction

v(t) = [E+ (BXy)(t — ty)

x(t
(o) < ol 1) <t <to+

1
1Bl (to) It 1B Xoll

It is obvious that in this case the series (12) converges for
Theorem 2. Let (6) be a regular WIS system. Then g ; satisfying the condition
one of the following statements holds true: @&} €

{1,...,n} lim; o zk(t) =0, (b) forall k € {1,...,n} f<t<t+

lim;_, |2 (t)| = 0o, wherea is some positive pole. | BX1]

Proof. (a) Assume that for any: € {1,...,n} we have If we continue this procedure further, then, finally, we
lim; . zx(t) = cx, Where at least one, # 0. Thenthe  derive thatV k& € ZT, the series (12) convergegt
system (6) can be rewritten as € [tx,tr + (|| BXk||)~1), and the next valuey,; is se-

lected from the range
xT (00) B1x(00) = 0,
1
: e < tprr <lp + 5755 7-
[ BXk||
xT(00) Byx(00) = 0. .
In the case of the convergence of the series (12), the sum
It is known (Fulton, 1984) that a system of equations ©f the series is computed using the following well-known
which consists of linearly independent forms has only a formula from functional analysis:
trivial solution. Therefore we should hawg = --- = 1
¢ = 0, which proves the first statement of Theorem 2. v(t) = [E — (BXg)(t - tk)] - (13)

(b) Again, for simplicity, assume that = 2 and let Itis easy to check that in the case of the convergence

limy q 21(1) = oo and lim,_, x5(t) = ¢z = const. ¢ the function v(t), the same estimate (11) as for the
Since (6) is a WIS system, the second equation takesfunction x() is correct:

the form 0 = bllx%(a) + blgl‘l(a)xz(a) + bggl‘%(a)
ast — oo, whereby; # 0 or by # 0. In this lIx(to) ||
case z1(a)/z2(a) is a finite non-zero number. From V@Il < 1—||B||[Ix(to)|t
the conditionlim;_., z2(t) = c2 # oo it follows that

lim z1(t) = ¢; # oo holds true. The last relation contra- Again, we will search for the solution of the system (9)
ta using the Taylor expansion in the vector form. For this

dicts the assumption of the second part of Theorem 1. . — .
P P purpose, we estimate the limit values of solutions of the

Generally, the proof proceeds as follows. According system (9) at critical points.,, ..., a; and ast — oo.
to Theorem 1, any solution (6) can be represented as Here the following result is required.
it )
xi(t) = filt) Theorem 3. Assume that a regular WIS system is re-

_ di ... (t — dy’
(t = a1) (t = ax)™ duced to the form (9). Leg be one from singular points

where polesay,...,a; and their multiplicitiesdy, . . ., ai, . ..,a orthe symboH-co. Then
dj, are the same for all solutions. These poles depend on

an initial vectorx, (the so-called moving poles). %EI}iX(t)BX(t) = }E%X(t)BX(t)
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Proof. It is obvious that the last equality is equivalent to
the set of equation8my ¢ (&, (¢)x; (t) —2;(¢)Z;(t)) = 0,

i,j = 1,...,n. According to Theorems 1 and 2, ei-
ther Vi € {1,...,n},limy_e2;(t) = 0, or Vi €
{1,...,n},lim,_¢ |x;(t)| = oco. In both these cases, ac-

cording to the L'Hospital rule, we have

lim ch(t) = lim zi(t) =c;; #0.

(1) (1)
But then we havelim;_..&;(t) = c¢;;limy_¢ d;(2),
limy e 2;(t) = c¢ilimy¢ z;(t), a d the limit system
limy e (2 (t)x;(t) — xi(t)E;(t)) = 0,4,5 = 1,...,n
is satisfied. [ ]

Starting from Theorem 3, we havBmt — £x”
lim; _¢((BX)x + (BX)X) lim, ¢ (BXx +
(BX)(BX)x) lim;_¢(BX% + (BX)?’x) =
2im, e (BX)?x; limy_¢x” = lim,_¢(4(BX)BXx
+2(BX)%*%) = limy_¢(4(BX)3x +2(BX)?(BX)x) =
3!im;—¢(BX)3x, . ... Itis obvious that for any, € Z*+
we havelim; ¢ x("™) = n!lim; .¢(BX)"x
It is clear that the formal expansion of the solution
x(t) in the Talor series, in a neighbourhood of the point
= ¢, has the form (12) and the convergence of this
series is guaranteed by the above-mentioned conditions.

Thus we havelim,_.¢ ||v(t) — x(t)|| = 0 and the
function x(t) is asymptotically equivalent to the function
v(t) (Demidovich, 1967). Therefore it is possible to study
the behaviour ofx(t) for ¢+ — ¢ via the functionv (t).

Corollary 1. For the conditional asymptotic stability of
the system (9) it is necessary that the polynonfi@l) =
det(FE — (BXo)\) have only negative real roots.

Proof. Let us investigate the behaviour of solutions to
the system (9) a$ — oo. So, form positive differences
Aty = tg41 — tr, k = 0,1,.... Then the formula (13)
shows that each term of the sequencg is a rational
function with the denominator

JA) =14 (Buiwpr + -+
1)"(det B)(wgy - - -

+ ﬂnnzkn)Atk

+ot (= Thn ) (Alg)".

It is obvious that to satisfy conditions of Theo-
rem 4 it is sufficient that the functiorf(\) be posi-
tive simultaneously with all the cofactors of the matrix
[E — (BXo)(M\)] L. If these conditions are fulfilled, then
the proof of the stability of solutions follows from Theo-
rem 2 in (Belozyorov, 2001). The proof of the corollary is

then straightforward. m

3. Construction of Domains of Conditional
Stability for Homogeneous Quadratic
Systems of the Second Order

Theorem 4 can be strengthened for= 2. For that pur-
pose we take advantage of the asymptotic equivalence of
functionsx(t) andv(t). Let t — ¢y = At. (Herety # &,
where ¢ is a singular point or symbobo.) Then on the

From the above deliberations one can conclude thatinterval [to, &), where the magnitudg, —£| # 0 is small

0<ty<t; <--+ <ty <--- and hence the sequence
{tm,m = 0,1,...} is monotonically increasing. There-
fore there exists a (finite or infinite) limifim;_.¢ ¢,, = ¢,

of this sequence. It is obvious thatif = a; for some

i€ {1,...,k}, thent, is a singular point of the solution
x(t)|| = oo. Other-
wise, if t; = oo, then tlin? Ix(t)]] = 0. Indeed, itis

possible to show that the values of the functie(t,,) at
the pointt,, can be calculated using the formula

=111

i=1

B‘XVZ 1)(t2 —tifl)]_ X(O)

Then, from the definition of the inverse matrix, it follows
that the degree of the numerator in (13) with respect to th
variable ¢ is less than the degree of the denominator. It
also reduces to the last limit.

