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In this paper a novel method of noise reduction in color images is presented. The new technique is capable of attenuating
both impulsive and Gaussian noise, while preserving and even enhancing the sharpness of the image edges. Extensive
simulations reveal that the new method outperforms significantly the standard techniques widely used in multivariate signal
processing. In this work we apply the new noise reduction method for the enhancement of the images of the so called gene
chips. We demonstrate that the new technique is capable of reducing the impulsive noise present in microarray images and
that it facilitates efficient spot location and the estimation of the gene expression levels due to the smoothing effect and
preservation of the spot edges. This paper contains a comparison of the new technique of impulsive noise reduction with
the standard procedures used for the processing of vector valued images, as well as examples of the efficiency of the new
algorithm when applied to typical microarray images.
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1. Introduction

Multichannel signal processing has been the subject of
extensive research during the last decade, primarily due
to its importance to color image processing. The most
common image processing tasks are noise filtering and
image enhancement. These tasks are an essential part of
any image processing system, no matter whether or not
the final image is utilized for visual interpretation or for
automatic analysis (Mitra and Sicuranza, 2001; Pitas and
Venetsanopoulos, 1990; Plataniotis and Venetsanopoulos,
2000).

It has been widely recognized that the processing of
color image data as vector fields is desirable due to the
correlation that exists among the image channels and to
the fact that the nonlinear vector processing of color im-
ages is the most effective way to filter out noise. A number
of nonlinear, multichannel filters which utilize the corre-
lation among multivariate vectors using various distance
measures were proposed (Astola and Kuosmanen, 1997;
Mitra and Sicuranza, 2001; Pitas and Venetsanopoulos,
1990; Plataniotis and Venetsanopoulos, 2000). The most
popular nonlinear, multichannel filters are based on the
ordering of vectors in a predefined sliding window. The

output of these filters is defined as the lowest ranked vec-
tor according to a specific ordering technique (Astola and
Kuosmanen, 1997; Astolaet al., 1990). In this way, a set
of reference vectorial filters, such as vector median filter
(VMF) (Astola et al., 1990), basic vector directional fil-
ter (BVDF) (Trahanias and Venetsanopoulos, 1993) and
the directional distance filter (DDF) (Trahaniaset al.,
1996), was developed. These nonlinear filters, based on
the ordering operation, provide robust estimation in en-
vironments corrupted by bit errors, impulsive noise and
outliers.

In general, the success of the searching for an image
close to the undisturbed original depends on the complex-
ity of the image scene, the nature of the corruption pro-
cess and also on the accuracy of the adopted measures of
the restoration (Astola and Kuosmanen, 1997; Bardos and
Sangwine, 1997; Plataniotis and Venetsanopoulos, 2000).

Although the well-known vector filters hold good im-
pulse noise attenuation characteristics, their performance
is often accompanied with undesired processing of noise-
free samples, which results in edge and texture blurring.
The reason is that these nonlinear filters do not satisfy the
superposition property (its nonlinearity is caused by the
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ordering operation) and, thus, the optimal filtering situa-
tion can be never fully achieved.

In the case of the impulse noise corruption, the aim
of the optimal filtering is to design noise reduction algo-
rithms that would affect only corrupted samples, whereas
the desired (noise-free) samples should be invariant under
the filtering operation. This is realized by adaptive median
filters, which replace the noisy samples by the median of
the input set spanned by a filter window and perform the
identity operation on the noise-free samples. The mea-
sure of the output distortion depends on the capability of
the filters to detect atypical image samples—impulses and
outliers, which can be very similar to samples belonging
to an edge.

This paper focuses on a new nonlinear vector filter-
ing scheme based on center-weighted vector median filters
and robust order statistic theory to achieve optimal filter-
ing properties. The proposed method improves the signal
detail preservation capability and provides a higher flex-
ibility of the filter design in comparison with the widely
used VMF, BVDF and DDF techniques. In addition, its
computational complexity is acceptable, which allows its
application for the enhancement of DNA microarray im-
ages (Leung, 2002; Yanget al., 2002). Using the new
filtering scheme, it is possible to achieve an excellent bal-
ance between the signal-detail preservation and the noise
attenuation. These properties of the proposed method
were tested for a wide range of multichannel image sig-
nals, such as the standard color images (Lena and Peppers)
and DNA artificial and real images.

