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SNP sites are generally discovered by sequencing regions of the human genome in a limited number of individuals. This
may leave SNP sites present in the region, but containing rare mutant nucleotides, undetected. Consequently, estimates
of nucleotide diversity obtained from assays of detected SNP sites are biased. In this research we present a statistical
model of the SNP discovery process, which is used to evaluate the extent of this bias. This model involves the symmetric
Beta distribution of variant frequencies at SNP sites, with an additional probability that there is no SNP at any given site.
Under this model of allele frequency distributions at SNP sites, we show that nucleotide diversity is always underestimated.
However, the extent of bias does not seem to exceed 10–15% for the analyzed data. We find that our model of allele
frequency distributions at SNP sites is consistent with SNP statistics derived based on new SNP data at ATM, BLM, RQL
and WRN gene regions. The application of the theory to these new SNP data as well as to the literature data at the LPL
gene region indicates that in spite of ascertainment biases, the observed differences of nucleotide diversity across these
gene regions are real. This provides interesting evidence concerning the heterogeneity of the rates of nucleotide substitution
across the genome.
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1. Introduction

Single Nucleotide Polymorphisms (SNPs) are variants of
the DNA sequence arising when one nucleotide has been
substituted for another. They typically are observed to
be bi-allelic, which is frequently interpreted as suggest-
ing that each SNP in the population may result from a
unique mutational event (Clarket al., 1998). Recent se-
quencing projects find SNPs to be ubiquitous throughout
the human genome, so that SNPs may become a power-
ful tool in helping to locate genetic loci responsible for
complex phenotypes (Cargillet al., 1999; Halushkaet al.,
1998).

In applications, the most useful SNPs are those in
which the minor (rarer) allele is relatively common. While
the discovery of such SNPs is the aim of many studies,

the data these studies generate allow employing and test-
ing theories concerning the interpretation of the genetic
diversity of DNA sequences. Two measures of the genetic
diversity of particular interest areπ, the average heterozy-
gosity, ands, the number of segregating (polymorphic)
sites divided by a normalizing factoran =

∑n−1
i=1 (1/i),

where n is the number of chromosomes in the sample.
For our purposes, it seems more convenient to further nor-
malize π and s, by dividing them by the numberl of
DNA sites in the sequence.

Models of SNP evolution. Under the Fisher-Wright
model of the drift and the Infinite Sites Model of mutation,
the latter assuming that each site of a sequence undergoes
at most one mutation in the history of the population, the
expected values ofπ and s are equal toθ, here defined



A. Renwick et al.386

as four times the product of the effective population size
and the average mutation rate per site (Ewens, 1979), i.e.,

E(π) = E(s) = θ.

The Infinite Sites Model is questionnable if there is a pos-
sibility of recurrent and/or reversible mutations at SNP
sites. It can serve as a useful approximation. Such an ap-
proach was taken by Eberle and Kruglyak (2000). How-
ever, it also is possible to use a parametric model of the
distribution of SNP frequencies, without a reference to a
particular evolutionary mechanism, provided that such a
model explains the data. If a sufficiently satisfactory fit is
obtained, it is then possible to speculate what assumptions
may lead to the parametric model. We will proceed in this
way in this paper. From a comparison with data, it seems
that the distribution we use provides a satisfactory fit.

Biased sampling. The primary motivation for SNP
identification is its use in genetic mapping. To be use-
ful for this purpose, the minor (rarer) allele must be of
a sufficiently high frequency. This motivation, combined
with the high cost of fully sequencing large chromosomal
regions, leads some investigators (Bonnenet al., 2000,
Trikka et al., 2002) to the following scheme for SNP dis-
covery:

1. Obtain a small screening sample of(k) chromo-
somes.

2. Sequence the region of interest (of lengthl) in each
of the k screening sample chromosomes.

3. Identify sites exhibiting polymorphism (of which
there arem).

4. Obtain a large test sample of(n) chromosomes.

5. Probe each of then test chromosomes only at them
sites found to be polymorphic in the initial screening
sample.

This method is likely to find SNPs where the less fre-
quent allele is sufficiently common to be useful. However,
it introduces a bias, which reduces the apparent frequency
of sites where the minor allele is rare. The question we
address is: What effect does this biased sampling scheme
have on the sample statisticsπ and s?

