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CONTROL OF AN INDUCTION MOTOR USING SLIDING MODE LINEARIZATION
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Nonlinear control of the squirrel induction motor is designed using sliding mode theory. The developed approach leads
to the design of a sliding mode controller in order to linearize the behaviour of an induction motor. The second problem
described in the paper is decoupling between two physical outputs: the rotor speed and the rotor flux modulus. The sliding
mode tools allow us to separate the control from these two outputs. To take account of parametric variations, a model-based
approach is used to improve the robustness of the control law despite these perturbations. Experimental results obtained
with a laboratory setup illustrate the good performance of this technique.
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1. Introduction

In variable speed domain, many applications need high
performances in terms of torques and accuracy. To ob-
tain high performances, several control methods have
been developed in the last few years. Sliding mode the-
ory, stemmed from the variable-structure control family,
has been used for the Induction Motor (IM) drive for a
long time (Utkin, 1999). Introduced as a relatively easier
control design, the sliding mode using switched controls
produces chattering phenomena and torque perturbations.
Many solutions try to limit those drawbacks by using, e.g.,
smoothed nonlinearities, but at present the main stream of
the sliding mode in IM control is the design of flux ob-
servers (Edwards and Spurgeon, 1994).

On the other hand, many methods of nonlinear sys-
tem control have been developed, such as exact input-
output linearization or backstepping (Chiasson, 1996;
Taylor, 1994). It is well known that the use of these meth-
ods in practical applications needs adaptive solutions to
deal with robustness problems (Marino and Valigi, 1991;
1993; Von Raumeret al., 1993a; 1993b).

At first, this paper employs sliding mode theory, well
known by speed drive conceptors, in order to linearize
IM behaviour. The choice of a particular sliding surface
permits to create a link between sliding mode theory and
input-output linearization.

In the second part, the sliding mode in the track-
ing problem applied to an IM is considered. In the pres-
ence of some particular reference input signal, the track-
ing yields unstable behaviour. To show that the stability
depends on the input signals, in Section 4 a stability anal-

ysis based on the Lyapunov theory is presented. A model-
based approach is proposed to solve the stability problem
and to improve the robustness of stabilization (Edwards
and Spurgeon, 1998).

Section 2 presents an IM model in the concordia
frame. The third section develops sliding mode theory and
its application to linearization. Section 4 introduces a ref-
erence model to improve the robustness of linearization.
Some experimental results are presented in Section 5.

2. Description of the Electrical Motor

In order to design sliding mode control, we use the
IM model with respect to a fixed stator reference frame
{α, β} (see Appendix). The main reason behind this
choice is the improvement of performances concerning
the numerical precision. In fact, by using the fixed stator
reference frame, it is not necessary to implement a rotor
position measurement (Barbotet al., 1992).

The objective is to control the following two physical
quantities: the rotor speedω and the magnitude of the
rotor flux |Φ|2 = Ψ2

rα + Ψ2
rβ .

We define a new state space representation:

{
ẋ = f(x, t) + B(x, t)u,

y = C(x, t)
(1)
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with xT = [ω |φ| ω̇ |φ̇| ]. Here

f(x, t) =


[

A11 A12

]
x

f3(x)
f4(x)

 (2)

with

A11 =

[
0 0
0 0

]
, A12 =

[
1 0
0 1

]
. (3)

With no loss of generality, the state vectorx can be
written as follows:

x =

[
x1

x2

]
(4)

with

x1 =

[
x11

x12

]
=

[
ω

|φ|

]
and

x2 =

[
x21

x22

]
=

[
ω̇∣∣∣φ̇∣∣∣

]
. (5)

Then
ẋ1 = x2. (6)

We find the following functions:

f3(x) = −µpβx11x12 − (α + γ)x21

− µpβx11x22

2αMsr
− µpx11x12

Msr
, (7)

f4(x) = (4α2 + 2α2Msrβ)x12 +
2αpMsrx11x21

µ

− (3α + γ)x22

+
2α2M2

sr

x12

[(
x22 + 2αx12

2αMsr

)2

+
x2

21

µ2

]
. (8)

This choice of the state space representation provides a
particular form for the matrixf(x, t), which is divided
into two blocks: a linear one and a nonlinear one. This
particular form, known as the regular form, can be derived
from the classical IM model via mathematical transforma-
tions (Edwards and Spurgeon, 1998).