Theorem 4. Let B € R™*™ and let all the coordinates
of the vector of the initial dataxq = (10, ...,7n0)"

be positive. Then for the conditional asymptotic stability
of the system (9) it is sufficient that fatA > 0 all the
elements of the inverse matii¥ — (BX,)()\)]~! be non-
negative.

enough, the coordinates of the function (13) are given by
the formulae

U1 (t) = )
w1t + (16226 B22 + 75, F12) At

1+ (Br1@1e+Bao@ar) At+(B11 P22 — B12621)T1ew2e (AL)2

V2 (t)

(14)

wot + (z1ew2tBin + @3, 821) At
+ (81121t + P22t ) At+ (811822 — B12P21 ) x1tw2: (AL)2

(15)

Here z1; and xzy; are coordinates of the solutiax(t) at
instantt # &.

It is obvious that from the point of view of stabil-
ity, the most desirable situation is when the denomina-
tors of the functionsv,(¢t) and v2(t) are not equal to

ezero. In other words, on the intervélly, &) the function

f(X\) does not have real roots (¢i{\) has only negative
roots on the real axis). According to the Routh-Hurwitz
criterion, the last restriction is achieved in the case of
(Br11¢+Ba2w2e) > 0 and (811 22— B12021) w1122 > 0.
With no loss of generality it is possible to sgt; =
Ba2 = 1 in (9). (This can always be achieved via a
suitable change of variables.) We introduce the notation
B12 = p and B3; = ¢g. Then, using Corollary 1, we will
obtain the following result.
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Theorem 5. Assume that in (9) we have = 2 and

B11P22 — 12821 = 1 —pg > 0, p > 0, ¢ > 0. Then
any of the conditions:

(8) z10 >0, x99 > 0;

(b) 10 > 0, z20 < 0, 20 + gx10 > 0,
10 T20
det [ | . = —zg0(—23)+pr3))
T10 T20

+ z10(—23) + q239) > 0;

(€) 210 < 0, 290 > 0, w109 + pr29 > 0,

10 T20

2 2
det [ ) = —x90(—x1y+pr3,)
T10 T20

+ x10(—23) + q225) >0
is sufficient for the conditional stability of (9).

Proof. If (a) is true, the proof of the stability of the
system (9) is reduced to the proof given by Belozyorov
(2001).

Consider a solution to (9) in a small neighbourhood
0 of any singular pointt. Assume now that:;;, > 0 and
xor < 0 if |t —&] < 6. Then, according to Theorem 1
of (Belozyorov, 2001), a solution to (9) is conditionally
stable if for somet* > 0 we havexzs(t*) > 0. Indeed, in
this casez;(t) > 0 and z2(¢) > 0 forany t > ¢* and
we have a situation described by condition (a). For this
condition, it is obvious enough that in (15) the magnitude

Tot

At=t—tr=—— 2
T1tTot + QT

is positive. In turn, this inequality is equivalent 1o, +
gx1; > 0. In addition, it is necessary for the denominator
of the function (15) to be positive on the analysed interval

[t*,€):
1+ (Brizir + Booxar) At

+ (B11B22 — Pr2fa1)x1iwar (At)?

B (x1¢ + x2t) T2t
2
T1tTot + QT

2
2
+(1 — pq)xpaey —2—— > 0.

( o1 (z1ew2; + q}y)?

o

Assume thatu = xo;/21;. Then, from (16), we obtain the
system
0>u>—q —pud—u?+u+q>0.

At the beginning, consider equatigriu) = —pu® —
u? +u+q 0. According to the Descartes Theo-
rem (Demidovich and Maron, 1966), it has one positive
root. Further, for a sufficiently small negative we have
g(u) > 0,and if u = —q, we haveg(—q) = ¢*(pg—1) <
0. Thus, becausg(u) is a polynomial of the third de-
gree, we come to the conclusion that there are two neg-
ative roots of this polynomial. Let us denote by,
(resp.A\min) the greater (resp. the smaller) of these roots.

Thus, if for somet* € [t,£) inequalities (16) are
fulfilled, x;(¢*) > 0 and z3(t*) > 0 and therefore the
singular pointt = ¢ does not exist. Repeating similar
reasoning for all singular points, including the first posi-
tive a;., we arrive at the conclusion that this point does
not exist if a pointt** such thatz, (¢**) > 0 is found and
xo(t**) > 0. Therefore itis possible to set;; = x1¢ and
Tot = T20 in (14) and (15)

Note that taking advantage of the L'Hospital rule, the
equationg(u) = 0 can be also obtained from the limit

xg(t) . qx%

Ba(t)
1 —< = lim
t—ai4 xl(t) t—ai4 xl(t)

with

uw= lim LQ(t).
t—ay4 (El(t)

As the equatiorg(u) = 0 has one positive root, the
segment[0, a;4) belongs to the domain of the conver-
gence of the series (12), and fore [0,a;.) we have
w = x2(t)/21(t) € (Amax,0] and —pw3 — w? + w +
g > 0. (In particular, this is also true forag/z19 €
(Amax,0].) From the previous analysis it is clear that
Amin < —¢ < Amax- This completes the proof of Case
(2a) and Theorem 5 if we take into account that the proof
of Case (2b) (using (14)) reduces to the same result.m

Denote by A\, the maximum negative solution of
—pud —u?+u+q =0 and by \, the maximum negative
solution of —qv® — v% + v +p = 0. Then, from Theorem
5, itis possible to derive the following result.

Theorem 6.Letin (9) n = 27 ﬂllﬁggfﬂlgﬁgl = 17pq >

(This guarantees that the convergence conditions of the0, p > 0, ¢ > 0. Then in the planer;z, the domain of

series (12) are satisfied.)