2. Modeling the SNP Statistics and
the Ascertainment Bias

Statistics of nucleotide diversity. In keeping with the lit-
erature, we treatπ and s as normalized for the sequence
length. We can representπ and s as summations across
sites. This helps to clarify the effect of limited screening
and simplifies the calculation of expectations:

π =
1
l

2n

n− 1

l∑
i=1

xi(1− xi) =
l∑

i=1

πi,

and

s =
Number of polymorphic sites

anl
=

l∑
i=1

si,

where

πi =
1
l

2n

n− 1
xi(1− xi),

xi denoting the fraction of the wild-type variant in the
population, and

si =


1
l

1
an

if thei-th site is polymorphic,

0 if thei-th site is monomorphic.

We model {πi, i = 1, . . . , l} and {si, i = 1, . . . , l} as
sequences of identically distributed, although not indepen-
dent, random variables.

Indices of the bias. As has been mentioned in In-
troduction, the usual method of SNP discovery results in
under-representation of rare SNP variants, which leads to
underestimation of the measures of nucleotide diversity
π and s. One remedy to this problem is to determine
the factor by which the diversity existing in a sample of
size n will be decreased by using a screening sample of
size k. This factor will be called the index of bias. In
this section, we will define two indices of bias,B(π | k)
and B(s | k), for π and s, respectively. The bias index
B(π | k) is equal to the ratio of the expectedπ value
(whether or not the SNP is discovered) to the expected
value of π conditional on the SNP being discovered. The
bias indexB(s | k) is equal to the ratio of the expected
s value (whether or not the SNP is discovered) to the ex-
pected value ofs conditional on the SNP being discov-
ered. Therefore, multiplication by the bias indexB(π | k)
(respectivelyB(s | k)) of the estimate ofπ (resp.s) con-
ditional on the SNP being discovered results in an estimate
corrected for the discovery bias.

For the purpose of bias correction, we will assume
that at each site two variants occur, one with frequency
X, the other with frequency1 − X, where X is a ran-
dom variable with distributionF (x). Using the frequent
convention, we will denote random variables using capital
letters, and their values (realizations) using lower-case let-
ters. If most mass ofF (x) is concentrated close tox = 0
or x = 1, then, with a high probability, only one variant
is observed. We will assume thatF (x) is symmetric, es-
sentially meaning thatF (x) = 1− F (1− x). Symmetry
arises from the inability to distinguish the wild type and
mutant alleles at an SNP locus. Sometimes, this loss of
information can be remedied by using data from an out-
group and assuming the variant present in the outgroup to
be the wild type. We do not consider outgroup data here.
We will assume that each site can be monomorphic with
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probability p, so the distribution can be written as

F (x) =
p

2
+ (1− p)

x∫
0

f(u) du, x ∈ [0, 1),

where f(x) is a normed density. The parameterp plays
an important role in the theory, in that it defines the pro-
portion of sites that will not turn out polymorphic even in
an “infinite” sample.

Suppose that SNPs are discovered by sequencing a
sample ofk chromosomes. With probabilityXk + (1−
X)k, given X, only one variant is observed in this sample.
Therefore, conditional on observing a single variant at a
given site in the discovery sample, i.e., conditionally on
not discovering an SNP, the density ofX at this site is
equal to

f0(x | k) =

p

2

[
δ(x)+δ(1−x)

]
+(1−p)

[
xk+(1−x)k

]
f(x)

p + (1− p)
∫ 1

0
[xk + (1− x)k] f(x) dx

=

p

2

[
δ(x)+δ(1−x)

]
+(1−p)

[
xk+(1−x)k

]
f(x)

E [Xk + (1− X)k]
,

where δ(x) is the Dirac pseudo-function. Analogously,
conditional on observing more than one variant, i.e., on
discovering an SNP, the density ofX at the site is equal
to

f1(x | k) =

[
1− xk − (1− x)k

]
f(x)

E [1−Xk − (1−X)k]
.