In order to take account of the parametric variations,
we introduce unknown deviations of the resistance(δR)
and the inductance(δL). The IM physical parameters can
also be defined as follows:{

Rr = Rrn(1 + δR), Rs = Rsn(1 + δR),

Lr = Lrn(1 + δL),
(9)

Ls = Lsn(1 + δL), Msr = Msn(1 + δL). (10)

In the following part, the controller is designed in
two steps in order to control the output vectoryT =
[ ω |φ| ]. The first step consists in linearizing the be-
haviour of the nonlinear system (1). The other improves
the robustness of linearization and the tracking problem.

3. Sliding Mode Linearization

3.1. Sliding Mode Theory

In this subsection, sliding mode theory is summarized.
The reader is referred to (Edwards and Spurgeon, 1998;
Utkin, 1992) for details. Let us consider the nonlinear
system {

ẋ = f(x, t) + B(x, t)u,

y = C(x, t),
(11)

wherex(t) ∈ Rn, u(t) ∈ Rm and B(x, t) ∈ Rn×m.

From the system (11), it is possible to define a setS
of the state trajectoriesx such as

S =
{
x(t) |σ(x, t) = 0

}
, (12)

where

σ(x, t) =
[
σ1(x, t), . . . , σm(x, t)

]T = 0 (13)

and[·]T denotes the transposed vector.

S is called the “sliding surface” and the system is
said to be in the sliding mode when the state trajectory
x of the controller plant satisfiesσ(x(t), t) = 0 at ev-
ery t ≥ t1 for some t1. The surfaces are designed
so that the state trajectory, restricted toσ(x(t), t) = 0,
shows some desired behaviour such as stability or track-
ing. Commonly, in IM control using sliding mode the-
ory, the surfaces are chosen as functions of the error be-
tween the reference input signals and the measured signals
(Utkin, 1993).

After this step, the objective is to determine a con-
trol law which drives the state trajectories along the sur-
face (12). The following part shows how to use sliding
mode theory for linearization behaviour.

In most applications this technique is implemented
by using switched controllers in order to improve some
performances. The chattering phenomena and the torque
perturbations are reduced by adding and designing switch
components with hysteresis. The main contribution of this
work concerns the application of the sliding mode to lin-
earize a nonlinear system. The next section outlines a
method to tune the parameters of the sliding mode con-
troller.
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3.2. Application to Linearization

The objective of the first step of the design procedure is to
convert the nonlinear system (1) to a linear one defined by
the following state space representation:{

ẋ = Ax + Bv,

y = Cx,
(14)

where

A =


0 0 1 0
0 0 0 1

−s1s
′
1 0 (s1 + s′1) 0

0 −s2s
′
2 0 (s2 + s′2)

 ,

B =


0 0
0 0
1 0
0 1

 , C =

[
1 0 0 0
0 1 0 0

]
, (15)

with

xT =
[

ω |φ| ω̇ |φ̇|
]
,

vT =
[

v1 v2

]
, yT =

[
ω |φ|

]
.

(16)

The linearized system is equivalent to two indepen-
dent subsystems. The first one represents a transfer from
the new input,v1, to the speed of the rotor. The second
one is also a linear transfer from an inputv2 to the ro-
tor flux modulus. Each subsystem is characterized by two
poles: {s1, s

′
1} for the first one and{s2, s

′
2} for the sec-

ond one.

Thus the linear system can be written using the trans-
fer matrix

G(s) =

[
G1(s) 0

0 G2(s)

]

with

G1(s) =
ω

v1
=

1
(s− s1)(s− s′1)

,

G2(s) =
|φ|
v1

=
1

(s− s2)(s− s′2)
.