Thus, after a transformation of the last inequality, we
arrive at the system of inequalities

Ta¢ + qry > 0,
(16)

- th(_‘r%t + pw%t) + xlt(_fgt + ql‘%t) > 0.

the conditional stabilityQ) of (9) represents a cone, which
is the geometric place of the points described by

Q= {1 — A\pz2 > 0} N {22 — Agz1 > O}

In addition, the apex angle of the cofedoes not ex-
ceedr.
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4. Domain of the Conditional Stability of where, by virtue of the completeness of the system (18),
Regular Homogeneous Quadratic Systems all forms fi,..., f,—1 are cubic with respect ta vari-
ables. Again, by virtue of completeness, numbgrs R
Let can be always found such that

hi(vi,...,v,) =0, ..., hyp(v,...,v,) =0 (17 n-l
e ) (01 )=0 (17) o)
be a regular system of algebraic equations with re- i=1
spect ton unknownsuy, ..., v,. (This system is called = Wi + -+ pwh + Q(wr, ..., wy,).  (20)
regular if its Jacobi determinant is not identically zero.)
As is known from elimination theory (Fulton, 1984), Here the degree of any variable included in the fogn

using new variablesz; = wi(vy,..., ), .., 2, = does not exceed 2. (Note that in (20) all # 0.) Then
wp(v1,...,v,) and equivalent transformations of the ini- from (Fulton, 1984) it follows that the system (19) (and,
tial system, it is possible to get one equation concerning consequently, (18)) has at least one nontrivial real solu-
one unknown (e.g.z1): tion. [ |

Let, e.g., the system (6) be regular and complete.

Then it is easy to check that fon = 2 we have

degcW = 3. On the other hand, if fon = 2v' B;v =

(51’[)1 —+ 52'02)(V1’U1 + 1/2’1}2) and VTBQV = (51’01 +

d2v2)(&1v1 + &2v2), Where both forms have a common

linear factor anddy, 9o, &1, &2, 11,5 € R, then the sys-
_tem (6) is incomplete; for this caséegcW = 2 and a
nontrivial real solution cannot exist.

fozi 42 4 4 =0,

where the coefficients;, i = 1, ...,k are complex num-
bers. Thus all the remaining unknowng i = 2,...,n
are polynomials inz;. It is obvious that in general the
number of solutions to (17) will equdl. The set® of all
solutions to (17) is called an algebraic variety. The num
ber k£ of all elements of this set is called its degree. The

degree of the algebraic variety is denoted by-deg-® In what follows, we will need the following trivial
(Fulton, 1984). corollary of Theorem 2 taken from (Belozyorov, 2001).
Consider the following system of real quadratic
equations with respect to the unknown vector = Theorem 8. Assume that for a regular system (6) the fol-
(v1,...,v0)T: lowing conditions are fulfilled:
—o1 =vIBv, ..., —v,=vIB,v. (18) (a) initial values ;o > 0;
(b) forms (xla s Ti—1, Ovmi-‘rlv s ,J)n)Bi(Z‘l, ceey
Let W C C™ be the algebraic variety of all solutions 2i_1,0,2i41,...,3,)7 are positive definite;

to (18). Its degree equals dg§V.
(c) positive numbersr; can be found such that the

Definition 6. The system of equations (18) is called com- form x™ 37, r;Bi)x is negative definitej,j =
plete if degsW =deq-V, whereV c C" is the variety L....,n.
of all solutions to (18), for which it is supposed that all

Then any solution to (6) is conditionally asymptotically

2 1)/2 of the elements of matriceB, ..., B,, are

not numbers but independent parameters.

Assume that (6) is reduced to the form (9), where the
Theorem 7. Every complete system (18) has at least one matrix B is real.
nontrivial real solution.
Corollary 2. Assume that for a regular system (9) the

Proof. Assume that one from among variables .. ., v, following conditions are fulfilled:

(e.g., vy,) is not equal to zero. Then the system (18) can

be represented as (a) initial values z; > 0;
v _ W Biw W=t _ W' Bnoaw (b) bij > 0 (i # j) and by; > 0;
w, wWIB,w' 7 W, wT B, w
(c) the elements of the matrix—B)~! are non-
or, equivalently, as negative,i,j = 1,...,n.
filwy,...,wp) =0, ..., fa_1(wy,...,w,) =0 Then any solution to (9) is conditionally asymptotically

(29) stable.
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Set iy = wi/wp,...,n-1 = Wp_1/w, and
transform (19) to the form
gl(Mla---7Mn—1):O> RN
gn—l(/’l‘lw'wﬂn—l) =0. (21)

The following result establishes one important prop-
erty of the solutions to (21).

Theorem 9. Under the conditions of Theorem 8 the sys-
tem (21) has a solutiony = (p1,...,u,) such that
ni>0,71=1,...,n—1.

Proof. From Theorem 8 it follows that in (6) we have
lim; . x(t) = 0. Then the system (21) is obtained
from (6) via dividing all equations by the last one and
passing to the limit ag — oo. Since in (6) it follows
that z;(t) > 0, VYt > 0, itis clear that the limit relations
w1 /Wy, ..., w1 /w, being solutions to (21), also possess
this property.

Assume now thatr,,g > 0. Then under the condi-
tions of Theorem 8 we have,, (¢) > 0. Itis clear that the
limit limy oo x;(t)/zn(t), i =1,...,n—1 is asolution
to (21). Therefore ifu; > 0, thenz;(t) > 0. |

Theorem 10.Under the conditions of Theorem 8, among
the coordinatesy, . . ., v, of the solutionv to (18) there
is at least one positive.

Proof. Let as take advantage of Condition 3 of Theo-
rem 8. It is possible to find as much collections of pos-
itive numbersrq,...,r, as desired, such that the form
x? (3", riB;)x is negative definite. In other words,
there is a solutionv = (vy,...,v,)T to the system of
inequalities

where r;; > 0 and the rows of the last matrix are lin-
early independent foi, j = 1,...,n. Hence there is no
solutionv = (v1,...,v,)T suchthatvi € {1,...,n},
v; < 0. ]

Theorem 11. Under conditions (b) and (c) of Theorem 8
there are2™ — 1 vector solutions to (18). What is more,
all these solutions are real.

Proof. Let the coordinates of the vector of initial data
satisfy the conditionss; o > 0,...,2;.0 > 0, 75, ,,0 <
0,...,2,0 < 0. (Here {iy,...,i,} € {1,...,n} isa
permutation and- is the number of the positive coordi-
nates of the initial vector.)

5o JRe

According to Theorem 8, ifz;o > 0, then z;(t) >
0. If z;0 <0, there are two possibilities: either a moment
t* can be found such that;(¢*) > 0 for any t > t*, or
forany ¢t > 0 we havex;(t) < 0. Thus, if z;o < 0 and
the number|z,o| > 0 is large enough, ther;(t) < 0
for t < aq, wherea; is the first positive pole of:; (¢).

Fix the initial data so that the magnitudes
|%i, |- |@i,| are large enough. Then the sign of
x;(t) coincides with the sign oft;, for any ¢t < ay,

i = 1,...,n. (In other words, the solution to (6) does
not fall beyond the limits of the appropriate orthant.)

