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CONTROL OF AN INDUCTION MOTOR USING SLIDING MODE LINEARIZATION
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Nonlinear control of the squirrel induction motor is designed using sliding mode theory. The developed approach leads
to the design of a sliding mode controller in order to linearize the behaviour of an induction motor. The second problem
described in the paper is decoupling between two physical outputs: the rotor speed and the rotor flux modulus. The sliding
mode tools allow us to separate the control from these two outputs. To take account of parametric variations, a model-based
approach is used to improve the robustness of the control law despite these perturbations. Experimental results obtained
with a laboratory setup illustrate the good performance of this technique.

Keywords: induction motor, sliding mode control, linearization

1. Introduction ysis based on the Lyapunov theory is presented. A model-
based approach is proposed to solve the stability problem

In variable speed domain, many applications need highanq to improve the robustness of stabilization (Edwards
performances in terms of torques and accuracy. To ob-anqg Spurgeon, 1998).

tain high performances, several control methods have

been developed in the last few years. Sliding mode the- Section 2 presents an IM model in the concordia
ory, stemmed from the variable-structure control family, frame. The third section develops sliding mode theory and
has been used for the Induction Motor (IM) drive for a its application to linearization. Section 4 introduces a ref-
long time (Utkin, 1999). Introduced as a relatively easier erence model to improve the robustness of linearization.
control design, the sliding mode using switched controls Some experimental results are presented in Section 5.
produces chattering phenomena and torque perturbations.

Many solutions try to limit those drawbacks by using, e.g.,

smoothed nonlinearities, but at present the main stream of

the sliding mode in IM control is the design of flux ob-

servers (Edwards and Spurgeon, 1994). 2. Description of the Electrical Motor

On the other hand, many methods of nonlinear sys-
tem control have been developed, such as exact inputin order to design sliding mode control, we use the
output linearization or backstepping (Chiasson, 1996; M model with respect to a fixed stator reference frame
Taylor, 1994). It is well known that the use of these meth- {a,3} (see Appendix). The main reason behind this
ods in practical applications needs adaptive solutions tochoice is the improvement of performances concerning
deal with robustness problems (Marino and Valigi, 1991; the numerical precision. In fact, by using the fixed stator
1993; Von Raumeet al., 1993a; 1993b). reference frame, it is not necessary to implement a rotor

At first, this paper employs sliding mode theory, well position measurement (Barbettal,, 1992).
known by speed drive conceptors, in order to linearize o ] ]

IM behaviour. The choice of a particular sliding surface The objective is to control the following two physical
permits to create a link between sliding mode theory and quantities: the rotor spee¢ and the magnitude of the
input-output linearization. rotor flux [®[* = W7, + W2,

In the second part, the sliding mode in the track- We define a new state space representation:
ing problem applied to an IM is considered. In the pres-
ence of some particular reference input signal, the track-
ing yields unstable behaviour. To show that the stability i
depends on the input signals, in Section 4 a stability anal-
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(z,t) + B(z, t)u,
(2,1)

)

PSS
Il
Q



E. Etien et al.

[ Ay Agg }&
f3(z) @)
fa(z)

e R P e

With no loss of generality, the state vectercan be
written as follows:

with

z= l 1 (4)
Ty ]
with _
2, = T11 _ w
o T12 i |#]
and
R I T I (5)
2w | ¢5‘ .
Then

Ty = Zy. (6)

We find the following functions:
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This choice of the state space representation provides a

particular form for the matrixf(z,t), which is divided

L,=Lg (14+6L), My =M, (14+6L). (10)

In the following part, the controller is designed in
two steps in order to control the output vectg? =

[ w |#] ]. The first step consists in linearizing the be-
haviour of the nonlinear system (1). The other improves
the robustness of linearization and the tracking problem.

3. Sliding Mode Linearization
3.1. Sliding Mode Theory

In this subsection, sliding mode theory is summarized.

The reader is referred to (Edwards and Spurgeon, 1998;
Utkin, 1992) for details. Let us consider the nonlinear

system

&= f(z,t) + B(z, t)u,
{ Y= C(@v t)7 (11)

wherez(t) € R™, u(t) € R™ and B(z,t) € R™*™.