(17)

The eigenvalues{s1, s
′
1} and {s2, s

′
2} are chosen

to determine respectively the dynamics of the rotor speed
and the rotor flux modulus in order to consider the physi-
cal time constants of the system.

Consider the particular sliding surface

σ(x, t) = σ1x + σ2ẋ (18)

with σ1 = [ S1 S2 ] and σ2 = [ S3 S4 ] standing
for matrices to be determined. Developing (18), we can
write

σ(x, t) = S1x1 + S2x2 + S3ẋ1 + S4ẋ2. (19)

Using (6) yields

x2 = −(S2 + S3)−1 [S1x1 + S4ẍ1] . (20)

Substituting the nonlinear regular expression of (3)
gives

ẋ1 = −A12

[
(S2 + S3)−1 (S1x1 + S4ẍ1)

]
. (21)

Finally,

ẍ1 = −S−1
4 S1x1 − S−1

4 (S2 + S3)ẋ1. (22)

Consider the particular case whereS4 = S2 = I,

S1 =

[
s1s

′
1 0

0 s2s
′
2

]
,

S3 =

[
−(1 + s1 + s′1) 0

0 −(1 + s2 + s′2)

]
.

(23)

Consequently, the sliding surface is

σ(x, t)

=

[
s1s

′
1 0 1 0

0 s2s
′
2 0 1

]
x

+

[
−(1 + s1 + s′1) 0 1 0

0 −(1 + s2 + s′2) 0 1

]
ẋ. (24)

In order to find the control lawu(t) which imposes
σ(x, t) = 0, we use the equivalent control method (Utkin,
1992). Using (18) and (11), we write

σ(x, t) = σ1x + σ2f(x, t) + σ2B(x, t)ueq = 0. (25)

Suppose that the matrixσ2 is such that the square
matrix [σ2B(x, t)] is invertible. Then the equivalent con-
trol is defined by the following expression:

ueq(x, t) = −
[
σ2B(x, t)

]−1[
σ1x + σ2f(x, t)

]
. (26)

Finally, the linearizing control is given by

u = ueq +
[
σ2B(x, t)

]−1
v. (27)

The equivalent system with the input vectorv is also de-
fined by (14) and its representation is shown in Fig. 1.
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Fig. 1. Sliding mode linearization principle.

Notice that this control is equivalent to a classical ex-
act input-output linearization technique with poles place-
ment (Chiasson, 1993; Isidori, 1989). In practice, it is
impossible to use directly this type of linearization. The
first difficulty is the loss of decoupling when paramet-
ric variations appear. This robustness problem is usually
solved using an adaptive solution. Another difficulty con-
cerns linearization stability toward the perturbation signal.
This stability degree is conditioned by the choice of the
pole placement{s1, s

′
1}, {s2, s

′
2} and the external sig-

nals (tracking references, perturbation signals, etc.). In
order to improve the limits of linearization, we propose to
use the Lyapunov theory.

3.3. Linearization Stability

The Lyapunov approach is used for deriving the condition
control u(x, t) that will drive the state trajectory to the
sliding surface. Consider the quadratic Lyapunov function

V (t, x, σ) = σT (x, t)σ(x, t), (28)

with σ(x, t) being the sliding surface defined in (25). To
prove linearization stability, we must verify that the con-
trol law (27) allows us to obtain the Lyapunov condition

V̇ (t, x, σ) = 2σT σ̇ < 0, ∇σ 6= 0, (29)

where we have cancelled the specificx and t dependen-
cies. We write

σ̇ =
δσ

δt
+

δσ

δx
ẋ. (30)

Equation (1) yields

σ̇ =
δσ

δt
+

δσ

δx
f(x, t) +

δσ

δx
B(x, t)u. (31)

The expression (29) can be written down as follows:

V̇ = 2σT δσ

δt
+ 2σT δσ

δx
f(x, t)

+ 2σT δσ

δx
B(x, t)u < 0, ∇σ 6= 0. (32)

Equations (27) and (32) yield

V̇ = 2σT v < 0, ∀σ 6= 0. (33)

We see that the Lyapunov condition depends on the
pole placement and, consequently, on the designed sur-
face. Moreover, the reference signal may exert influence
on linearization stability. Hence, the tracking references
are considered as perturbation signals.