Consider the limits

1m i (t) s
t—¢ x;(t)

L,j=1,...,n, 1i#],
where the variable runs through all real poles of func-
tions z;(t) and co. (Since we consider only WIS sys-
tems, then all the coordinates of vector solutions to (6)
have the same poles.) It is obvious that all these limits are
defined by the equations of (18), and therefore they do not
depend on the initial data, but only on the forms of ma-
trices By, ..., B,. Then, according to Theorem 10, there
are as many real vector solutions to (21) as numbers of
orthants in then-dimensional system of coordinates mi-
nus 1, i.e2™ — 1. (No solutionv to (18) exists such that
v; <0,i=1,...,n.)

It is possible to obtain the proof of this theorem
for (9) in a more straightforward manner. (Far = 2
the proof is given in Theorem 5.)

Rewrite (18) in the form

Ul Ul

1 V2 U%
(=B)~ =—1 .
2

Un Uy,

Let v* = (v},...,v:)T # 0 be a solution to (18), for

which v} > 0, i = 1,...,n. (According to Theorem 9,

such a solution always exists.) Introduce the variable

vy /vy and suppose thats = v3,..., v, = v}. Now we

will devide the first equation of this system by the second

one. Then we obtain

vi _ puvi +piava + -+ Prata
P21V1 + P22v2 + - -+ P2nUn

_ g2 = but +aq
P21t + g2’

v3
Wher6p11 >0, po1 >0,q1 >0, go > 0.
The last relation can be rewritten géu) = 0, where

_ puutaq 9
= —u”

22
P21U + G2 (22)

g(u)

Let u = 0. Theng(u) > 0. Denote respectively by, =
—p12/p11 < 0 and u; = —paz/pa1 < 0 the roots of
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the numerator and the denominator of the fraction which Therefore if for some; and a sufficiently smallAt¢ the
is included in (22). Assume that; < uy < 0. If u, € conditions
u1,usz), we obtaing(u,.) < 0, and a negative solution to

( ) ( T) T1,i —&-X?BlXiAt > 0,

—p21u® — gou® + priu+q1 =0

exists in the interval0, u,.). T + X! BpxiAt > 0
According to the Descartes Theorem (Demidovich
and Maron, 1966), the last equation has one positive root
ui. It was shown above that in the intervéd, u,.) there
is one negative root. But by virtue of the cube of (22), in
reality there exist two such roots. Thug = (vi/v2)} >
0,ul = (v1/v2)5 < 0,ul = (v1/v2)5 <O.
Let, e.g.,n = 3. Then from the last section it follows

are satisfied, then the solution to (6) will be conditionally
stable.

Thus the investigation of stability is reduced to that
of set solutions for the system of inequalities

z1 +AxTBix > 0,

that the vector solutions = (v, v2,v3)7 to (18) can be (23)
distinguished as follows: z, + Xx'B,x > 0
(@ v > 0 and the fractionv; /vy is investigated;  in the orthant given by the relations
then the coordinates of the vector solutions have
signs (+,+,+)", (+,—,+)", (- —+)7" and Ty >0, .., 2, >0,
(77+7+)T; (24)
Z‘ir+1<0, ey oz, <0
(b) v5 > 0 and the fractionv;/vs is investigated; ) ) } ] )
then the coordinates of the vector solutions have Here (i1, ---,in) € {1,...,n} is a permutation and is
signs (+,+,+)7, (= +,4)7T, (= + —)7 and the number of the positive coordinates of the initial vector;

(_7 -+, _|_)T; A Is some positive parameter.

For simplicity, assume that; > 0 and z,, < 0.

() v > 0 and the fractionvy/vs is investigated;  Then the first and the-th inequality of (23) can be trans-
then the coordinates of the vector solutions have fgrmed into the form

signs (+,+,+)", (+,+ )", (+,—+)7 and
(+,—,—)T. 1%y + Az, xT Bix < 0,

From these combinations of sign coordinates of the x4 Azix" Byx > 0.
vector solutions to (18) it follows that the number of var-
ious vectors can be only = 23 — 1. This completes the
proof. ]

Hence

“r1xIByx < @, < —AxpxT Bix
Let us now go on to the construction of stability do-

mains of (6) for an arbitrarynh. Assume thatr coordi-

nates of the initial vector are positive (then the remaining xT (218, — 2, B1)x > 0.

n — r coordinates are negative). Additionally, we shall

assume that (6) is a regular WIS system. Using similar reasoning, ifr £ 0 or r # n, itis

To investigate the system (6), we will use the iterated possible to get the following system of inequalities:
Euler method:

and, as\ > 0,

XT(IkBl — .ZEZBk)X > 0, (25)
X?lei
Xirq = %, + : AL i=0.1... where k € (z‘l,...,ir).,l € (z‘rﬂ_,..._,z‘n), and
it ' - ’ ’ ’ (i1,...,i,) IS @ permutation ofn positive integers. It
x] Bpx; is obvious that, in all, there are(n — r) inequalities (25)

of which only n — 1 are independent.

Itis known that the set of solutions to a homogeneous
system of inequalities is a cone. Therefore, taking account
of (24), the set of solutions to (23) constitutes a cone be-
longing to an appropriate orthant. Since there 2iteor-

From Theorem 8 it follows that ifx(¢*) > 0 for thants,r # 0 and r # n, we getd = 2" — 2 of such
some t*, then the solution to (6) is conditionally stable. cones. Let us mark these cones(@s ..., ;. Besides,

where At > 0 is a sufficiently small integration step.

Definition 7. Assume thata,b € R" are arbitrary vec-
tors. Thena > b meansthat; —b; >0, :=1,...,n.
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we shall denote by}, the cone of vectors with positive
coordinates.

In what follows, a central role will be played by the

cone J
Q=Jo.
=0

Consider the operatdd : R**! — R", acting as

xT B;x

VxeR™ VAERT: D(x,\) =x+\

xT B, x

Theorem 12. The conef} is invariant with respect to
the action of the operatoD (Vx € Q, VA € R,
D(x,A) € Q).

Proof. Suppose that the system (6) is reduced to the
form (9). Besides, for simplicity, we consider the case
n = 2. Only such an approach allows us to demonstrate
all the details valid for an arbitrary:.

Let, e.g.,, x10 < 0 and x99 > 0, where x, =
(710, 220)T € . Then one of the inequalities (25) can
be written down as

Xg(IQOBl — IL‘10B2)XO > 0. (26)

If we express it through the variable = 1 /x40, then
for any u < 0 we obtain the inequalityy(u) > 0, where
g(u) is defined in (22). The behaviour of the cubic curve
g(u) implies i < (z10/220) < p*, where py is the
maximum negative root of(u) = 0, and p* is the posi-
tive root of the same equation.

