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A trajectory tracking problem for the three-dimensional kinematic model of a unicycle-type mobile robot is considered. It is
assumed that only two of the tracking error coordinates are measurable. By means of cascaded systems theory we develop
observers for each of the error coordinates and show theK-exponential convergence of the tracking error in combined
closed-loop observer-controller systems. The results are illustrated with computer simulations.
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1. Introduction

In recent years the stabilization problem of non-
holonomic systems has received considerable attention.
One of the reasons is that for these systems Brockett’s
necessary condition for smooth stabilization is not met
(Brockett, 1983) and no smooth time-invariant stabilizing
control law exists. For an overview, we refer the reader to
the paper (Kolmanovsky and McClamroch, 1995) and ref-
erences cited therein. The tracking problem has received
less attention. In (Fierro and Lewis, 1995; Kanayama
et al., 1990; Micaelli and Samson, 1993; Murrayet al.,
1992; Walshet al., 1994) a linearization-based tracking
control scheme was derived. The idea of input-output
linearization was used in (Oelen and van Amerongen,
1994). In (Fliesset al., 1995) the trajectory stabiliza-
tion problem was dealt with by means of a differentially
flat system approach. A dynamic feedback linearization
technique for a wheeled mobile robot was presented in
(Canudas de Witet al., 1996). All these publications
solve the local tracking problem. The first global tracking
control law that we are aware of was proposed in (Sam-
son and Ait-Abderrahim, 1991). Another global tracking
result was derived in (Jiang and Nijmeijer, 1997) using
integrator backstepping. Global tracking results yield-
ing exponential convergence were presented in (Dixon
et al., 1999; Panteleyet al., 1998) under a persistence-of-
excitation assumption on the reference trajectory. A fuzzy

PD controller using look-up tables for the unicycle robot
is given in (Ulyanovet al., 1998).

In the paper (Panteleyet al., 1998) a state feedback
controller for the unicycle-type mobile robot was pro-
posed. Here we adapt this result to develop an output-
feedback trajectory tracking controller under the assump-
tion that one of the tracking error coordinates is un-
known. Our solution to this problem employs tools of
cascaded systems and linear systems theory. By construct-
ing reduced-order observers we have achieved globalK-
exponential stability in the case of uncertain position error,
and local exponential stability in the case of unmeasurable
orientation. Our stability analysis is based on the results
of cascaded systems. A similar problem of motion plan-
ning with measurements of the position coordinates was
solved in (Guillaume and Rouchon, 1998; Jiang and Ni-
jmeijer, 1999). A part of the results included in this paper,
concerning the position error observer, was presented in
(Lefeber, 2000; Lefeberet al., 2001).

The organization of the paper is as follows. In Sec-
tion 2 we recall definitions and theorems from stability
theory and formulate the tracking problem. In Section 3
we present an observer for one of the position-error co-
ordinates and the observer-based controller. In Section 4
the case of an unmeasured orientation angle is considered
and an appropriate controller is proposed. Computer sim-
ulations illustrating the behaviour of both controllers are
presented in Section 5. Section 6 concludes the paper.
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2. Preliminaries and Problem Formulation

Below we recall some standard concepts of stability the-
ory (Krstić et al., 1995).

2.1. Preliminaries

Definition 1. A continuous functionα : [0, a) → [0,∞)
is said to belong toclass K (α ∈ K) if it is strictly in-
creasing andα(0) = 0. It is said to belong toclassK∞
if a = ∞ and α(r) →∞ as r →∞.

Definition 2. A continuous functionβ : [0, a)×[0,∞) →
[0,∞) is said to belong toclass KL (β ∈ KL) if for
each fixeds the mappingβ(r, s) belongs to classK with
respect tor, and if for each fixedr the mappingβ(r, s)
is decreasing with respect tos and β(r, s) → 0 as s →
∞. It is said to belong toclassKL∞ if, in addition, for
each fixeds the mappingβ(r, s) belongs to classK∞
with respect tor.