From the system (11), it is possible to define a Set
of the state trajectories such as

S = {(t) lo(z.t) =0 }. 12)
where
o(z,t) = [al(g,t),...,am(g,t)]T =0 (13)

and[-]7 denotes the transposed vector.

S is called the “sliding surface” and the system is
said to be in the sliding mode when the state trajectory
2 of the controller plant satisfies(z(¢),t) = 0 at ev-
ery t > t; for somet;. The surfaces are designed
so that the state trajectory, restricted d¢x(t),t) = 0,
shows some desired behaviour such as stability or track-
ing. Commonly, in IM control using sliding mode the-
ory, the surfaces are chosen as functions of the error be-
tween the reference input signals and the measured signals
(Utkin, 1993).

After this step, the objective is to determine a con-
trol law which drives the state trajectories along the sur-

into two blocks: a linear one and a nonlinear one. This face (12). The following part shows how to use sliding
particular form, known as the regular form, can be derived Mode theory for linearization behaviour.

from the classical IM model via mathematical transforma-

tions (Edwards and Spurgeon, 1998).

In most applications this technique is implemented
by using switched controllers in order to improve some

In order to take account of the parametric variations, Performances. The chattering phenomena and the torque

we introduce unknown deviations of the resistarié&)

and the inductancéjL). The IM physical parameters can

also be defined as follows:

Rs = Rsn(l + 6R)7

{ R, = Ryn(1+0R), ©)

L, = Lyn(1+46L),

perturbations are reduced by adding and designing switch
components with hysteresis. The main contribution of this
work concerns the application of the sliding mode to lin-
earize a nonlinear system. The next section outlines a
method to tune the parameters of the sliding mode con-
troller.
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3.2. Application to Linearization with o1 = [ S; Sy | andoy =[ S3 S, ] standing

for matrices to be determined. Developing (18), we can
The objective of the first step of the design procedure is to yyrite

convert the nonlinear system (1) to a linear one defined by

the following state space representation: o(z,t) = S1zq + Sozy + S3z1 + Sazy.  (19)
P = Using (6) yields
{:L" gngB@ (14) g(6)y
= Cuz, _ .
g=ne 2y = — (S + S5) "V [Suzy + Sudy].  (20)
where Substituting the nonlinear regular expression of (3)
0 0 1 0 gives
A= 0 0 0 1 , & =—A1p [(S2+ S3) 7 (Sqay + Suiy)] - (21)
—s18] 0 (s1+ ) 0
0 —898% 0 (s2+ 85) Finally,
0 0 # =87 " Sy — Sy (S2 + S3)iy. (22)
B_ 0 0 C— 1000 (15) Consider the particular case whefg = S, = I,
o]’ 010 0]
0 1 6 _[msi 0
ith 0 sosh |
Wi
(23)
o =lw ¢l o 19l ], g [ st 0
(16) 0 —(1+ 52+ 55)
I =lo v, g =]w ] » |
Consequently, the sliding surface is
The linearized system is equivalent to two indepen-
dent subsystems. The first one represents a transfer fromg@’ t)
the new input,v;, to the speed of the rotor. The second , 0 10
one is also a linear transfer from an input to the ro- = | 151 / z
tor flux modulus. Each subsystem is characterized by two 0 s2s5 0 1
poles: {s1, s} for the first one and s, s,} for the sec-
- /
ond one. (14 51+ 57) 0 / 10 i (24)
Thus the linear system can be written using the trans- 0 —(1+s2+55) 01
fer matrix ] o
In order to find the control lawu(t) which imposes
G1(s) 0 o(z,t) = 0, we use the equivalent control method (Utkin,
G(s) = 0 Gals) 1992). Using (18) and (11), we write
with o(z,t) = o1z + oo f(z,t) + 02B(z, t)u.,, = 0. (25)
w 1
Gi(s) = Pl P P L Suppose that the matrix, is such that the square
! (17)  matrix [0, B(z, t)] is invertible. Then the equivalent con-
Gals) |9 1 trol is defined by the following expression:
2 = ——

vi (s—s2)(s—sh) .
t) = —|osB(x,t t)|. (26
The eigenvalueg sy, sj} and {ss, s,} are chosen Ueg(2,1) [o2B(@,0)] " |orz + oaf(z,1)]. - (26)
to determine respectively the dynamics of the rotor speed,:ina”y, the linearizing control is given by

and the rotor flux modulus in order to consider the physi-
cal time constants of the system.