If we calculate sample estimates ofπ and s using them
sites (out of the total ofl sites in the sequence locus) at
which SNPs were discovered based onk chromosomes,
the expected values of such statistics will be equal to

E1(π | k) =
m

l

2n

n− 1

∫ 1

0

x(1− x)f1(x | k) dx

=
m

l

2n

n− 1

E
{
X(1−X)

[
1−Xk − (1−X)k

]}
E [1−Xk − (1−X)k]

,

E1(s | k) =
m

l

1

an

∫ 1

0

[1− xn − (1− x)n] f1(x | k) dx

=
m

l

1

an

E{[1−Xn−(1−X)n][1−Xk−(1−X)k]}
E [1−Xk − (1−X)k]

.

Similarly, expectedπ and s from sites, at which no SNPs
were discovered, are equal to

E0(π | k) =
l −m

l

2n

n− 1

× E{X(1−X)[Xk + (1−X)k]}
E[Xk + (1−X)k]

,

E0(s | k) =
l −m

l

1
an

× E{[1−Xn−(1−X)n][Xk+(1−X)k]}
E[Xk + (1−X)k]

.

Despite being defined “per site”, as indicated by
the factor l in the denominators, symbolsE0(·) and
E1(·) are additive, i.e., they concern two disjoint classes
of sites, Class 0, in which no polymorphic SNPs were
discovered, and Class 1, in which polymorphic SNPs
were discovered. Therefore, aggregate expected esti-
matesE(π | k) = E0(π | k) + E1(π | k) and E(s | k) =
E0(s | k)+E1(s | k) may be computed ifF (x) is known.
Then the biased estimates ofπ and s, based on the dis-
covery sample, can be multiplied by bias indices

B(π | k) = 1 +
E0(π | k)
E1(π | k)

,

B(s | k) = 1 +
E0(s | k)
E1(s | k)

,

resulting in unbiased estimates. However, sinceF (x)
is not known, we will consider bounds onB(π | k) and
B(s | k) over F (x) belonging to a plausible family of
distributions.

Let us notice that the aggregate expectations
E(π | k) and E(s | k) are not exactly equal to the uncon-
ditional expectationsE(π) and E(s). The reason is that
the observed numberm of SNPs is used inB(π | k) and
B(s | k), However, if the sample valuem is replaced by
its “infinite sample” expectationE(m) = lE[1 − Xk −
(1 − X)k], we obtainE(π | k) = E(π) and E(s | k) =
E(s).

Model: Symmetric Beta distribution. We assume that
the frequency spectrum from which allele frequencies are
drawn is a symmetric beta distribution, modified by allow-
ing a site to be monomorphic with probabilityp,

f(x) =
p

2
[
δ(x) + δ(1− x)

]
+ (1− p)

Γ(2α)
Γ(α)2

[x(1− x)]α−1, α > 0,
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where Γ(α) =
∫∞
0

xα−1 exp(−x) dx is the Euler
Gamma function. We are using a flexible family like Beta,
since in this way we can flexibly shape the frequency spec-
tra. We are using a parametric model since, arguably,
there is currently no other simple theory that would al-
low deriving the frequency spectrum from first principles.
The Infinite Sites Model (Clarket al., 1998], advocated
for SNPs, seems insufficient to explain SNP diversity, as
demonstrated in Fig. 14 of Venteret al. (2001).

The continuous part of this distribution is U-shaped
if α ∈ (0, 1), uniform if α = 1, and unimodal ifα > 1.
The expected values of diversitiesπ and s are equal to

E(π) = (1− p)
n

n− 1
α

2α + 1
,

E(s) = (1− p)
1
an

[
1− 2

Γ(2α)Γ(α + n)
Γ(2α + n)Γ(α)

]
,

respectively.

The symmetric Beta model can be treated as arising
when forward and backward mutations between two vari-
ants, with identical rates, are possible at each site (Ewens,

1979, p. 139) if the site can mutate at all. This mechanism
is different from the Infinite Sites Model. We will return
to this subject in Discussion.

We can determine the expression for the cumulative
distributionF1(x | k) of X given SNP discovery, by inte-
grating the densityf1(x | k). Furthermore, we can deter-
mine the cumulative distributionG1(y | k) of the random
variableY , equal to the frequency of the less frequent al-
lele, from the formulaG1(y | k) = 1+F1(y | k)−F1(1−
y | k), y ∈ [0, 1/2]. This is useful, since in SNP data
it is frequently not known which variant is the wild type
and which is the mutant. Figure 1 depicts numerically ob-
tained plots ofG1(y | k) for k = 10 and three values of
α. The plot is concave forα ∈ (0, 1), almost linear for
α = 1, and convex forα > 1.