Definition 3. The equilibrium pointx = 0 of a non-
autonomous systeṁx = f(t, x) is

• locally uniformly asymptotically stable (LUAS)if
there exist a functionβ ∈ KL and a positive con-
stantc such that for allt > t0 > 0 and for all initial
states‖x(t0)‖ < c

‖x(t)‖ ≤ β
(
‖x(t0)‖ , t− t0

)
; (1)

• globally uniformly asymptotically stable (GUAS)
if (1) is satisfied withβ ∈ KL∞ for any initial state
x(t0);

• locally exponentially stable (LES)if (1) is satisfied
with β(r, s) = kre−γs, k > 0, γ > 0 for
‖x(t0)‖ < c;

• globally exponentially stable (GES)if (1) is satisfied
with β(r, s) = kre−γs, k > 0, γ > 0 for any initial
statex(t0).

Definition 4. (Sørdalen and Egeland, 1995, Def. 2) The
equilibrium point x = 0 of a non-autonomous system
ẋ = f(t, x) is said to beglobally K-exponentially stable
if there exist a functionκ ∈ K and a constantγ > 0
such that for all(t0, x(t0)) ∈ R+ × Rn we have

‖x(t)‖ ≤ κ
(
‖x(t0)‖

)
e−γ(t−t0), ∀t ≥ t0 ≥ 0.

Definition 5. A continuous functionφ : R+ → R is said
to bepersistently exciting (PE)if there exist constantsε1,
ε2, δ > 0 such that for allt ≥ 0 we have

ε1 ≤
∫ t+δ

t

φ2(τ) dτ ≤ ε2.

Lemma 1. (Khalil, 1996)Consider the system,x ∈ R2,

ẋ =

[
−c1 −c2φ(t)

c3φ(t) 0

]
x. (2)

If c1 > 0, c2c3 > 0 and φ(t) is PE, then the system (2)
is GES.

Theorem 1. (Lefeberet al., 2000)Consider the system,
x ∈ R4,

ẋ =


−c1 −c2φ(t) d1 d2φ(t)

φ(t) 0 0 0

0 0 0 −l2φ(t)

0 0 φ(t) −l1

x. (3)

Whenφ(t) is PE, c1 > 0, c2 > 0, l1 > 0, l2 > 0, then
the system (3) is GES.

Theorem 2. (Ioannou and Sun, 1996, Thm. 3.4.6 (v))The
systemẋ = A(t)x is GES if and only if it is GUAS.

Theorem 3. (Krstić et al., 1995, Thm. A.5)Let x = 0
be an equilibrium point of a non-autonomous systemẋ =
f(t, x) and D = {x ∈ Rn| ‖x‖ < c}. Let V : D ×
Rn → R+ be a continuously differentiable function such
that ∀t ≥ 0, ∀x ∈ D,

α1

(
‖x‖

)
≤ V (t, x) ≤ α2

(
‖x‖

)
, (4)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3

(
‖x‖

)
. (5)

Then the equilibrium pointx = 0 is

• locally uniformly asymptotically stableif α1, α2

and α3 are K functions on[0, c);

• globally uniformly asymptotically stableif D =
Rn, α1, α2 are K∞ functions, andα3 is a K func-
tion on R+;

• locally exponentially stableif αi(ρ) = kiρ
γ on

[0, c), γ > 0, ki > 0, i = 1, 2, 3;

• globally exponentially stable if D = Rn, and
αi(ρ) = kiρ

γ on R+, γ > 0, ki > 0, i = 1, 2, 3.

2.2. Cascaded Systems

Consider a systeṁz = f(t, z) that can be written as

ż1 = f1(t, z1) + g(t, z1, z2)z2,

ż2 = f2(t, z2),
(6)
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where z1 ∈ Rn, z2 ∈ Rm, (z1, z2) = (0, 0) is an equi-
librium point of (6), f1(t, z1) is continuously differen-
tiable in (t, z1) and f2(t, z2), g(t, z1, z2) are continuous
in their arguments, as well as locally Lipschitz inz2 and
(z1, z2), respectively.