Return now to the inequalities (23) and construct the
first iteration of Euler’s process:
> .27

()= e

Then from the first two equations of (27) and the inequal-
ity (26) the following inequality can be obtained:

T
z11 Z10 Xy Bixg

T
To1 T2 xgy Baxg

T11X20 — X21L10 = At(Xg(xgoBl — .Z‘loBg)XQ) > 0.

But since xz50x2; > 0, from the last inequality it fol-
lows that z11 /221 > x10/220. Here two cases can be
distinguished: eithercy; > 0, 297 > 0 or xy; < 0,
za1 > 0 and p] < (@11/x21) < p't. In the first case,
we havex; = (z11,z21) € Q. In the second case, we get
xT (291 By — 211 B2)x; > 0. Hence alsax; € .

It is obvious that after thei-th iteration we get a
monotonically increasing sequence

T10 T11 L1,

- <

T20 T21 x2i

&

Taking into account the fact that in the interv@l; , u™)
there are no zeros of(u), it is clear thatVi, pu; <
(z1,i/x2,;) < pt. Considering similarly all the situations
for which z; o < 0, we finally get the statement of the
theorem. [ |

Theorem 13. If xy € , then under conditions (b) and
(c) of Theorem 8 the trivial solution of the regular system
(6) is conditionally asymptotically stable.

Proof. From Theorem 12 it follows thatlim;_. .
x1:/x2; = T > 0. Hence, starting from some we
obtain ze ; > 0 and z; ; > 0. The satisfaction of the last
inequalities guarantees conditional stability. =

The cone of stabilityQ has a nonlinear directrix.
This is not suitable for practical purposes. Therefore we
shall construct a con&, C Q with rectilinear directri-
ces.

Consider the set of equations similar to the sys-
tem (21):

Git (Jits - s fij—1s M1y - - s i) = O,
Gik—1 (Wit - o s i jm1s M1y -+ s fin) = 0, (28)
Gi k1 (Bits - oy i j—1s Pijt1s - Hin) = 0,

i ([t - oy i1y i jt1s - - i) = 0,

where p;; = z;/z; for i,5,k=1,...,n, j #1, k #1,
j—1>0, k—1> 0. (Itis clear that, in all, there
are n such systems. Any such system dependsien 1
unknowns;;.)

Denote byd = degW, the degree of the variety of
solutions to these systems. (Above it was shown that these
degrees are really identical for complete systems and they
are equal tod = 2™ — 1.) Then there exist exactlyl
(n — 1)-dimensional vectors

(,uih'“ a,Ui,n)k

being solutions to (28)k = 1,...,d.

Delete from the set of these vectors the vector hav-
ing all positive coordinates. Furthermore, aty — 1)-
dimensional vector with coordinatgs; is substituted for
the n-dimensional vector with the same coordinates, but
in place ofi we have 1. Then the remaining—1 vectors
will be placed ind — 1 orthants, except for the orthants
with only positive and only negative coordinates. Denote
these orthants by, and ;. From the resultingl — 1
n-dimensional vectors we seleat— 1 vectors such that
the (n — 1)-dimensional hyperplane spanned on them in-
tersects orthant§), and ©; only at zero. There will be
exactly d — 1 such hyperplanes. The sum of these hyper-
planes forms the required corfg, .

y Mg —15 Hi,j+1s - -
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5. Lyapunov Stability of Non-Homogeneous
Quadratic Systems with Singular
Linear Part

Return now to the study of the system (5). In addition, we
will assume thatdet Ay = 0, where A, is the matrix of
the operatorA . (In the case oflet Ay # 0 the solution

to the problem is well known (Khalil, 1995): for the local
stability of the system (5) the matridy has to be Hur-
witz.) Besides, in the given section we will assume that
Ag is diagonalizable in the field of complex numbels
Using a nonsingular transformatioh € R"*"™ the ma-
trix Ay can be reduced to the form

aq
0
Q.
B m
L' AgL= -7 B , (29)
0 Bs Vs
—Vs ﬁs

where the dimension of the zero diagonal block is equal

ton—r—2s.

Perform the change of variables — Lx. Then
the matrix A, will be replaced withL='AyL. Below,
in order to simplify the notation, we will retain the for-
mer notationA, for the matrix L=! Ay L. Similarly, after
the application of the transformatiah, we will retain the
notation B;, 1 = 1,...,n for the matrices of quadratic
forms of the system (5).

Introduce Lyapunov’s function as the positive defi-
nite quadratic form (Khalil, 1995):

2

F + .

2
x1+

Then the derivativel f /d¢, calculated on the basis of (5),
has the form

df

ar = Tt + -+t + 51x72~+1

+ B1a o+ 4 Betos 1

+ Bsa2 0y + X (21B1 + - + 2, Bp)x.

Rewrite the last formula as follows:

df n n
Frie (0q + ;fulz)x% +o At (o + ;gmmz)x%
n
+ (61 + ZTlixi)xE+1
i=1

+ (b1 + Zv1ixi)mf+2 +---

i=1

+(Bs + ZTsifEi)ﬂf%Jrzs—l

i=1

n
+ (ﬂs + Z Usixi)xq%_t,_gs

i=1

n
2
+ (Z Pra2s+1,i%i)Tpyosp1 0
i=1

+ (Z Prii) T2 (30)
i=1

It is clear thatdf/d¢ will be nonpositive in some
small neighbourhood of the poind if the following
conditions are fulfilled: a; < 0,...,, < 0,81 <

0,...,8s <0 andthe(n — r — 2s) x n-matrix
Pr+25+1,1’ s 7pr+25+1,n
J=1 (31)
pn,la 7pn,n

is the null matrix.

The last result can be used to design stable con-
trol laws for the system (1),(2). For that purpose we
introduce linear feedbackh = Ky into the last sys-
tem; then we get (3). Further, we reduck, to the
form (29). (It is clear that/ will be linearly dependent
on Ky, : J = J(K).) Finally, we obtain the system
J(K) = 0, which consists of(n — r — 2s) x n linear
equations with respect to thes x p unknown elements
of the matrix K. The solutions to this system will give
the required gains. If the systeth(K;) = 0 is incom-
patible, there does not exist linear feedback ensuring the
stability of the closed system (3) (even if all the nonzero
eigenvalues of matrix4, have negative real parts).

Denote by Ker A, the kernel of the operatoA

and by Ay the restriction operatoA, on the quotient
spaceR" /Ker Ay.

Theorem 14.Assume that the matrix of the operataAr,
is diagonalizable and all its eigenvalues have negative
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real parts. Then for the stability of the solutions to the
system (5) it is sufficient thatip > (n — r — 2s) x n.