The remainder of this paper is organized as follows.
In the next section, the relevant vector filtering schemes
such as VMF, BVDF, DDF and weighted vector median
filters are described. In Section 3, we provide a new vec-
tor filter and analyze it in terms of detection operation,
smoothing capability and signal-detail preservation. Sec-
tion 4 is devoted to the analysis of the proposed methods
depending on the intensity of impulsive noise corruption.
This section also contains a number of simulations, tests
and filtering results, together with tables and graphs de-
picting the objective image quality measures. We tested
all relevant methods for standard color images and for
DNA images, and also provided a short description of the
microarray cDNA images. Finally, main ideas, results and
suggestions for future work are summarized.

2. Multichannel Filtering Schemes

In multichannel image filtering, standard color images
represent the vector-valued image signals, in which each
image pixel can be considered as a vector of three com-
ponents associated with the intensities of color channels
consisting of red (R), green (G) and blue (B). Thus, it

is necessary to consider the correlation that exists among
the color channels and to apply the vector processing. If
the existing correlation is not taken into account and color
channels are processed independently, then the filtering
operation is applied componentwise, (Fig. 1). In general,
componentwise (marginal) approaches produce new vec-
tor samples, i.e., color artifacts, caused by the composition
of reordered channel samples.
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Fig. 1. Filtering methods for color images: (a) marginal
filtering, (b) vector processing.

Vector filters represent a natural approach to the
noise removal in multichannel images, since these filters
utilize the correlation between color channels. For this
reason, the vector methods represent the optimal and at-
tractive approaches to denoising color images.

The most popular nonlinear, multichannel (vector)
filters are based on the ordering of vectors in a predefined
sliding window. The output of these filters is defined as
the lowest ranked vector according to a specific ordering
technique (Astolaet al., 1990; Peltonenet al., 2001; Pitas
and Tsakalides, 1991; Pitas and Venetsanopoulos, 1992;
Smołkaet al., 2002; Tanget al., 1995).

Let y(x) : Zl → Zm represent a multichannel im-
age, wherel is an image dimension andm characterises
the number of channels. Ifm ≥ 2, then it is the case of
multichannel image processing. In the case of the stan-
dard color images, parametersl and m are equal to 2
and 3, respectively. Additionally, letx1,x2, . . . ,xN be a
set of input multichannel samples such thatxi ∈ Zl for
i = 1, 2 . . . , N .

In general, the difference between two multichan-
nel samples xi = (xi1, xi2, . . . , xim) and xj =
(xj1, xj2, . . . , xjm) can be quantified through the com-
monly used Minkowski distance

‖xi − xj‖γ =

(
m∑

k=1

∣∣xk
i − xk

i

∣∣γ) 1
γ

, (1)
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where γ characterizes the employed norm,m is the di-
mension (number of channels) of vectors andxk

i is the
k-th element of the samplexi. Note that the well-known
Euclidean distance corresponds toγ = 2.

Because vector filters respect the natural correlation
that exists among color channels, each image sample is
processed as a vector of channel intensities. The output of
vector filters based on the robust order-statistic theory is
defined as the lowest ranked vector, according to the spe-
cific ordering technique (Astolaet al., 1990; Bardos and
Sangwine 1997; Gabbouj and Cheickh, 1996; Karakos
and Trahanias, 1997; Lukac, 2001; Smołkaet al., 2002).

Let us consider an input samplexi, i = 1, 2, . . . , N ,
associated with the distance measureLi given by

Li =
N∑

j=1

‖xi − xj‖γ , i = 1, 2, . . . , N. (2)

Another way to express the distance of multichannel
samples is based on the angle between two multichan-
nel samples xi = (xi1, xi2, . . . , xim) and xj =
(xj1, xj2, . . . , xjm):

A(xi,xj) = cos−1

(
xixT

j

|xi| |xj |

)

= cos−1

 xi1xj1 + xi2xj2 + · · · + ximxjm√
x2

i1+x2
i2+. . .+x2

im

√
x2

j1+x2
j2+. . .+x2

jm

.

(3)

Let each input samplexi, for i = 1, 2, . . . , N , be
also associated with the sum of angular distances defined
by

αi =
N∑

j=1

A(xi,xj), i = 1, 2, . . . , N. (4)

If the ordering criterion is expressed through products

Ωi = Liαi, i = 1, 2, . . . , N, (5)

Ωi =
N∑

j=1

‖xi − xj‖γ

N∑
j=1

A(xi,xj), i = 1, 2, . . . , N,

(6)

and the ordered set is given by

Ω(1) ≤ Ω(2) ≤ · · · ≤ Ω(N), (7)

then the same ordering scheme applied to the input set
results in the ordered sequence

x(1) ≤ x(2) ≤ · · · ≤ x(N). (8)

The samplex(1) associated withΩ(1) represents
the output of the directional distance filter (DDF) (Bar-
dos and Sangwine, 1997; Trahanias and Venetsanopoulos,

1993; Trahaniaset al., 1996). Although the minimization
of productsLiαi, i = 1, 2, . . . , N does not necessarily
imply a minimum for either ofLi or αi, it results in very
small values for both of them. For that reason, the prod-
uct minimization will select as a filter output the vector-
valued sample that produces a very small sum of vector
distances (2) and a very small sum of vector angles (4),
simultaneously.