Assumption 1. Assume that there exist continuous func-
tions k1: R+ → R and k2: R+ → R such that

‖g(t, z1, z2)‖ ≤ k1

(
‖z2‖

)
+ k2

(
‖z2‖

)
‖z1‖ , (7)

where ‖g(t, z1, z2)‖ denotes the Frobenius norm of the
matrix g(t, z1, z2).

Then we can formulate the following corollary from
a result presented in (Panteley and Loría, 1998), see also
(Panteleyet al., 1998):

Corollary 1. Assume that the subsysteṁz1 = f1(t, z1)
of (6) is GES, the subsysteṁz2 = f2(t, z2) is globally
K-exponentially stable andg(t, z1, z2) satisfies (7). Then
the cascaded system (6) is globallyK-exponentially sta-
ble.

2.3. Problem Formulation

A kinematic model of the unicycle-type mobile robot is
given by the following equations:

ẋ = v cos θ,
ẏ = v sin θ,
θ̇ = ω.

The geometric interpretation of coordinatesx = (x, y, θ)
is shown in Fig. 1. The forward velocityv and the angular
velocity ω serve as the system controls.
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Fig. 1. The unicycle coordinates(x, y, θ), reference
coordinates(xr, yr, θr) and moving frame co-
ordinates(xe, ye, θe).

We consider the problem of tracking a reference tra-
jectory xr = (xr, yr, θr) generated by the reference

system 
ẋr = vr cos θr,

ẏr = vr sin θr,

θ̇r = ωr,

wherevr and ωr are continuous functions of time.

Following (Kanayamaet al., 1990), we express the
error coordinates in the moving frame in the formxe

ye

θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


xr − x

yr − y

θr − θ

 ,
and compute the error dynamics as

ẋe =

ẋe

ẏe

θ̇e

 =

ωye − v + vr cos θe

−ωxe + vr sin θe

ωr − ω

 . (8)

We shall assume that in the dynamic system (8) only
two error coordinates are measured while the remaining
one is unknown. To this end, we define the output func-
tion y

y = f(xe), dimy = 2. (9)

Upon defining the outputy, the dynamic output-feedback
state-tracking control problem can be formulated as fol-
lows:

Find velocity control lawsv and ω of the form

v = v(t,y, z), ω = ω(t,y, z), (10)

wherez is generated by the observer

ż = g(t,y, z), (11)

such that the closed-loop error system of (8),
(10) and (11) is globallyK-exponentially sta-
ble.

The scheme of the closed-loop robot-observer-
controller system is depicted in Fig. 2.

3. Position-Error Observer

In this section we address the problem of unmeasurable
one of position error coordinatesxe or ye. For the pur-
pose of designing an observer-based controller we choose
a control law proposed in (Panteleyet al., 1998):

ω = ωr + c1θe, c1 > 0, (12a)

v = vr + c2xe − c3ωrye, c2 > 0, c3 > −1. (12b)
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Fig. 2. Scheme of the observer-based con-
troller for the unicycle-type robot.

In this case we obtain, in combination with the error dy-
namics (8), the cascaded structure[

ẋe

ẏe

]
=

[
−c2 (1 + c3)ωr

−ωr 0

] [
xe

ye

]
︸ ︷︷ ︸

ż1=f1(t,z1)

+

c1ye + vr
cos θe − 1

θe

−c1xe + vr
sin θe

θe

 θe,

︸ ︷︷ ︸
g(t,z1,z2)z2

(13a)

θ̇e = −c1θe.︸ ︷︷ ︸
ż2=f2(t,z2)

(13b)

The subsysteṁz2 = f2(t, z2) of (13b) is GES. Assume
that vr is bounded andωr is persistently exciting. This
being so, from Lemma 1 we obtain that the subsystem
ż1 = f1(t, z1) is also GES and the interconnection term
g(t, z1, z2) satisfies Assumption 1. Hence, by means of
Corollary 1, we conclude that the overall closed-loop sys-
tem (13) is globallyK-exponentially stable.

Now we assume that we are unable to measure the
forward-error xe, so only the values ofye and θe are
available, i.e.

y = [y1 y2]T = [ye θe]. (14)

The case of unmeasuredye can be addressed analogously.