Consider the particular sliding surface

+ [o2B(z,1)] v (27)

U= Uy

The equivalent system with the input vecteris also de-
o(z,t) = o1 + 02d (18) fined by (14) and its representation is shown in Fig. 1.
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Fig. 1. Sliding mode linearization principle.

Notice that this control is equivalent to a classical ex- quations (27) and (32) yield
act input-output linearization technique with poles place-
ment (Chiasson, 1993; Isidori, 1989). In practice, it is V =27Tu<0, Vo0. (33)
impossible to use directly this type of linearization. The -
first difficulty is the loss of decoupling when paramet-
ric variations appear. This robustness problem is usually
solved using an adaptive solution. Another difficulty con-
cerns linearization stability toward the perturbation signal.
This stability degree is conditioned by the choice of the
pole placement{sy, s}}, {s2,s5} and the external sig-

We see that the Lyapunov condition depends on the
pole placement and, consequently, on the designed sur-
face. Moreover, the reference signal may exert influence
on linearization stability. Hence, the tracking references
are considered as perturbation signals.

nals (tracking references, perturbation signals, etc.). In Notice that the result (33) was obtained using the
order to improve the limits of linearization, we propose to equivalent control (26), which depends on the nomi-
use the Lyapunov theory. nal system (1). In the case of parametric variations or

modelling errors, the Lyapunov condition might not be
checked. Consequently, for tracking behaviours, the dis-
cussed linearization technique cannot be used alone.
The Lyapunov approach is used for deriving the condition
control u(z,t) that will drive the state trajectory to the
sliding surface. Consider the quadratic Lyapunov function

3.3. Linearization Stability

4. Sliding Mode Control
V(t,z,0) =0 (z,t)o(z,1), (28)
In the presence of parametric variations, the linearized

with o(z,t) being the sliding surface defined in (25). To system is modified as follows (Caugtal., 2001a):
prove linearization stability, we must verify that the con-

trol law (27) allows us to obtain the Lyapunov condition &= (An, + ApdR + ALdL)z
V(t,z,0) =20T6 <0, Vo#0, (29) + (B + BroL)v + d(z) (34)
where we have cancelled the specificand ¢t dependen- .
. . with
cies. We write 5 5
. o o,
Equation (1) yields A, = | 78151 s1hs 0 0 ,
0 0 0 1
0o do oo / /
L2 Y B ) 1 0 0 —5285 82+ 84
0=+ 5 flat)+ Bz (31)
The expression (29) can be written down as follows: 0 0 0 0
. do oo 0 —v, —« 0 0
=20"— + 207 — f(a,t - Tn = Cn
% o5 + 20 éxf@’ ) Ag 0 0 0 . ,
0 0 ARaz —Tn —3an

é
+ 20T£B(L Hu<0, Vo#0. (32)
AR4,3 = 20171(*’)% —ay + anﬁnMsrn);



Control of an induction motor using sliding mode linearization a amcs

0 0 0 0 Define the error state
s18]  —s18) 0 0
A = \ t) = z(t) — w(t). 36
L 0 0 2, 0 e(t) = z(t) — w(t) (36)

The objective of the second step of the design procedure
is to choose the control input vecter which imposes
e(t) — 0in a short time. The following sliding surface

0 0 Apaz Araa

/ 2 2
Az = 8255 — 20 B Mgy, — 4o

n?

is proposed:
Arsa =20, — (s2+ 53), oe(e, t) = Se(t) =0 (37)
0 0 0 0 with o ) ;
1 0 -1 0 -
B, = ., BL= , S= e ] (38)
0 0 0 0 0 1 0 _
0 1 0 -1 Sed
) ) We have—1/s., and —1/s.q¢ as the two poles that im-
0 pose the dynamic errors.
i (2) = —Srpp [ T11290 e . Tr;]e eqw;{;\!ent contro@eq@) (Utkin, 1992) that sat-
d(z) = 1z) =3 g, TEuin , isfies the conditiornr.(e,t) = 0 is
0 Veg(t) = f(SB)*lS[Angr (A— Az — Bmﬁ]. (39)
- d2(z) - To complete the control design, we have to solve the
with reachability problem (Edwards and Spurgeon, 1998). In
T11%10 the presence of parametric variations, the contg(t)
da(z) = 2poy Mgynd, ——— cannot impose the conditiom, (e, t) = 0. The solution is
H to find complementary contral (0., t) which drives the
+2a2 M2, (Or +01) state trajectory error to the equilibrium manifold. Using
the Lyapunov theory, we choose the continuous control
1 | (200 + 20201 \° 7% (DeCarloet al., 1996):
“Now |\ 20t ) T2 [
21 niVlsrn
vy = —Poc(e,t), P=P'>0. (40)