Let us assume the DDF with the power parameterp
so that the power1 − p is associated with the sum of
vector distances and the powerp (from interval [0, 1]) is
associated with the sum of vector angles. Thus, Eqns. (5)
and (6) can be simply rewritten respectively as

Ωi = L1−p
i αp

i , i = 1, 2, . . . , N, (9)

and

Ωi =

 N∑
j=1

‖xi − xj‖γ

1−p N∑
j=1

A(xi,xj)

p

,

i = 1, 2, . . . , N. (10)

If p = 0, the DDF operates as the vector median
filter (VMF) (Astola et al., 1990), whereas forp = 1,
the DDF is equivalent to the basic vector directional fil-
ter (BVDF) (Trahanias and Venetsanopoulos, 1993). For
p = 0.5, the definition (9) is identical with (5), since the
sum of vector distances and the sum of vector angles have
equivalent importance.

Let x1,x2, . . . ,xN be an input set determined by a
filter window andN represent a window size. Let us as-
sume thatw1, w2, . . . , wN represent a set of nonnegative
integer weights so that each weightwj , j = 1, 2, . . . , N
is associated with the input samplexj . Then, it is possible
to express the weighted vector distanceJi as

Ji =
N∑

j=1

wj ‖xi − xj‖γ , i = 1, 2, . . . , N. (11)

The samplex(1) ∈ {x1,x2, . . . ,xN} associated
with the minimal combined weighted distanceJ(1) ∈
{J1, J2, . . . , JN} is the sample that minimizes the sum
of weighted vector distances. Note that the description

J(1) ≤ J(2) ≤ · · · ≤ J(N) (12)

characterizes the ordered sequence of weighted vector
distances. The samplex(1) represents the output of
the weighted vector median filter (WVMF) introduced in
(Viero et al., 1994). Equivalently, the WVMF can be de-
fined by

N∑
j=1

wj ‖yWV MF − xj‖γ ≤
N∑

j=1

wj ‖xi − xj‖γ ,

i = 1, 2, . . . , N. (13)
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It is clear that in the dependence on the weight coef-
ficients w1, w2, . . . , wN the WVMF can perform a wide
range of smoothing operations, so that the optimal weight
vector can be found for each filtering problem.

3. Proposed Method

The vector median filter is designed to perform a “fixed”
amount of smoothing. In many applications, it may be-
come an undesired property and in some image applica-
tions the vector median filter introduces too much smooth-
ing and blurs fine image details and even image edges.
For that reason, the common problem is how to preserve
some desired signal features when removing the noise el-
ements with the vector median filter. An optimal situa-
tion would arise if a filter could be designed so that the
desired features would be invariant to the filtering opera-
tion and only noise would be affected. Many contributions
have provided different solutions to the problem of how to
minimize the undesired effect of the vector median filter-
ing using fuzzy logic, noise density estimations, subfilter
structures and various restrictions imposed on the central
sample (Lukac, 2002; 2003; Smołkaet al., 2001; 2002;
Szczepanskiet al., 2002).

Ideally, the noise reduction filter should be designed
in such a way that the noise-free samples should be
invariant under the filtering operation and only noise-
corrupted pixels should be affected by the filter action.
In other words, in the case of noise-free samples, the fil-
ter should perform the identity operation (no filtering),
whereas noisy samples should be replaced by the VMF. In
order to provide an adaptive trade-off between the identity
filter and the VMF, we present a new filtering scheme as a
significantly simpler special case of the approaches intro-
duced in (Smołkaet al., 2002), which makes use of var-
ious smoothing levels of the center-weighted vector me-
dian filters (CWVMFs).