Expressions for the conditional expectations ofπ
and s given in Table 1 result from the Beta distribution
model.

Figure 2 depicts the impact of a limited discov-
ery sample on biases of diversity, for a range of values
α ∈ [0, 10] and forp = 0.9, 0.99, 0.999 in panels (a), (b),
and (c), respectively. Other parameters were kept at values
corresponding to those true for the data from our observa-
tions (see next section),l = 13, 000, m = 10, k = 10,

Table 1. Conditional expectations ofπ and s.

E0(π | k) =
l −m

l

2n

n− 1

2(1− p)α
Γ(2α)Γ(α + k + 1)
Γ(α)Γ(2α + k + 2)

p + 2(1− p)
Γ(2α)Γ(α + k)
Γ(α)Γ(2α + k)

,

E0(s | k) =
l −m

l

1
an

2(1− p)
Γ(2α)
Γ(α)

[
Γ(α + k)
Γ(2α + k)

− Γ(α + k)Γ(α + n) + Γ(α)Γ(α + n + k)
Γ(α)Γ(2α + k + n)

]
p + 2(1− p)

Γ(2α)Γ(α + k)
Γ(α)Γ(2α + k)

,

E1(π | k) =
m

l

2n

n− 1

α

[
1

2(2α + 1)
− 2

Γ(2α)Γ(α + k + 1)
Γ(α)Γ(2α + k + 2)

]
1− 2

Γ(2α)Γ(α + k)
Γ(α)Γ(2α + k)

,

E1(s | k) =
m

l

1
an

1−2
Γ(2α)Γ(α + k)
Γ(α)Γ(2α + k)

−2
Γ(2α)Γ(α+n)
Γ(α)Γ(2α + n)

+2
Γ(2α)Γ(α+k)Γ(α+n)+Γ(2α)Γ(α)Γ(α+n+k)

Γ(α)2Γ(2α + n + k)

1− 2
Γ(2α)Γ(α + k)
Γ(α)Γ(2α + k)

.
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Fig. 1. Numerically obtained empirical distribution functions of the frequencyG1(y | k) of
the less frequent variant at an SNP site (k = 10 and α = 0.01, 1, 5).

 

Fig. 2. Ascertainment bias corrections for diversity estimatesπ̂ (thick lines) andŝ (thin lines),
calculated for a range of values ofα and p = 0.9, 0.99, 0.999 (panels (a), (b) and (c),
respectively). The remaining parameters arel = 13, 000, m = 10, k = 10, andn = 150.
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except forn = 150, which is less than our total sample
size (see below), but the largest value at which numerics
do not diverge. Note that biasB(π | k) does not depend
on n. Also, we demonstrated computationally that bias
B(s | k) is insensitive to changes inn > 100. In general,
s is more sensitive to the effect of limited screening than
π. Decreasingp below 0.99 also leads to a considerable
B(π | k) bias.

3. Estimates of the Parameters of the Model
and of Diversity in SNP Data

Data. We use estimates of nucleotide diversity from a
study of SNPs at cancer-related loci, conducted by our-
selves (Bonnenet al., 2000; Trikkaet al., 2002). In addi-
tion, we identified two literature sources, which report es-
timates of genetic diversity (Halushkaet al., 1999; Nick-
ersonet al., 1998).

SNPs in our studies (Bonnenet al., 2000; Trikka
et al., 2002) were discovered by sequencing regions of
k = 10 chromosomes, belonging to 5 Caucasian individ-
uals. For each SNP discovered in this way, a molecular
probe was developed and the SNP was typed in almost all
cases in 295 individuals (71 African American, 39 Asian
American, 77 Caucasian American, 73 Hispanic and 35
CEPH Caucasian). This givesn = 590. Sequenced re-
gions involved non-coding regions of 4 genes, with po-
tential impact in familial cancers: Ataxia telangiectasia
(ATM), Bloom’s syndrome (BLM), RecQL (RQL) and
Werner’s syndrome (WRN). For ATM, 14 SNPs were dis-
covered in regions of total length 13.5 kb. For BLM, 8
SNPs were discovered in regions of total length 13.7 kb.
For RQL, 11 SNPs were discovered in regions of total
length 12.6 kb. For WRN, 12 SNPs were discovered in
regions of total length 14.0 kb (Table 2).