We propose to use the particular robust properties
of sliding mode control to minimize the consequences of
these parametric variations. Commonly, in order to in-

In this case, the derivative of the Lyapunov function can
be written as follows:

troduce tracking requirements, a model-based approach is V= 27T (e, Yoy = 207 (e, t)Po (e, 1) (41)
chosen. A similar approach is proposed in (Caatedl., e\ EN e =
2001b) for induction motor control. The Lyapunov conditionV < 0, Vo, (e, t) # 0 is satis-
Assume that the plant is defined by (14), which pro- fied for all P = PT > 0. Finally, we obtain the global
duces the following tracking model: control
t) = v, (t) + (SB) tuy(t). 42
bt B 35) v(t) = vy (B) + (SB) 'y () (42)

The control scheme is summarized in Fig. 2.

F(t) w(t)

| 2 Reference Model
= “-. eft)
{
j x(t + A
v Uncertain linear }
& system

Sliding Mode
Controller

|

-

Fig. 2. Model-based sliding mode control.
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The reference model imposes the dynamics to be fol- 12—

lowed by the linearized system. Sliding mode control

guarantees the convergence of the ere6t)(— 0). The 3 __jm

reference model is chosen as a copy of the theorical lin-
earized system in the nominal case. The external loop

leads to robust linearization. i |

06}

5. Experimental Results

The control law is tested on an experimental plant com- %4
posed of a 1.1 kW induction motor. The control command

is designed with a digital signal processor TMS320C32 o2
board. The rotor speed and two stator current mea-
surements are used to estimate the error flux component
(Verghese and Sanders, 1988). The two poles of the lin-
earized system arg = —10, s; = —200, s5 = s5 =

—300.

Figure 3 shows the benchmark signals used in prac-
tice. To show the advantages of the model-based con-

|
|
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0

—— dR=0, dL=0
— — dR=50%, dL=0
-- dR=0, dL=20%
dR=50%, dL=20%

5 R R | 20
time (s5)

Fig. 4. Rotor flux response without the RM.
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Fig. 3. Benchmark test: rotor speed
(turns/min) and load torque (Nm).

5 e~ e 15 20
time (s)

Fig. 5. Zoom of the rotor flux response without the RM.

trol, we introduce parameter deviations in the control al-
gorithm @R, = +£50% and 6Ls = +20%). The results

are provided in two cases: Figs. 4—7 provide the responses #%°
obtained without the reference model and Figs. 8-11 illus-
trate the improvements due to the reference model (RM).
Figures 12 and 13 show the sliding surfaces. 400/

Without the reference model, the parametric varia-
tions introduced in the control algorithm provide an im-
portant coupling action between the rotor flux and the ro-
tor speed. Moreover, the speed is obtained with an im-
portant steady-state error. With the use of the reference -200-
model, the decoupling is ensured and correct tracking is
obtained for the component®|* = 2 + ¥2; and w.

T

= T T —

|
dR=0, dL=0 |

— dR=50%.dL=0

_... dR=0,dL=20%
.. — dR=50%, dL=20% |
i

i s

6. Conclusion .00 !
o

In this paper, we propose induction motor control using

5 10 15 20
time (s)

sliding mode theory in two steps. A particular sliding sur- Fig. 6. Rotor speed response without the RM.
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Fig. 7. Zoom of the rotor speed response without the RM.
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Fig. 9. Zoom of the rotor flux response with the RM.
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Fig. 11. Zoom of the rotor speed response with the RM.
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Fig. 12. Sliding surface on the rotor flux error.
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and 7; is the load torque. For simplicity, we define the where L, is the stator inductance\/,, is the mutual in-
following variables: ductance,L,. is the rotor inductancelz, is the stator re-
sistance, R, is the rotor resistance and denotes the

R, My, pMs,

_ _ _ rotor inertia.
a=1 P=oro PT UL
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