In the present section we will suppose that= 2.
Rewrite (5) in the following form:

l’l(t) = dllxl(t) + dlgxg(t)
+b11123 () + briazy (t)x2(t)
+b12122(8) 1 (t) + bi2oa3 (1),
(32)
&2(t) = darx1(t) + dogwa(t)
+bo1123(t) + bor2w1 (t)w2(1)

+boo1 T2 (t) 1 (t) + baooxd ().

Here by12 = bio1 andbaia = baos.
Let us show that for a generic system of the second

order the design of control laws on the output, ensuring
the stability of a closed-loop system, it is not possible.

Suppose that the matri¥l, is diagonalizable and
det Ay = 0. Then the following cases are possible:
@mp=2,r=1,s=0,b)mp=2,r=0,s =0.

It is easy to show that for these cases the condi-
tions of Theorem 14 are not fulfilled. Therefore there is a
unique possibility: (cnp = 4, r =1, s = 0 (state feed-
back). In the remaining cases it is possible to speak only
about the conditional stability of the closed-loop system.

6. Algorithms for the Design of Linear
Control Laws for Bilinear Systems

6.1. Design for Homogeneous Systems
of the Second Order

We will assume that in the system (1), (2) we have- 2
and 4y = 0.

1. Introduce the feedbacki = KCx into the sys-
tem (1), whereK € R™*? is an unknown matrix.
Thus we will get (32), in whichd;; = 0 and the
coefficientsb;;, depend onk.

2. Set
b b b b
U— e b ) e bua )
ba11  baoo ba11  bai2
bia1  bi22 U — biir b2
5 3 = ’
bao1  booo b1z b2

Uy = ba1r  bor2 CUs = ba11  bor2
baia b2z bii2 b1z

U,

&

As for the invariants J;,Jo and J; (Belozy-

orov,2001), we have
J1(K) = det(U?) — 4det(U,Us),
Jo(K) = det(U Uy — UsUy),
J3(K) = tr(U3)(det Uy + det Uy)
+ tr(U) (det Uy + det Us)

+ tI‘(UlUQ + U2U1) det U5.

These are polynomials of the fourth degree with re-
spect to the elements of the matrig.

. Form the system of inequalities

Jl(K) > 0, JQ(K) > 0, Jg(K) <0 (33)
and find the domairZ C R™*? (or its part), deter-
mined by this system.

The following steps of the algorithm are in-
tended for the determination of the cone of condi-
tional stability.

. Fix a feedback matrixk, € Z and write down the

system (6) for this matrix.

. Form the equations (7) with respect to the unknowns

p1 and po (it is possible to set = 1).

. Find the solutionsf; = (p11,p12) and fo =

(pa1, p22) to (7) (they are necessarily real) and form

the matrix
-1
F= P11 P12 )
P21 P22

. Use x = F'Pz to reduce (6) to the form (8).

. Once again, changing the variables= F;v, where

Fy, = diag (sign (11, signB22) is a diagonal matrix,
make all diagonal elements negative in the matsix
of the system (8). In this case the matrix

B_ B B2
Bo1 —PBa2

of the system (9) will satisfy the properties (b) and
(c) of Corollary 2.

. Calculate the maximum negative rodt= vy /vy of

the equation3;2 A3+ 82222 — 811 A— 321 = 0 and the
maximum negative rooft = vy /vs of the equation
Barpd + Br1p® — Baap — P2 = 0.
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0. Calculate generators of the stability cone; they will
andds = (i, 1)7.

be the vectorsl; = (1, \)T

11.

12.

6.2.

8. Using the Cauchy inequality, estimate the sizes of the

. Letay <O0,...,
ing (30), form the following system of linear inequal-

Find any solutionw = (wy,ws)T to the system of
the inequalities(d;, w) > 0, (d2, w) >

Define the generators of the stability cone in the ini-

tial system of coordinates under the formulrg =
FPFid;,i = 1,2. They divide thez;, 2, plane into

four sectors. Take the sector which contains the point

FPFyw. It will be the stability coneQ(K,) de-
pending on the feedback matrix,.

Design for the Non-Homogeneous System
of Any Order

. Compose the matrix. reducing the matrix4, to

the form (29).

. Transform the system (1) using the formuwa= Lz.

using the formulau = KCLz, where K € R™*P
is an unknown matrix.

. Introduce the functionf and calculate its derivative

df/dt (it depends onK) using (30).

. Write down the system of the linear equations

J(Kp) = 0, where the matrixJ(K,) has the form
(31). (If output feedback is sought, thed = K ;
if state feedback is sought, theld = K;L~!.) Let

K1, # 0 be one of nontrivial solutions. (If the sys-
tem J(K) = 0 is unsolvable, then finish the design

procedure.)

. Substitute the matri¥<;, into the derivative (30).

a. < 0,6 <0,...,08s <0. Us-

ities:

n n
> iz < oul, > iz < o,
i=1 i=1

n

Zﬂuzi <I|Bil, ...,

i=1

n
Z VsiTy < |ﬁs ‘ .
i=1

n
ZTliZi < |B1l,
i=1
n
ZTSiZi < |Bsl,
i=1

domain H in which df/dt < 0, according to the

formula
|lz]] < min || ... || 5]
“ Z:l 5%1 H Z le
|ﬁ1 |ﬁ5‘ |ﬁb

\/ZUM “Z%z

The sizes ofH for a variablex are determined from
x|l < |lz||/||L~!|]. The domain of the initial values
Y, for which the closed-loop system (by feedback
Ky) will be stable in the Lyapunov sense, is included
in H.

It is necessary to note that, generally speakiig,
# H. Therefore for the definition otf” it is necessary to

. Introduce feedback into the transformed system (1) take some points fronf{ and, based on these points, to

estimate sizey’'.

7. Examples

Below we shall consider some examples in which Algo-
rithms 6.1 and 6.2 are used in a simplified form.

Example 1 Assume that a bilinear system is given by the
equations
1 = —4x1 + 629 + (11[1)1 — 151’2)’1“
+(—1OLE1 + 19$2)U2,
To = —2x1 + 329 + (71‘1 — 10$2)U1
+(—7I1 + 13I2)U2.
It is required to construct a feedback mati of the lin-
ear control lawu = Kx, ensuring the stability of the

trivial solution of the closed-loop system. (In the given
example, the control law must be only by law on the state).

We start with the matrix. transforming the linear
part of the system (32) into the diagonal form:

L_<2 3)7 L1_< 2—3>'
1 2 12

Then, after the substitution of = Lz, the required sys-
tem can be transformed into the form

{ 21 = —21+ (221 + 322)ug + (21 + 22)ug,

22 = (21 — 22)u1 -+ (—Zl + 222)U2.