We notice that the controlω in (12a) depends only
on the available outputy2(θe) and therefore it can be di-
rectly used in the observer-based controller; in the control
v the unmeasurable statexe must be replaced by its es-
timate. To find an estimate ofxe, we first consider the
subsystemż1 = f1(t, z1) of (13a) without the substitu-
tion of the controlv (12b), which corresponds to the case

of θe = 0. Further, in Proposition 1, we shall show that
the same observer can be used for an arbitraryθe. We
have[

ẋe

ẏe

]
=

[
0 ωr

−ωr 0

] [
xe

ye

]
+

[
vr − v

0

]
. (15)

We define a new variablez as a linear combination
of the measured and unknown states

z = xe − bye,

where b is a function of time, still to be determined in
order to guarantee the asymptotic stability of the reduced-
order observer. Differentiatingz with respect to time
along the dynamics (15) yields

ż = ωrye + (vr − v)− ḃye + bωrxe

= bωr(xe − bye) + b2ωrye + ωrye + (vr − v)− ḃye

= bωrz +
(
b2ωr + ωr − ḃ

)
ye + (vr − v).

Defining the reduced-order observer dynamics as

˙̂z = bωr ẑ +
(
b2ωr + ωr − ḃ

)
ye + (vr − v),

we obtain for the observation-error̃z = z − ẑ

˙̃z = bωr z̃. (16)

Solutions of (16) satisfy

z̃(t) = z̃(t0)e
∫ t

t0
b(τ)ωr(τ)dτ

.

If we now take b = −lωr with l as a positive constant
and assume furthermore thatωr is PE, we have the exis-
tence ofε1 > 0, ε2 > 0, and δ > 0 such that

ε1
δ

(t− t0) <
∫ t

t0

ω2
r(τ) dτ <

ε2
δ

(t− t0),

which enables us to conclude that (16) is GES and the esti-
mate ẑ tends toz. The estimate ofxe for the subsystem
ż1 = f1(t, z1), defined as

x̂e = ẑ − lωrye,

converges exponentialy to the original statexe.

Now we plug the observer into the complete closed-
loop system:

Proposition 1. Consider the tracking error dynamics (8)
with output (14) in the closed loop with the control law

ω = ωr + c1θe, c1 > 0, (17a)

v = vr + c2x̂e − c3ωrye, c2 > 0, c3 > −1, (17b)
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where x̂e is generated by the reduced-order observer

˙̂z = −lω2
r ẑ + (l2ω3

r + ωr + lω̇r)ye + (vr − v), (18a)

x̂e = ẑ − lωrye, l > 0. (18b)

If vr is bounded andωr is persistently exciting (PE),
then the closed-loop system (8), (17) and (18) is globally
K-exponentially stable.

Proof. We can view the closed-loop system (8), (17) and
(18) as a cascaded system, i.e. the system of the form (6),
where

z1 =
[
xe ye xe − x̂e

]T

, z2 = θe,

f1(t, z1) =

−c2 (c3 + 1)ωr c2

−ωr 0 0
0 0 −lω2

r

 z1,
f2(t, z2) = −c1z2,

g(t, z1, z2) =



c1ye + vr
cos θe − 1

θe

−c1xe + vr
sin θe

θe

c1ye + vr
cos θe − 1

θe

+lωr

(
− c1xe + vr

sin θe

θe

)


.

To be able to apply Corollary 1, we need to verify the
global exponential stability (GES) of the subsystemż1 =
f1(t, z1). To do so, we rewrite it in the cascaded form as

z̄1 =
[
xe ye

]T

, z̄2 = xe − x̂e,

[
ẋe

ẏe

]
=

[
−c2 (c3 + 1)ωr

−ωr 0

] [
xe

ye

]
︸ ︷︷ ︸

f̄1(t,z̄1)

+

[
c2

0

]
︸︷︷︸

ḡ(t,z̄1,z̄2)

z̄2, (19a)

˙̄z2 = −lω2
r z̄2. (19b)

Solutions of the subsystem (19b) are given by

z̄2(t) = z̄2(t0)e
−l

∫ t
t0

ω2
r(τ)dτ

.