Consider the weight vector given by

wj =

{
N − 2k + 2 for j = (N + 1)/2,

1 otherwise,
(14)

i.e., the weight vector of nonnegative integer weights,
where only the central weightw(N+1)/2 associated with
the central samplex(N+1)/2 can be changed, whereas
other weights associated with the neighboring samples re-
main equal to one. Notice thatk = 1, 2, . . . , (N +1)/2 is
a smoothing parameter. If the smoothing parameterk is
equal to one, then the CWVMF is equivalent to the iden-
tity operation and no smoothing will be performed. In the
case ofk = (N +1)/2, the maximum amount of smooth-
ing will be performed and the CWVMF filter is equivalent
to the VMF. By varyingk between 1 and(N + 1)/2, it

is possible to achieve the best balance between the noise
suppression and the signal-detail preservation.

The CWVMF framework is more adequate for an
adaptive filter design that will vary the smoothing levels
in the filtering process, than the WVMF with a full set
of weight coefficients (Alparoneet al., 1999; Vieroet al.,
1994). Because of the complexity of the filter design re-
lated to the optimal setting ofN weight coefficients, the
WVMF optimization framework needs local or global op-
timization approaches to perform an optimal smoothing
(Lucat et al., 2002; Lukacet al., 2003a; 2003b). Thus,
the WVMF may fail in a situation with different statisti-
cal properties caused by an increased or a decreased noise
probability or various distributions of the edges in the im-
age. Note that the optimal WVMF filtering comes from
optimization and filter design strategies used in gray-scale
image filtering by means of weighted median (WM) fil-
ters, (a family of WM optimization approaches was sum-
marized in (Yinet al., 1996)).

The optimized WM filters are characterized by the
same drawback (a fixed smoothing function) as the opti-
mized WVMF filters. To remove this drawback, recent
works (Chen and Wu, 2001; Chenet al., 1999; Lukac
and Marchevsky, 2001a) in the field of gray-scale image
filtering provide adaptive methods based on the center-
weighted median (CWM) filters or on equivalently de-
fined lower-upper-middle (LUM) smoothers. The CWM
(LUM) filtering structure is characterized by a tuning pa-
rameter, i.e., the center weight in CWM filters and the
parameter for the smoothing in LUM smoothers. Let us
denote this parameter byk. Varying the tuning parame-
ter k, a class of CWM filters (LUM smoothers) allows the
construction of a wide range of smoothing filters. Note
that the adaptive designs use some kind of local control
to choose the smoothing level which provides the best
balance between the noise smoothing and signal-detail
preservation.

The research of (Chen and Wu, 2001) brought the
methodology of impulse detection based on the full set of
CWM smoothing characteristics. Note that the CWM fil-
ter (LUM smoother) can be designed to perform(N +
1)/2 smoothing realizations, including the identity op-
eration and the well-known median filter. In this work,
the detection operation is performed using the set of
(N + 1)/2 inequalities∥∥yk − x(N+1)/2

∥∥
γ
≥ Tolk, (15)

whereyk is the CWM output corresponding to the tuning
parameterk, x(N+1)/2 is a central (reference) sample of
the sliding window andTolk is a fixed threshold. If any
inequality defined by (15) is satisfied, the central sample
is considered to be an impulse or an outlier. Note that
for the increasing smoothing capability, (see Eqn. (14))
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ranging from the identity filter (i.e., no smoothing corre-
sponding to the maximum central weight) to the median
filter (maximum smoothing for the central weight equal to
one), the threshold values of adaptive CWM filters satisfy
the condition

Tol1 ≤ Tol2 ≤ · · · ≤ Tol(N+1)/2 (16)

that corresponds to an increasing sequence∥∥y1 − x(N+1)/2

∥∥ ≤ ∥∥y2 − x(N+1)/2

∥∥
≤ · · · ≤

∥∥y(N+1)/2 − x(N+1)/2

∥∥ . (17)

The presented approach with a3 × 3 sliding win-
dow achieves very good results. However, because of the
necessity of using all possible CWM filters, this way is
very ineffective with the increasing window size. Thus
it prohibits the straightforward optimization of necessary
parameters and practically excludes the hardware imple-
mentation, especially for standard filtering with a5 × 5
sliding window or in the field of image sequence filter-
ing, where the spatiotemporal filters with a cube window
of N = 27 samples are used, as the most practical ap-
proaches (Lukac and Marchevsky, 2001a; Vieroet al.,
1994). Note that in this situation, the method of (Chen
and Wu, 2001) would require(N + 1)/2 = 14 CWM
filters and the optimization of the same number of thresh-
old parameters. The same extension would be also re-
quired in (Lukac and Marchevsky, 2001b), in which a
similar approach to multichannel filtering was introduced.
In order to decrease the number of smoothing levels and
necessary thresholds, and to simultaneously simplify the
optimization process, a new method working with a re-
duced set of smoothing levels was elaborated in (Lukac
and Marchevsky, 2001a).