Design of linear feedback for bilinear control systems

Let u; = k1121 + k1222 and ug = ko121 + kogzo.
Let us construct the Lyapunov functigh= 2?+22. Then

fr = 22[=1 4+ (211 + ka1)z1 + (212 + koo + 4k11) 22]
+ 23[(dk1a — k11 + 2ko1)z1 + (2k2e — k12)22).

Thus, if the following two conditions are satisfied:
4k19 — k11 + 2ko1 = 0,

2koy — k12 =0,
then the matrixJ(K,) is a null matrix.
In the sequel, we have

o ) #o

Let, e.g.,k‘gg = 0.1 and k‘21 = —0.4. Then klg = 0.2,

ki1=0 and
KL< )

Going back to the initial basis dR?, we obtain the
feedback matrix

8koo + 2kay
ko1

2k22

k22

0 0.2
—-04 0.1

—-0.2 04

K=K, L' =
—-09 1.4

The system closed by this type of feedback is represented

in the form
i1 = —4xq + 639 + 6.827 — 23.7w129 + 20.623,
To = —2x1 + 319 + 4.9x% —13. 72129 + 14.2x%.

The domain of the negative definitenegs for the
function f, is determined by the inequality

1

x|| < <0.5.
| V18+/(16kaz+5k21)2 + (37kao +8ka1 )2

The behaviour of solutions to the last system for var-
ious initial data is represented in Figs. 2-5:

Thus the trivial solution is stable (but only locally).
Besides, the domain of stability” = Y'(x() is deter-
mined by the inequality|xo| < 0.4. ¢

Example 2 Suppose that a bilinear system is given by the
equations

{

Similary to the previous example, it is required to con-
struct a feedback matri¥< of the control lawu = Kx

1 = z1ur + (=21 — 22)u,

Zo = (221 + x2)uy + xT2Us.

N
o
T

&)} N
T

solution x(t)

0.5

40 60 80
time t

20 100

Fig. 2. Solutions of the quadratic system
for x10 = 0.4 and x20 = 0.4.

solution x(t)

1
IS

-5+

-6

40 60 80 100
time t

Fig. 3. Solutions of the quadratic system
for xr10 =04 and x99 = —0.4.

I
&3}
T

N
T

—

)

solution x(t)

0.5

. . . .
20 40 60 80 100
time t

Fig. 4. Solutions of the quadratic system
for x10 = —04 and x20 = 0.4.

on the state. Itis clear that the system closed by this type
of feedback should have a nonzero domain of conditional
stability. (Stability in the Lyapunov sense in the given ex-
ample is impossible (even locally).)
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04 ‘ ‘ ‘ _ The computation of the invariantd; = 0.4096 > 0,
05 s X‘ 1 Jo = 1.024 > 0, J3 = —13.4656 < 0 shows that for
2 the given example the conditions (33) are fulfilled.

ot | Solutions of the closed-loop system for various ini-
:_ ) tial data are given in Figs. 6-9. For the first three cases
z-08 ] we havexy € 2 and in the last case we gef) ¢ Q. It

-0.9F , is clear that in the first three cases the solution is condi-
tionally stable and in the fourth one it is unstable. ¢

solution x

26 4‘0 66 86 100 H

time t 14}

Fig. 5. Solutions of the quadratic system
for x10 = —04 and x20 = —0.4.

solution x(t)

The system closed by the state feedback has the form:

T1 = (kn - k21)x% + (ku — koo — k21)$1$2

2
—kaa23,

, ) (34) 0 ‘ ‘ ‘ ‘ ‘
Ty = 2k11x1 + (2]4312 + k11 + kzl)fﬁldfg 0 5 10 15 20 25 30

time t
+(kaz + k”)x%‘ Fig. 6. Solutions of the quadratic system for

Thus in (32) we havebyy; = ki1 — koi,b112 = 210 = 1.0 and z2o = 2.0.
bior = (k?12 — koo — k21)/2,b122 = —koo,bo11 =
2k11,b212 = boo1 = (2k12 + k11 + ko1)/2,b222 = ;
k12 + koo (the linear part is missing). )

For the solution of the design problem, the inequali- 08 — X
ties (33) are used. Assume thiag, — koo — koy = 0 and
2k19+ k11 + ko1 = 0. (Then we can avoid the analysis for
polynomial inequalities of the 4-th degree.) Thus we ob-
tain the domain given by the inequalitiéss + 2ko; > 0,
2koo + 3kay > 0, kog < 0, koy + koo < 0 and
k‘%l + 4ko1 koo + 2]{1%2 < 0.

Itis easy to check that this domain is non-empty. (For
example, the poink;; = 0.4, k12 = —0.8, |, k21 = 1.2,
koo = —2 belongs to the domain.) Then the system (34)

06

0.4-

solution x(t)

closed by the feedback 04 5 10 15 20 25 30
time t
04 -038 Fig. 7. Solutions of the quadratic system for
K= 1.9 9 z10 = 1.0 and zo9 = —0.4.

reduces to the form . .
Example 3Consider an example of the construction of the

iy = —0.822 + 222, stability domain for the following homogeneous system of
, , the third order:
o = 0.827 — 2.8z3.
2 i 2 i = —22% + 22,
Calculating z = —0.6720 and A\ = —0.4762 of io = 23 — 223 + 23,

Step 9 of Algorithm 6.1, we conclude that the last sys-
tem is conditionally stable in the domaiff = {z; +
0.6720z2 > 0} ({z2 + 0.47622, > 0}. (Here a sim-  (Itis easy to verify that the system satisfies Conditions (b)
plified variant of Steps 4-12 of Algorithm 6.1 is used.) and (c) of Theorem 8.)

i3 = 22 + 23 — 223.



Design of linear feedback for bilinear control systems

solution x(t)

. . .
15 20 25
time t

0 é 16 30
Fig. 8. Solutions of the quadratic system for

x10 = —0.6 and Too = 2.0.

40

301

201

o

solution x(t)

015 1‘ 115 2
time t
Fig. 9. Solutions of the quadratic system for

xr10 = —0.1 and To0 = —0.2.

Define vectors forming the stability cone. For
this purpose, we introduce new variables/xz3 = u,

x9/x3 = v and consider the system (28):

B —2u2 4 2
w42 =2

7u2721)2+1
w2402 -—2"

Eliminating the variabley from the last system, we obtain
the following equation:

18u” +27u® — 57u® — 39u* +-55u® + 11u* — 13u—1 = 0.
Furthermore, the unknown is defined by

3ud +3u? —3u—1
v =
—3u? +2

Thus we have seven vectods = (u;,v;, 1), i =
1,...,7, out of which six (except for the vector with posi-
tive coordinates) give vectors forming the cone in the rect-

&

angular system of coordinatas zox3:

—2.247 —1.089
d; = 1.000 |, da=| —-1.249 |,
1 1
—0.555 0.891
ds = 1.000 |, dsa=| —-2175 [,
1 1
0.772 -0.074
ds=| —-0.691 |, d¢=| —0.384
1 1

Note that all these vectors are real.