Since ωr is PE, the subsystem (19b) is GES. Further-
more, the termḡ(t, z̄1, z̄2) is bounded and the system
˙̄z1 = f̄1(t, z̄1) is GES. From Corollary 1 we can con-
clude that the systeṁz1 = f1(t, z1) is GUAS. Since it

is a linear time-varying system, Theorem 2 allows us to
conclude thatż1 = f1(t, z1) is GES. Since also the sys-
tem ż2 = f2(t, z2) is GES and the boundedness of both
vr and ωr (cf. Definition 5) guarantees that the condi-
tion on g(t, z1, z2) is met, Corollary 1 yields the desired
result.

4. Orientation-Error Observer

In this section we assume that the available output is

y = [ y1 y2 ]T = [ xe ye ]T . (20)

We notice that the unknown orientation errorθe appears
in the system equation (8) only as an argument of the sine
and cosine. Hence we expect that it is not possible to re-
trieve the exact value ofθe from the available output, but
only sin θe and cos θe, i.e. the value ofθe limited to one
full period (−π < θe ≤ π).

Therefore we modify the controller (12) to include
sin θe instead ofθe:

ω = ωr + c1 sin θe,

v = vr + c2xe − c3ωrye.
(21)

The controller (21) ensures the local exponential sta-
bility of the closed-loop control system (8) and (21) if
|θe| ≤ θ0 < π.

The θe dynamics in the closed loop are given by

θ̇e = −c1 sin θe. (22)

Define the Lyapunov function

V (θe) = 1− cos θe, (23)

and differentiate it along the dynamics (22):

V̇ = −c1 sin2 θe ≤ 0. (24)

If c1 is a positive constant and|θe| ≤ θ0 < π, the sys-
tem (22) is asymptotically stable.

We can also findδ(θ0) > 0 such that

sin2 θe ≥ δ(θ0)(1− cos θe).

Then (24) satisfies

V̇ ≤ −c1δ(θ0)(1− cos θe) = −c1δ(θ0)V,

and the system (22) is LES.

In order to modify the state-feedback controller (21)
to an output-feedback controller for the system (8), (20),
we shall apply an observer estimatingsin θe.



J. Jakubiak et al.518

To this end, we define the new variablez

z = sin θe − avrye.

Its derivative along the dynamics (8) is given by

ż = (ωr − ω) cos θe − av̇rye + avrωxe − av2
r sin θe.

Set ψ = sin θe and its estimateψ̂ = ŝin θe. Hence we
define the observer

˙̂z = − av̇rye + avrωxe − av2
r ẑ − a2v3

rye, (25a)

ψ̂ = ẑ + avrye. (25b)

With the observer error̃ψ = ψ−ψ̂, we obtain the observer
error dynamics

˙̃
ψ = (ωr − ω) cos θe − av2

r ψ̃. (26)

Before we define the complete control law for the
system (8), we examine the stability of the combined ob-
server (25) with the control of angular velocityω

ω = ωr + c1(t)ψ̂, (27)

where c1(t) is a non-negative function of time. The sys-
tem consisting ofθe and the observer error̃ψ with the
control (27) yields

θ̇e = −c1(t)ψ̂,

˙̃
ψ = −c1(t)ψ̂ cos θe − av2

r ψ̃.

Then, for ψ̂ = sin θe − ψ̃, we obtain

θ̇e = −c1(t)
(
sin θe − ψ̃

)
,

˙̃
ψ = −c1(t)

1
2

sin 2θe + c1(t)ψ̃ cos θe − av2
r ψ̃.

(28)

Define a Lyapunov functionV for the system (28):

V = (1− cos θe) +
1
2
ψ̃2. (29)

The derivative ofV along trajectories (28) is equal to

V̇ = −c1(t) sin2 θe + c1(t)ψ̃ sin θe

−
(
−c1(t) cos θe + av2

r

)
ψ̃2 − c1(t)

1
2

sin 2θeψ̃

≤ −c1(t) sin2 θe −
(
−c1(t) cos θe + av2

r

)
ψ̃2

+ c1(t)
(
|sin θe|+

∣∣∣1
2

sin 2θe

∣∣∣)|ψ̃|.