In order to avoid the above-mentioned drawbacks
and make the filter design more flexible for changes
in the basic filter parameters such as the size and the
shape of the filter window, we provide the adaptive cen-
ter weighted vector median filter (ACWVM) that will vary
the extreme CWVM smoothing levels between the iden-
tity and the VMF operation. The proposed switching
scheme is well suited for impulsive noise removal as it
is able to filter only corrupted samples, whereas the de-
sired image features are invariant to the filtering operation.
The ACWVM is based on dividing the samples into two
classes, namely probably corrupted samples and probably
noise-free samples. As the decision tool for the central
samplex(N+1)/2, the following rule is applied:

IF Val ≥ Tol THEN x(N+1)/2 is impulse

ELSE x(N+1)/2 is noise-free,
(18)

where ‘Tol’ is the threshold parameter and ‘Val’ is the
aggregated sum ofτ distances defined in (15),

Val =
λ+τ∑
k=λ

∥∥yk − x(N+1)/2

∥∥
γ
. (19)

Here x(N+1)/2 is the central sample of the input setW ,
τ is a parameter (in this work we setτ = 2), and yk

is the output of center-weighted median filter with the
smoothing parameterk. If the parameter valueVal is
greater than or equal to the threshold valueTol, then
the central input samplex(N+1)/2 is most probably cor-
rupted and it will be processed by the VMF. In the case
where the operation valueVal is smaller than the thresh-
old valueTol, the central samplex(N+1)/2 is most prob-
ably noise-free and it should be invariant to a filtering op-
eration. Note that the proposed ACWVM filter requires
only one threshold value in comparison with(N + 1)/2
thresholds used in (Chen and Wu, 2001). In the case of
color video filtering by spatiotemporal filters with a cube
window, the proposed method will utilize the same num-
ber of 4 smoothing levels (three levels for the computation
of the operation valueVal and the maximum smoothing
level for the impulse rejection), whereas in (Chen and Wu,
2001) 14 smoothing levels and the same number of thresh-
olds have to be used.

4. Experimental Results

4.1. Experimental Results Achieved Using
the Standard Color Images

In order to obtain the best performance of the proposed
method, we performed some experiments related to set-
ting parametersλ and Tol for a fixed value ofτ = 2.
As the training images, we used the well-known test im-
ages (Figs. 2(a) and (b))LenaandPeppersdegraded by
impulsive noise (Fig. 2(c)) (Astola and Kusmonen, 1997;
Boncelet, 2000; Lukac, 2002; Lukacet al., 2002; Platani-
otis and Ventesanopoulos, 2000) given by

xi,j =

{
v with probability pv,

oi,j with probability 1− pv,
(20)

where i and j characterize the sample position,oi,j

is the original sample,xi,j represents the sample from
the noisy image,pv is a corruption probability andv =
(v1, v2, . . . , vm) is the noise vector of random intensity
values.

From the results shown in Figs. 3 and 4 it can be ob-
served that the optimal values ofTol and λ were found
to be 80 and 2, respectively. Note that the achieved thresh-
old valueTol = 80 yields a sufficiently robust filter for a
wide range of heavy-tailed noise characteristics and also
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(a)    (b)        (c)

Fig. 2. Test images: (a) original imagePeppers, (b) original imageLena, (c) Lenadegraded by 10% impulsive noise (pv = 0.1).
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Fig. 3. Optimization of the proposed method for different parametersTol and λ. The training set was given
by the imageLena, cf. panels (a)–(c), andPeppers, cf. panels (d)–(f), with 10% impulsive noise.

for practical extensions of the3 × 3 filter window to
larger sizes and different shapes. Note that the proposed
method includes the standard VMF filtering (Tol = 0) and
the identity operation (Tol →∞) as special cases.

As regards the simplicity of the optimization process
corresponding to the minimization of the chosen error cri-
teria depending on the threshold valueTol, the proposed
method can effectively adapt itself to changing noise and

signal statistics, and therefore the optimal parameters
Tol = 80 and λ = 2 are sufficiently robust, as can be
seen from the results depicted in Tabs. 1–5.