It is required that these vectors be placed in six var-
ious orthants. (If it is not the case, then an appropri-
ate vector is multiplied by-1. Taking into account the
last remark, we obtain vectors; —dq, as —do,
as = d3, ay = 7d4, as — d5, ag — d6.

Now we can construct the edges of the cone from
these vectors. (It should be noted that the cone has to con-
tain the first orthant.) Thus the edges of the cone are gen-
erated by vectorgas, ag }(l), {ag, as}(Il), {aq,as}(ll),

{ag, a1}(|V), {35, al}(V), {337 a4}(VI).

From analytical geometry it is known that the plane
passing through three points with coordinatgs, f-, f5),
(91,92, 93), (h1,h2,hs) inthe rectanguler system of co-
ordinatesz; xox3 is defined by the equation

x3 — f3
g3
h3

2 — fo
g2
ha

Ty — fl
g1
h1

det

The last formula can be used to obtain equations
for the edges of the cone. Assume thgt, fo, f3) =
(0,0,0), and instead of coordinates$g;, g2,93) and
(h1,ha,hs) we substitute coordinates of the vectors
forming planes (1), ..., (VI). The required stability cone
QA can be defined by the following system of linear in-
equalities:

1.385 0.481 0.287
0.307 0.846 0.348
0.926 1.981 3.483 1
T2 ZO
2.249 1.158 3.896
X
1.691 3.019 0.781 3
3.175 1.446 0.316
¢
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8. Conclusion where

Conditions (33) allow us to state that when they are met rig, ... T,

(for an appropriate matrixs), there exists a domain of T— : : c R<"° (A1)
conditional stability for the homogeneous system (32). o .
This domain is also defined by the set of equations (19), Tpi, --- Tnn

which (unfortunately) is not invariant with respect to the

transformations of system coordinates. However, non- is a mixed tensor once contravalent and twice covalent.
satisfied conditions (33) for anfk mean that the appro-  The new vectorx @ x = (z1x”,...,z,x")" is a tensor
priate closed control system cannot be made condition-Product of the vectox by itself. (Here the tenso is

ally stable via linear feedback for any initial data. This realized as the space of matrices of sizesc n*>. The
involves the following problem: For what homogeneous SPace¥ of such tensors has dimensieri(n + 1)/2.)
regular complete systems (32) is the system of inequali- Let GL(n,C) be a complete linear group of all
ties (33) solvable? A similar problem can be formulated square invertible matrices of sizes x n with elements

for control systems of any order. from the field of complex number§&. Introduce a new
variable z into (Al) according to the formulax(t) =
Sz(t), where S € GL(n, C). Then we get an operation
GL(n,C) : ¥ — ¥ of the group on the space of tensors,
acting as follows:
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. where S = (s;;) for i,j=1,...,n and
officer problem. (si5) J
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Thenwe getT = (Aq,...,A,) € crxn?,
Construct the function

Prentice Hall.
To(T)=det( Y (-1)78;,4,,...4;),
. 1<j1,...dn<n
Appendix
where the summation is taken over all permutations
Any quadratic form on the right-hand side of the sys- (j;,...,5,) of n numbers1,2,...,n; o is number
tem (6) can be represented as follows: of transpostions in permutatiofyjy, . ..,j,). (For ex-
xTBix = (r; rip) - (z1x” z,xT)T ample, JiT) = detlluls - Bab), AT =
i ily .-y lin 1 5o n ) det(A1A2A3+A2A3A1+A3A1A2_A1A3A2_
wherer;y,...,r;, aren-dimensional row vectors of the A281A3 = AzA2A))
matrix B;, i = 1,...,n. Thus any system (6) can be ) . o ]
presented as Theorem Al. The functionJ, (T) is a relative invariant

of weightn of the groupsGL(n, C) with respect to the
x(t) =T - (x(t) ® x(t)), operation mentioned above.
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Proof. Consider the sequence of transformations
S(T)=8"1T-(S®8)
=S YA, ..., AL (S®S)

_ Sfl(i AiSity. .., Xn: A;sin)S.
i=1 =1

The computation of the determinant of the
matrix proves our assertion, i.e.,detS(T)
(det S)™J,(T). ]

Changing variablex(t) = Sz(t), we reduce (6) to
the form (8). Then the tensdF is transformed to a new
tensorQ.

last

Theorem A2. J,(Q) = (det B)g(Q), whereg(Q) is a
polynomial in Q.

Proof. Let det B # 0. Itis obvious that
Q = (AL(9),...,Ax(9)),

where A;(S) is an (n x n) matrix with a unique nonzero
CO|umn (ﬁlh e 75i71,i7 5ii7 e 7ﬁin)Tl 1= ]-7 cee, N

As det B # 0, the function (det B)™! - J,,(Q)
is well defined. Then taking into account the fact that
S—18 = I,,, we obtain

(det B)™'- J,,(Q)

:det(

&

But for anyVj; € {1,...,n} the matrix B~'A;, hasa
unique nonzero element equal to unity. Thus the function
(det B)~!- J,,(Q) = ¢(Q) is a polynomial. The proof of
Theorem A2 is thus completed. =

Theorem A3. Assume that the tensdf, defines a regu-
lar but non-WIS system. Theh,(Ty) = 0.

Proof. As T, is not a WIS system, there exists a trans-
formation S such that while passing from the system (6)
to the system (8), the matri3 gets a block-triangular
structure. For simplicity, assume that in this matrix we
have 521 = --- = f,1 = 0. Then

2.

1<j1,.Jn <00

(=174 (9)A5(S) - - A5, (5)
=M A(S)+ -+ M,AL(S),

where in the matrix)M; the i-th column is equal to zero
and in the matrixA;(S) the i-th column is not equal to
zero. But the matrixA;(S) has a unique nonzero ele-
ment — ;. ThereforeM;A;(S) = 0, and in the matrix
MiA(S)+- -+ M,A,(S) thefirst column is zero. This
completes the proof. =

Theorems A1, A2 and A3 imply the following result:

Corollary ALl. Let M C ¥ be the set of all tensors such
thatif T € M, thenJ,,(T) # 0. ThenM is an open and
everywhere dense invariant subsetin Consequently,
any system fronM is a regular WIS system.
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