SNPs in (Halushkaet al., 1999) were discovered by
sequencing DNA samples from 40 Africans and 34 Amer-
icans of Northern European descent. This givesn = k =
148. In total, 190 kb of DNA was analyzed, covering cod-
ing sequences, introns and 3’ and 5’ untranslated regions
of 75 candidate genes for blood pressure homeostasis and
hypertension. Total of 874 SNPs were discovered, 387 of
them in the coding sequence.

SNPs in (Nickersonet al., 1998) were discovered
by sequencing DNA samples from 24 African-Americans
from Jackson, MS (USA), 24 Europeans from North
Karelia (Finland), and 23 European-Americans from
Rochester, MN (USA). This givesn = k = 142. In
total, 9.7 kb of DNA was analyzed, covering a fraction
of the lipoprotein lipase (LPL) gene, a candidate gene for
the susceptibility to the cardiovascular disease. A total of
88 SNPs were discovered (including 9 insertion/deletion
variants).

Table 2. Numbers of SNP discovered in the BLM, WRN,
RQL and ATM gene regions (m), the corresponding
sequence lengths (l), and estimates of diversitŷπ
and ŝ, and those of model parametersα̂ and p̂(α̂).

Number ofSequence

Genediscovered length π̂ × 104 ŝ× 104 α̂ p̂(α̂)

SNPs (m) (l)

BLM 8 13.7 kb 2.4 1.4 1.8 0.9994

WRN 12 14.0 kb 2.5 2.1 0.010.9990

RQL 11 12.6 kb 3.5 1.7 1.7 0.9990

ATM 14 13.5 kb 4.7 2.0 5.0 0.9994

Fitting the symmetric Beta model. The described
procedure is based on the observation that expected di-
versities π and s, given discovery, i.e.,E1(π | k) and
E1(s | k) do not depend on parameterp (the probabil-
ity that the site is invariant). Therefore, the diversitiesπ̂
and ŝ, estimated based on SNPs discovered in the sam-
ple of k = 10 chromosomes (Table 2) can be fitted to
their theoretical counterparts. The value ofα at which
the best fit is achieved, is denoted byα̂. Figure 3 depicts
the quality of the fit. The model reproduces the diversities
estimated from data quite well. However, fitting results in
very diversified estimateŝα (Table 2). They vary from
α̂ = 0.01 (practically, equal to 0) for the WRN locus,
through α̂ = 1.7 for the RQL locus, and̂α = 1.8 for the
BLM locus, to α̂ = 5 for the ATM locus. Unfortunately,
in view of the flatness of the theoretical curves, more data
seem to be needed to establish confidence intervals for the
estimatesα̂.

To verify the above results, we computed the empir-
ical cumulative distributions of the frequency of the less
frequent SNP variant at the four loci. These are presented
in Fig. 4. Let us notice that the WRN graph is similar
to the low-α concave theoretical curve in Fig. 1(a), while
the RQL and ATM graphs are similar to the high-α con-
vex theoretical curve in Fig. 1(c). This is consistent with
the estimated̂α-values at these loci. The BLM graph does
not conform to either pattern.

Furthermore, for each locus it is possible to calcu-
late the expected number of the SNP discovered, given
the symmetric Beta model

E(#SNPs) = lE[1−Xk − (1−X)k]

= l(1− p)
[
1− 2

Γ(2α)Γ(α + n)
Γ(2α + n)Γ(α)

]
= l(1− p)ϕ(α).
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Fig. 3. Fitting data to the symmetric Beta model. Theoretical curves ofE1(π | k) and

E1(s | k) drawn superimposed on the estimated diversitiesπ̂ and ŝ (square and di-
amond symbols, respectively). The symbols are drawn at the value ofα at which the
best fit is achieved.

 

Fig. 4. Empirical cumulative distributions of the frequency of the less frequent SNP variant at the
BLM, WRN, RQL and ATM loci (panels (a)–(d), respectively).
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Since this latter is estimated bym, the number of the
SNPs discovered, we obtain an estimate ofp of the form

p̂(α̂) = 1− m

lϕ(α̂)
.