In general, the restoration quality of digital images
is evaluated through the commonly used objective cri-
teria (Plataniotis and Venetsanopoulos, 2000), such as
the Mean Absolute Error (MAE), the Mean Square Er-
ror (MSE) and the Normalized Color Difference (NCD),
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Fig. 4. Optimization of the proposed method for different parametersTol and λ. The training set was given
by the imageLena, cf. panels (a)–(c), andPeppers, cf. panels (d)–(f), with 15% impulsive noise.

which reflect the signal-detail preservation, the noise sup-
pression and color chromaticity preservation. Mathemati-
cally, the MAE and the MSE are respectively given by

MAE =
1

NM

N∑
i=1

M∑
j=1

|oi,j − xi,j | (21)

and

MSE =
1

NM

N∑
i=1

M∑
j=1

(oi,j − xi,j)
2
, (22)

where{oi,j} is the original image pixel,{xi,j} is the fil-
tered (restored) image pixel,i and j are indices of the
sample position andN with M characterize the image
size. In the case of color images, these criteria are com-
puted as the means over color channels.

The NCD described in (Plataniotiset al, 1998;
Plataniotis and Venetsanopoulos, 2000) expresses
well the measure of the color distortion. The NCD is de-

fined in the Lu*v* color space by

NCD

=

1
NM

N∑
i=1

M∑
j=1

√(
Lo

i,j−Lx
i,j

)2
+

(
uo

i,j−ux
i,j

)2
+

(
vo

i,j−vx
i,j

)2

1
NM

N∑
i=1

M∑
j=1

√(
Lo

i,j

)2
+

(
uo

i,j

)2
+

(
vo

i,j

)2

,

(23)

whereLo
i,j , u

o
i,j , v

o
i,j and Lx

i,j , u
x
i,j , v

x
i,j are values of the

lightness and two chrominance components of the origi-
nal image sampleoi,j and the noisy image samplexi,j ,
respectively.

It can be observed (Tables 1 and 2) that the
proposed ACWVM filter (Fig. 5(f)) provides an im-
proved signal-detail preservation capability in com-
parison with the standard vector filters such as the
VMF (Fig. 5(c)), BVDF (Fig. 5(d)) and the WVMF
(Fig. 5(e)). This kind of behavior is more visible in
Fig. 6, which corresponds to the estimation errors of
the above-mentioned methods. Note, that the WVDF
is associated with the weight[1, 2, 1, 4, 5, 4, 1, 2, 1] and
the CWVMF with the smoothing parameterk =
4. The undesired effect of the blurring of fine im-
age details introduced by the VMF, BVDF and DDF
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Table 1. Results achieved using the test color imageLena.

Noise 5% 10% 15%
Method MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 3.762 427.3 0.0445 7.312 832.0 0.0840 10.707 1225.0 0.1230
VMF 3.430 50.8 0.0403 3.687 56.5 0.0429 3.939 64.5 0.0451
BVDF 3.818 58.6 0.0407 4.099 67.6 0.0432 4.405 81.4 0.0455
DDF 3.509 52.3 0.0402 3.733 57.3 0.0424 3.970 65.7 0.0444

WVMF 2.245 34.1 0.0265 2.537 43.6 0.0297 2.844 57.6 0.0324
CWVMF 1.740 25.0 0.0204 1.995 32.4 0.0232 2.264 43.3 0.0259
ACWVM 0.417 12.0 0.0042 0.716 19.4 0.0076 1.067 31.5 0.0114

Table 2. Results achieved using the test color imagePeppers.

Noise 5% 10% 15%
Method MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 3.988 486.1 0.0441 7.677 943.3 0.0870 11.474 1402.4 0.1279
VMF 3.169 43.9 0.0452 3.503 55.0 0.0494 3.858 68.7 0.0541
BVDF 3.740 60.7 0.0438 4.151 82.7 0.0484 4.598 113.2 0.0532
DDF 3.182 44.6 0.0431 3.512 56.6 0.0475 3.844 70.8 0.0518

WVMF 1.835 25.0 0.0269 2.175 38.0 0.0316 2.615 58.6 0.0376
CWVMF 1.555 22.9 0.0219 1.836 32.5 0.0262 2.228 52.1 0.0316
ACWVM 0.397 12.1 0.0045 0.724 21.9 0.0091 1.115 38.5 0.0146

(a)    (c)        (e)

(b)    (d)        (f)

Fig. 5. Detailed view on the restoredLenaimage: (a) original image, (b) noisy image forpυ = 0.1, (c) VMF output,
(d) BVDF output, (e) WVMF output with weights[1, 2, 1, 4, 5, 4, 1, 2, 1], (f) output of the proposed method.
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(a)    (b)        (c)

(d)    (e)        (f)
Fig. 6. Estimation errors of relevant filters using the imageLenadegraded by impulsive noise withpυ = 0.1: (a) VMF, (b) BVDF,