Notice that the result (33) was obtained using the
equivalent control (26), which depends on the nomi-
nal system (1). In the case of parametric variations or
modelling errors, the Lyapunov condition might not be
checked. Consequently, for tracking behaviours, the dis-
cussed linearization technique cannot be used alone.

4. Sliding Mode Control

In the presence of parametric variations, the linearized
system is modified as follows (Cauetet al., 2001a):

ẋ = (An + ARδR + ALδL)x

+ (Bn + BLδL)v + d(x) (34)

with

An =


0 1 0 0

−s1s
′
1 s1 + s′1 0 0

0 0 0 1
0 0 −s2s

′
2 s2 + s′2

 ,

AR =


0 0 0 0
0 −γn − αn 0 0
0 0 0 1
0 0 AR4,3 −γn − 3αn

 ,

AR4,3 = 2αn(−γn − αn + αnβnMsrn),
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AL =


0 0 0 0

s1s
′
1 −s1s

′
1 0 0

0 0 2αn 0
0 0 AL4,3 AL4,4

,

AL4,3 = s2s
′
2 − 2α2

nβnMsrn − 4α2
n,

AL4,4 = −2αn − (s2 + s′2),

Bn =


0 0
1 0
0 0
0 1

, BL =


0 0
−1 0
0 0
0 −1

,

d(x) =



0

d1(x) =
−δLpµ

Msrn

(
x11x22

2αn
+ x11x21

)
0

d2(x)


,

with

d2(x) = 2pαnMsrnδL
x11x12

µ

+ 2α2
nM2

srn(δR + δL)

×

{
1

x21

[(
x22 + 2αnx21

2αnMsrn

)2

+
x2

12

µ2

]}
.

We propose to use the particular robust properties
of sliding mode control to minimize the consequences of
these parametric variations. Commonly, in order to in-
troduce tracking requirements, a model-based approach is
chosen. A similar approach is proposed in (Cauetet al.,
2001b) for induction motor control.

Assume that the plant is defined by (14), which pro-
duces the following tracking model:

ω̇ = Amω + Bmr. (35)

Fig. 2. Model-based sliding mode control.

Define the error state

e(t) = x(t)− ω(t). (36)

The objective of the second step of the design procedure
is to choose the control input vectorv which imposes
e(t) −→ 0 in a short time. The following sliding surface
is proposed:

σe(e, t) = Se(t) = 0 (37)

with

S =

 1 0 − 1
seω

0

0 1 0 − 1
seΦ

 . (38)

We have−1/seω and−1/seΦ as the two poles that im-
pose the dynamic errors.

The equivalent controlveq(t) (Utkin, 1992) that sat-
isfies the conditionσe(e, t) = 0 is

veq(t) = −(SB)−1S
[
Ame + (A−Am)x−Bmr

]
. (39)

To complete the control design, we have to solve the
reachability problem (Edwards and Spurgeon, 1998). In
the presence of parametric variations, the controlveq(t)
cannot impose the conditionσe(e, t) = 0. The solution is
to find complementary controlvN (σe, t) which drives the
state trajectory error to the equilibrium manifold. Using
the Lyapunov theory, we choose the continuous control
(DeCarloet al., 1996):

vN = −Pσe(e, t), P = PT > 0. (40)

In this case, the derivative of the Lyapunov function can
be written as follows:

V̇ = 2σT
e (e, t)vN = 2σT

e (e, t)Pσe(e, t). (41)

The Lyapunov conditionV̇ < 0, ∀σe(e, t) 6= 0 is satis-
fied for all P = PT > 0. Finally, we obtain the global
control

v(t) = veq(t) + (SB)−1vN (t). (42)

The control scheme is summarized in Fig. 2.
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The reference model imposes the dynamics to be fol-
lowed by the linearized system. Sliding mode control
guarantees the convergence of the error (e(t) −→ 0). The
reference model is chosen as a copy of the theorical lin-
earized system in the nominal case. The external loop
leads to robust linearization.