These estimates (Table 2) have values ranging from 0.999
to 0.9994.

Projections of the ascertainment bias of diversity es-
timates. Figure 5 depicts the values ofπ and s esti-
mated from our data, those reported by Nickersonet al.

 

 

 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 

Fig. 5. Estimates of diversitieŝπ (a) and ŝ (b), at the BLM,
WRN, RQL and ATM loci, not corrected (lightly
shaded bars) and corrected (heavily shaded bars) for
the ascertainment bias. For comparison, estimates
from (Nickersonet al., 1998; Halushkaet al., 1999),
based on large discovery samples, are also provided.
Note that the estimatês is not available for the data
of (Halushkaet al., 1999).

(1998), as well as the estimated value ofs, reported by
Halushkaet al. (1999) (π was not estimated in the latter
paper). Extension bars in our data represent the maximal
bias expected with a given screening sample size, com-
puted from theB(π | k) and B(s | k) expression, assum-
ing p = 0.999, l = 13, 000, m = 10, k = 10, and
n = 150. The biases were computed at the “worst-case”
values of α, at which they assume maximum values, so
they should be treated as upper bounds. We used one set
of the values ofl and m at these loci, since the impact of

small variations in these parameters is negligible. Observe
that the bias corrections are quite small.

Data from (Halushkaet al., 1999; Nickersonet al.,
1998) are considered unbiased since all individuals’ DNA
was analyzed to discover SNPs.

4. Discussion

We developed a method to estimate the ascertainment bias
of the genetic diversity estimates of DNA sequences in
populations, due to a limited number of chromosomes
used in SNP discovery. The method is based on fitting a
parametric model of the distribution of the SNP frequency
along the sequence to data, and making projections based
on this model. The model assumes that with probabilityp
only one variant is possible at a nucleotide site and if there
are two variants, which happens with probability1 − p,
the frequencyX of variant 1 is a random variable with a
given distribution. The distribution we use is symmetric
Beta. The fit is obtained forp-values close to 0.999 and
for a wide range of the shape coefficientα of symmetric
Beta, fromα close to 0 toα close to 5.

The symmetric Beta distribution arises in genetic the-
ory in the mutation-drift equilibrium of the Wright-Fisher
model with symmetric reversible mutation between two
variants (Ewens, 1979, p. 155). In this setup, the shape
coefficient has the interpretation of

α = 4Neν,

whereNe is the effective population size, whileν is the
mutation rate. However, in our setup, we take into account
also sites which stay invariant, and so the aggregate muta-
tion rate will not be equal toν (see below). For this rea-
son, we use the notationν instead of the previously used
µ. As an example, let us assumeα = 4, and an effective
population size ofNe = 105. This results inν = 10−5

per generation. The average mutation rate per site is equal
to (1− p)ν = 10−8, which seems quite realistic, particu-
larly as an upper bound. Therefore, the model seems to be
in a reasonable agreement with the rate at which mutation
processes are thought to occur (Li 1997).

The symmetric Beta model is not identical with the
Infinite Sites Model, which has been invoked for the SNP
loci. In particular, its form suggests a symmetric muta-
tion mechanism, contradictory to the Infinite Sites Model.
Unfortunately, it is difficult to resolve the question of the
symmetry of the distribution of SNP frequencies, mainly
because it is difficult to determine which variant is ances-
tral. Some help may come from using the chimpanzee as
the outgroup. However, even then, it has to be remem-
bered that humans did not descend from the chimpanzee,
but that both species had a common ancestor. It is quite
possible that asymmetric Beta is closer to the truth. In
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such a case, the distribution of the frequency of the less
frequent variant would be still difficult to distinguish from
the symmetric Beta. Asymmetric Beta would be closer to
the Infinite Sites Model. Differences are not likely to be
identified if frequencies of individual SNPs are examined.