Since 1
2 |sin 2θe| ≤ |sin θe| and c1(t) cos θe ≤ c1(t),

V̇ ≤ − c1(t) sin2 θe

−
(
−c1(t) + av2

r

)
ψ̃2 + 2c1(t) |sin θe| |ψ̃|.

Assume thatc1(t) = 1
2γav

2
r , where0 < γ < 1. Then

V̇ ≤ −av2
r

(γ
2
(
|sin θe| − |ψ̃|

)2 + (1− γ)ψ̃2
)
≤ 0. (30)

We also assume thatθe is inside the interval(−π, π), and
we choose a very small constantδ such thatcos θe >
−1 + δ and sin2 θe ≥ δ(1− cos θe) hold and (30) can be
transformed into the following form:

V̇ ≤− av2
r

(
α2 sin2 θe + β2ψ̃2 − 2αβ |sin θe| |ψ̃|

+
η

δ
sin2 θe +

(η
2

+ κ
)
ψ̃2

)
≤− av2

r

(
α |sin θe| − β|ψ̃|

)2

− ηav2
r

(
1− cos θe +

1
2
ψ̃2

)
≤− ηav2

rV,

so the system (28) is locally exponentially stable. For
given 0 < γ < 1 and smallδ > 0 we find constants
α, β, η and κ by solving the set of equations

αβ =
γ

2
,

α2 +
η

δ
=
γ

2
,

β2 +
η

2
+ κ = 1− γ

2
.

Finally, we shall extend our deliberations to the entire
closed-loop controller.

Proposition 2. Consider the system (8) with the control
law

v = vr + c2xe − c3ωrye,

ω = ωr +
1
2
γav2

r ψ̂,
(31)

and the observer given by

˙̂z = −av̇rye + avrωxe − av2
r ẑ − a2v3

rye,

ψ̂ = ẑ + avrye,
(32)

where c3 > −1, c2, and a are positive constants,0 <
γ < 1. If vr, ωr are bounded and persistently exciting
and ω̇r, v̇r are bounded, the closed-loop system (8), (31)
and (32) is locally exponentially stable.
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Proof. The closed-loop dynamics, defined by (8), (31)
and (32):

ẋe =
(
(1 + c3)ωr +

γ

2
av2

r ψ̂
)
ye

+vr(cos θe − 1)− c2xe,

ẏe = −
(
ωr +

γ

2
av2

r ψ̂
)
xe + vr sin θe,

θ̇e = −γ
2
av2

r ψ̂

˙̃
ψ = −γ

2
av2

r

(1
2

sin 2θe − ψ̃ cos θe

)
− av2

r ψ̃,

(33)

can be transformed to the cascaded form[
ẋe

ẏe

]
=

[
−c2 (1 + c3)ωr

−ωr 0

] [
xe

ye

]
︸ ︷︷ ︸

ż1=f1(t,z1)

+g(t, [xe ye]T︸ ︷︷ ︸
z1

, [θe ψ̃]T︸ ︷︷ ︸
z2

)

[
θe

ψ̃

]
, (34a)

[
θ̇e

˙̃
ψ

]
=

 −1
2
γav2

r

(
sin θe − ψ̃

)
−γ

2
av2

r

(1
2

sin 2θe − ψ̃ cos θe

)
− av2

r ψ̃


︸ ︷︷ ︸

ż2=f2(t,z2)

(34b)

where the interconnection termg(t, [xe ye]T , [θe ψ̃]T ) is
in the form

g
(
t, [xe ye]T , [θe ψ̃]T

)

=


γ

2
av2

rye

1∫
0

cos sθe ds+vr

1∫
0

sin sθe ds −γ
2
av2

rye

−γ
2
av2

rxe

1∫
0

cos sθe ds+vr

1∫
0

cos sθe ds −γ
2
av2

rxe

.