(c) DDF, (d) WVMF [1, 2, 1, 4, 5, 4, 1, 2, 1], (e) CWVMF with k = 4, (f) proposed method—ACWVM.

is shown in Figs. 6(a)–(c). It can be easily observed
that the standard filters suppress well impulses present in
the image, yet some edges and image details are heavily
blurred, especially at transitions between image regions.
In the case of the BVDF, the increased estimation error
(Fig. 6(b)) is caused by pure directional processing. In
some situations, the decreased noise attenuation capabil-
ity of the BVDF may result in the presence of impulses in
the filtered image. Since the DDF combines the properties
of both the VMF and BVDF, it suppresses noise well and
reduces the edge jittering effect. The output of the pro-
posed ACWVM filter, cf. Fig. 6(f), is characterized by an
excellent balance between signal-detail preservation and
noise suppression, which is reflected in the very small
estimation error depicted in Fig. 6(f). The objective re-
sults evaluated by the commonly used measures such as
MAE, MSE and NCD are listed in Tabs. 1 and 2. The
proposed method excels significantly over all standard fil-
tering schemes, and it also provides excellent balance be-
tween noise suppression and signal-detail preservation.

4.2. Experimental Results Achieved Using
cDNA Images

The cDNA microarray is a popular and effective method
for simultaneously assaying the expression of large num-
bers of genes (Chenet al., 1997; Conwayet al., 2002;

Dopazo, 2002; Eisen and Brown, 1999; Schenaet al,
1995) and is perfectly suited for the comparison of gene
expressions in different populations of cells.

A microarray is a collection of spots containing
DNA, deposited on the surface of a glass slide. Each of
the spots contains multiple copies of a single DNA se-
quence. In comparative gene expression experiments, the
array is incubated with two cDNA probes, each of which
is a mixture of cDNA’s derived from the expressed mRNA
of a distinct cell population. Each of the probes is labeled
with a different fluorescent dye and then the labeled cDNA
molecules hybridize to spots on the array containing their
complementary sequences, the quantity of which is pro-
portional to their concentrations. After hybridization, the
amount of bound labeled cDNA on each spot is inferred
from the intensity of fluorescence emitted when the spot
is stimulated with a laser light.

The output of the assay at each spot is the ratio of
cDNA concentrations in the two probes for each spotted
sequence, as the fluorescent intensities are not calibrated
to absolute amounts of DNA. Once the cDNA probes have
been hybridized to the array and loose probes have been
washed off, the array is scanned to determine how much
of each probe is bound to each spot. The probes are tagged
with fluorescent reporter molecules which emit detectable
light when stimulated by the laser. The emitted light is
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(a)    (b)        (c)
Fig. 7. Artificial cDNA microarray test images: (a) DNA1, (b) DNA2, (c) DNA3.

(a)    (b)        (c)
Fig. 8. Detailed view on test images: (a) original DNA1, (b) 1% impulsive noise, (c) 10% impulsive noise.

captured by a detector (a CCD or a confocal microscope)
which records the light intensity. When the laser scans the
entire slide, a large array image containing thousands of
spots is produced. The spots occupy a small fraction of the
image area and they have to be individually located and
isolated from the image background prior to the estima-
tion of its mean intensity. The fluorescent intensities for
each of the two dyes are measured separately, producing a
two-channel image. The image is false colored using red
and green for each image component, which represents
the light intensity emitted by the two fluorescent dyes. So
the microarray images look like a collection of green, red
and yellow spots of different hue, saturation and intensity.
Spots whose mRNA’s are present at a high level in one or
the other cell population show up as predominantly red or
green. The intensities provided by the array image can be
quantified by measuring the average or integrated inten-
sities of the spots. The ratio of the fluorescent intensities
for a spot is interpreted as the ratio of concentrations for
its corresponding mRNA in the two-cell populations.

The quantitative evaluation of microarray images is
a difficult task. The major sources of uncertainty in
spot finding and measuring the gene expression are vari-
able spot sizes and positions, variations in the image back-
ground and various image artifacts. Spots vary signifi-
cantly in size and position within their vignettes, despite
the use of precise robotic tools to lay them out onto the

slide. Additionally, the natural fluorescence of the glass
slide and non-specifically bounded DNA or dye molecules
add a substantial noise floor to the microarray image. To
make the task even more challenging, the microarrays are
also afflicted with discrete image artifacts such as highly
fluorescent dust particles, unattached dye, salt deposits
from evaporated solvents, fibers and various airborne de-
bris (Ajay et al., 2002; Bozinov and Rahnenführer, 2002;
Filkov et al., 2002; Hsiaoet al., 2002).