It is worth noting that there are some differences of
our modeling of the ascertainment (sampling) of the SNP
sites, as compared to other approaches seen in the liter-
ature on the subject. The formulation of sampling de-
scribed in Introduction is prompted by the study design
of (Bonnenet al., 2000; Trikkaet al., 2002). It is dif-
ferent from the sampling scheme described in (Wanget
al., 1998) and from the approach in (Eberle and Kruglyak,
2000). Wanget al. (1998) used a two-step ascertainment
procedure for retaining an SNP site for a more detailed
study. In their sampling scheme, first an SNP site had to
exhibit a variant allele in a screening set of 3 individuals
(i.e., satisfy Step 3 of our formulation withk = 6). Fur-
ther, in a larger screening set of 20 chromosomes, they
retained SNP sites that showed allele frequencies exceed-
ing 30% for both alleles. Clearly, this two-stage ascer-
tainment leaves some SNP sites unexamined that would
have satisfied their second stage even when the first three
individuals did not exhibit the variant allele.

In contrast, Eberle and Kruglyak (2000) describe a
single-stage ascertainment scheme, called theS(n, k)
strategy in their notation, where the screening set (n chro-
mosomes) is the ultimate sample itself. They retain the
SNP sites that exhibit frequencies (the number of copies)
of the minor allele betweenk and n− k.

A technical comment concerning the formulation of
Eberly and Kruglyak (2000) is also important in this con-
text. Since the expected relative frequencyx of the minor
allele is unknown, it is assumed by these authors that it
follows the “probability distribution” (unnormed) propor-
tional to x−1(1 − x)−1. This fact could be viewed as a
consequence of the Infinite Sites Model. The unnormed
“density” x−1(1 − x)−1 might be treated as a limiting
case of the symmetric Beta model asα → 0. Assuming
the symmetric Beta model, the probability of discovering
an SNP using theirS(n, k) strategy is equal to

1∫
0

n−k∑
i=k

(
n

i

)
Γ(2α)

Γ(α)Γ(α)
xi+α−1(1− x)n−i+α−1 dx

=
n−k∑
i=k

Γ(2α)
Γ(α)Γ(α)

Γ(i + α)Γ(n− i + α)
Γ(n + 2α)

.

As α → 0, the term

Γ(2α)
Γ(α)Γ(α)

Γ(i + α)Γ(n− i + α)
Γ(n + 2α)

tends to zero ifi = 1, . . . , n − 1, and it tends to1/2
if i = 0 or i = n. Eberly and Kruglyak (2000) sample
simply from the product of their Equations (1) and (2),
which does not seem justified.

However, like Eberle and Kruglyak’s model, our
model does not take into account the dependence between
SNP sites. It is not needed if expected values only are
considered. However, such a dependence is of importance
for the efficiency of estimators we used. Further work is
needed in this direction.

The ascertainment bias has been considered for ge-
netic data (see, e.g., Rogers and Jorde, 1996) and as a
more general sampling bias (Chakraborty and Rao, 2000).
Rogers and Jorde (2000) consider the conventional prac-
tice, which ensures that only most variable loci are most
likely to be discovered and thus included in the sample of
loci. Consequently, estimates of average heterozygosity
are biased upward. They describe a model of this bias. A
different but related type of bias arises when data discov-
ered in Population 1 are typed in Population 2. Then, the
estimated heterozygosity will be higher in Population 1
than that in Population 2.

In the discovery setup considered in this paper, we
do not consider the between-population bias (which may
well exist). Instead, we focus on a new type of ascertain-
ment bias, which tends to decrease the observed genetic
diversity. The number of segregating sites,s, is more sen-
sitive to this than the average number of pairwise differ-
ences,π. The presence of a large number of sites with
a rare variant (highα in the symmetric Beta distribution
model) tends to increase bias, especially ins. Both the
biases are particularly sensitive to the parameterp, equal
to the proportion of completely monomorphic sites. The
decrease inp below 0.99 leads to a dramatic increase in
both biases. The bias we observe in our data seems to be
limited, due to the estimatedp being not less than 0.999.

Taking into account the limited influence of the as-
certainment bias on our estimates of genetic diversity, we
conclude that the diversity of DNA sequences at the BLM,
WRN, RQL and ATM loci is indeed much lower than the
diversity reported by Halushkaet al. (1999) and Nicker-
sonet al. (1998) at the blood-pressure homeostasis and
lipoprotein lipase loci. Our estimates and corrections pro-
vide an idea of the extent of the heterogeneity of genetic
diversity over the human genome.
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