If vr is persistently exciting and bounded, the subsys-
tem (34b) is locally exponentially stable and the intercon-
nection term satisfies Assumption 1. Furthermore, ifωr

is PE, we obtain that the subsysteṁz1 = f1(t, z1) is
GES. From Corollary 1 we conclude that the system (33)
is locally exponentially stable.

Remark 1. We notice that both forward and angular ve-
locities need to be persistently exciting. The assumption
on vr is needed to ensure the convergence of the ob-
server, while the condition onωr results from the con-
troller used.

5. Simulations

In order to illustrate the behaviour of the output-feedback
state-tracking controllers derived in this paper, a number
of simulations have been done. The simulations were car-
ried out using MATHEMATICA . We considered the prob-
lem of tracking a circle with a constant velocity, i.e. a
reference trajectory that is given byvr = 1, ωr = 1,
where, as in (Jiang and Nijmeijer, 1997), we took for the
initial error (xe(0), ye(0), θe(0)) = (−0.5, 0.5, 1).
For comparison, we first simulated the state-feedback con-
troller (12) using the gains

c1 = 5.9460, c2 = 1.3522, c3 = −0.4142, (35)

which arise by minimizing the cost∫ ∞

0

x2
e(τ) + y2

e(τ) + (vr(τ)− v(τ))2 dτ

for the system (15) with an arbitrarily chosen convergence
of θe. The resulting performance is depicted in Fig. 3.
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Fig. 3. Tracking errors and inputs for the state-feedback
controller (12) with the controller gains (35).

For comparison, a simulation was performed for the
controller (21) with the use of the same initial values and
gains. The results are shown in Fig. 4.

For studying the behaviour of the position-error ob-
server, we simulated the output-feedback controller (17)
and (18) with the controller gains (35) and the observer
gain

l = 24.7461, (36)

which guarantees that the error dynamics for the conver-
gence of the controller (17) and (18) are comparable to the
state-feedback controller (12). The results are depicted in
Fig. 5.
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Fig. 4. Tracking errors and inputs for the
state-feedback controller (21).
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Fig. 5. Tracking errors and inputs for the output-
feedback controller (17) and (18) with the con-
troller and observer gains (35) and (36).

In Fig. 6 the results for the orientation-angle ob-
server (32), combined with the controller (31), are pre-
sented. To draw a comparison of this controller with the
previous ones, we used the same controller gains (35) and
the observer gains

a = 10, γ = 0.5,
which ensure the fast convergence of the observer error.
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Fig. 6. Tracking errors and inputs for the output-
feedback controller (31) and (32).

6. Concluding Remarks

In this paper we have designed two output-feedback track-
ing controllers for the unicycle-type mobile robot assum-
ing that only the measurements of two out of three state
variables are available. It corresponds to two situations
encountered in some pursuit navigation problems: the
position-error observer can be used when one of the dis-
tances between escaper and pursuer robots is outside the
range of pursuer robot sensors, or measured with high dis-
turbance error, or for any other reason unreliable. The
second observer, estimating the orientation error, replaces
the requirement of practically difficult measurements of
the orientation angle with much simpler measurements of
distances. Both observers can be used either to replace the
real sensors or to stand as a parallel system to provide data
for the controller in the case when the measurements are
temporarily unavailable. In our solution we took advan-
tage of the fact that modified observers for linear systems
might be in some cases applied to nonlinear systems. We
considered the tracking problem when one of the trajec-
tory tracking error coordinates was unmeasurable. When
the position error coordinate is unavailable, we are able
to achieve globalK-exponential stability. In the case of
the unmeasured orientation angle, only local exponential
stability was shown.
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It is worth noticing that the stability of both con-
trollers assumed persistent excitation of the angular refer-
ence velocity. As a result, the output-feedback controllers
are not capable of tracking, e.g., straight line trajectories.
The additional requirement of the persistent excitation of
vr, appearing in the case of an unmeasured orientation an-
gle error, means that the turning of the steering wheel is
not a sufficient movement to estimate the orientation angle
of the vehicle. A way of overcoming the PE-problem with
the use of the concept of uδ-PE was presented in (Loría
et al., 1999). We believe that it is worth investigating if it
also applies to the output-feedback case.
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