5. Experimental Results

The control law is tested on an experimental plant com-
posed of a 1.1 kW induction motor. The control command
is designed with a digital signal processor TMS320C32
board. The rotor speed and two stator current mea-
surements are used to estimate the error flux component
(Verghese and Sanders, 1988). The two poles of the lin-
earized system ares1 = −10, s′1 = −200, s2 = s′2 =
−300.

Figure 3 shows the benchmark signals used in prac-
tice. To show the advantages of the model-based con-

Fig. 3. Benchmark test: rotor speed
(turns/min) and load torque (Nm).

trol, we introduce parameter deviations in the control al-
gorithm (δRr = ±50% and δLs = ±20%). The results
are provided in two cases: Figs. 4–7 provide the responses
obtained without the reference model and Figs. 8–11 illus-
trate the improvements due to the reference model (RM).
Figures 12 and 13 show the sliding surfaces.

Without the reference model, the parametric varia-
tions introduced in the control algorithm provide an im-
portant coupling action between the rotor flux and the ro-
tor speed. Moreover, the speed is obtained with an im-
portant steady-state error. With the use of the reference
model, the decoupling is ensured and correct tracking is
obtained for the components|Φ|2 = Ψ2

rα + Ψ2
rβ and ω.

6. Conclusion

In this paper, we propose induction motor control using
sliding mode theory in two steps. A particular sliding sur-

Fig. 4. Rotor flux response without the RM.

Fig. 5. Zoom of the rotor flux response without the RM.

Fig. 6. Rotor speed response without the RM.
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Fig. 7. Zoom of the rotor speed response without the RM.

Fig. 8. Rotor flux response with the RM.

Fig. 9. Zoom of the rotor flux response with the RM.

Fig. 10. Rotor speed response with the RM.

Fig. 11. Zoom of the rotor speed response with the RM.

Fig. 12. Sliding surface on the rotor flux error.
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Fig. 13. Sliding surface on the rotor speed error.

face allows us to obtain a linearization effect similar to
classical linearization techniques. Second feedback based
on a reference model is used to obtain robust properties in
terms of parameter variations. Experimental results show
good performances obtained with this method.
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Appendix

The equations of the motor in the fixed stator reference
frame (α, β) are given by

ż = h(z) + gusαβ , (A1)

with zT = [ ω Ψrα Ψrβ isα isβ ], where Ψrα,
Ψrβ are the rotor flux dynamics andisα, isβ are the sta-
tor currents. The control vector is defined byuT

sαβ =
[ usα usβ ]. With this notation the state space repre-
sentation is

h(z) =



µ(Ψrαisβ −Ψrβisα)− Tl

J

−αΨrα − pωΨrβ + αMsrisα

pωΨrα − αΨrβ + αMsrisβ

αβΨrα + pβωΨrβ − γisα

−pβωΨrα + αβΨrβ − γisβ


, (A2)

g =



0 0
0 0
0 0
1

σLs
0

0
1

σLs


, (A3)
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and Tl is the load torque. For simplicity, we define the
following variables:

α =
Rr

Lr
, β =

Msr

σLsLr
, µ =

pMsr

JLr
,

γ =
M2

srRr

σLsL2
r

+ Rs

σLs
,

(A4)

whereLs is the stator inductance,Msr is the mutual in-
ductance,Lr is the rotor inductance,Rs is the stator re-
sistance,Rr is the rotor resistance andJ denotes the
rotor inertia.
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