In order to compare the performances of the ap-
plied filtering schemes, we used a set of artificial images
(Fig. 7), and also natural microarray images (Fig. 12). Us-
ing the artificial images, we can also evaluate the objec-
tive restoration criteria, because the original, undistorted
images are available. In the case of the natural cDNA im-
ages, we can compare only the subjective results in the
form of a visual assessment of the filter outputs.

To evaluate the achieved results, objective criteria
such as the mean absolute error (MAE) and the mean
square error (MSE), which reflect the signal-detail preser-
vation and the noise suppression respectively, were used.
As can be seen (Tables 3–5, Figs. 10 and 11) the pro-
posed method outperforms significantly the commonly-
used multichannel noise reduction techniques. This is also
confirmed by its performance on real images, (Figs. 13–
16), in which the noise component was successfully re-
moved while preserving the sharpness of the spot edges.
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(a)    (b)        (c)

Fig. 9. Emphasized estimation errors of relevant filtering schemes applied to a 10% impulsive
noise: (a) VMF, (b) BVDF, (c) ACWVM (proposed method).
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Fig. 10. Dependence of the MAE criteria on the impulsive noise probability: (a) test image DNA1, (b) test image DNA3.
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Fig. 11. Dependence of the MSE criteria on the impulsive noise probability: (a) test image DNA1, (b) test image DNA3.
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(a)    (b)       (c)
Fig. 12. Real cDNA test microarray images.

(a)    (b)       (c)

Fig. 13. Experimental results achieved using real DNA images: (a) observed image, (b) VMF output, (c) ACWVM output.

(a)    (b)       (c)

Fig. 14. Experimental results achieved using real cDNA images: (a) noisy image, (b) VMF output, (c) ACWVM output.

(a)    (b)       (c)

Fig. 15. Experimental results achieved using real cDNA images: (a) observed image, (b) VMF output, (c) ACWVM output.
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(a)    (b)       (c)

Fig. 16. Experimental results achieved using real cDNA images: (a) observed image, (b) VMF output, (c) ACWVM output.

Table 3. Results achieved using the test image DNA1.

Noise 5% 10% 15%

Method MAE MSE MAE MSE MAE MSE

Noisy 3.325 525.2 3.335 528.1 3.338 528.3

VMF 0.135 19.4 0.141 20.3 0.139 20.0

BVDF 0.194 30.4 0.200 31.3 0.198 31.1

DDF 0.135 19.9 0.139 20.5 0.139 20.8

WVMF 0.081 10.4 0.085 11.1 0.082 10.7

CWVMF 0.070 8.9 0.072 9.2 0.070 9.2

ACWVM 0.069 8.0 0.071 8.2 0.069 8.0

Table 4. Results achieved using the test image DNA2.

Noise 5% 10% 15%

Method MAE MSE MAE MSE MAE MSE

Noisy 3.231 502.5 3.243 503.8 3.540 550.4

VMF 0.152 21.9 0.161 23.0 0.164 23.7

BVDF 0.224 35.0 0.233 37.1 0.242 38.1

DDF 0.160 23.7 0.164 24.5 0.168 25.2

WVMF 0.085 10.6 0.098 12.4 0.105 13.5

CWVMF 0.071 8.8 0.076 9.6 0.083 10.6

ACWVM 0.070 7.7 0.075 8.6 0.076 9.1

Table 5. Results achieved using the test image DNA3.

Noise 5% 10% 15%

Method MAE MSE MAE MSE MAE MSE

Noisy 3.673 583.2 3.349 531.9 3.368 536.1

VMF 0.186 29.0 0.174 27.6 0.177 27.9

BVDF 0.267 43.7 0.251 41.4 0.249 40.9

DDF 0.193 31.2 0.177 28.6 0.183 29.7

WVMF 0.100 13.1 0.085 11.3 0.090 12.0

CWVMF 0.088 11.4 0.076 9.8 0.076 9.9

ACWVM 0.089 10.9 0.075 9.2 0.076 9.5

5. Conclusions

In this work a novel algorithm of noise reduction in mul-
tichannel images has been presented. Simulation results
reveal that this method outperforms the standard proce-
dures used for noise suppression in color images. The new
technique has been successfully applied to the denoising
of microarray cDNA images. During the filtering process
the impulsive noise is being removed while the edges re-
main well preserved. The proposed technique can serve as
an efficient low-processing tool for microarray image en-
hancement, which can facilitate better spots localization
and the estimation of their intensity.
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