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DYNAMICS OF THE TUMOR—IMMUNE SYSTEM COMPETITION—THE EFFECT
OF TIME DELAY
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The model analyzed in this paper is based on the model set forth by V.A. Kuznetsov and M.A. Taylor, which describes a
competition between the tumor and immune cells. Kuznetsov and Taylor assumed that tumor-immune interactions can be
described by a Michaelis-Menten function. In the present paper a simplified version of the Kuznetsov-Taylor model (where
immune reactions are described by a bilinear term) is studied. On the other hand, the effect of time delay is taken into
account in order to achieve a better compatibility with reality.
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1. Introduction

1.1. Biological background

When an unknown tissue, an organism or tumor cells ap-
pear in a body, the immune system tries to identify them
and, if it succeeds, it tries to eliminate them. The im-
mune system response consists of two different interact-
ing responses—the cellular response and the humoral re-
sponse. The cellular response is carried by T lymphocytes.
The humoral response is related to the other class of cells,
called B lymphocytes. A dynamics of the antitumor im-
mune responsein vivo is complicated and not well under-
stood.

The immune response begins when tumor cells are
recognized as being nonself. Then tumor cells are
caught by macrophages which can be found in all tis-
sues in the body and circulate round in the blood stream.
Macrophages absorb tumor cells, eat them and release se-
ries of cytokines which activate T helper cells (i.e., a sub-
population of T lymphocytes) that coordinate the counter-
attack. T helper cells can also be directly stimulated to in-
teract with antigens. These helper cells cannot kill tumor
cells, but they send urgent biochemical signals to a spe-
cial type of T lymphocytes called natural killers (NKs). T
cells begin to multiply and release other cytokines that fur-
ther stimulate more T cells, B cells and NK cells. As the
number of B cells increases, T helper cells send a signal
to start the process of the production of antibodies. An-
tibodies circulate in the blood and are attached to tumor
cells, which implies that they are more quickly engulfed
by macrophages or killed by natural killer cells. Like all T

cells, NK cells are trained to recognize one specific type
of an infected cell or a cancer cell. NK cells are lethal.
They constitute a critical line of the defense.

1.2. Kuznetsov and Taylor’s Model

The idea of the model presented in this paper comes from
the paper of Kuznetsov and Taylor (1994). Other sim-
ilar models of tumor-immune interactions can be found
in the literature (e.g., (Foryś, 2002; Mayeret al., 1995;
Kirschner and Panetta, 1998; Waniewski and Zhivkov,
2002)). In this section Kuznetsov and Taylor’s model
and results from (Kuznetsov and Taylor, 1994) are pre-
sented. We recall Kuznetsov and Taylor’s findings and
restore their numerical results in order to compare them
with those obtained by us and described in the next sec-
tions.

The model proposed in (Kuznetsov and Taylor, 1994)
describes the response of effector cells (ECs) to the growth
of tumor cells (TCs). This model differs from others be-
cause it takes into account the penetration of TCs by ECs,
which simultaneously causes the inactivation of ECs. It is
assumed that interactions between ECs and TCsin vitro
can be described by the kinetic scheme shown in Fig. 1,
where E, T , C, E∗ and T ∗ are the local concentra-
tions of ECs, TCs, EC-TC complexes, inactivated ECs,
and “lethally hit” TCs, respectively,k1 and k−1 denote
the rates of bindings of ECs to TCs and the detachment of
ECs from TCs without damaging them,k2 is the rate at
which EC-TC interactions program TCs for lysis, andk3

is the rate at which EC-TC interactions inactivate ECs.
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Fig. 1. Kinetic scheme describing interactions
between ECs and TCs.

Kuznetsov and Taylor’s model is as follows:

dE
dt

= s+ F (C, T )− d1E − k1ET + (k−1 + k2)C,

dT
dt

= aT (1− bT )− k1ET + (k−1 + k3)C,

dC
dt

= k1ET − (k−1 + k2 + k3)C, (1)

dE∗

dt
= k3C − d2E

∗,

dT ∗

dt
= k2C − d3T

∗,

wheres is the normal (i.e., not increased by the presence
of the tumor) rate of the flow of adult ECs into the tumor
site, F (C, T ) describes the accumulation of ECs in the
tumor site,d1, d2, and d3 are the coefficients of the pro-
cesses of destruction and migration forE, E∗ and T ∗,
respectively,a is the coefficient of the maximal growth of
tumor, andb is the environment capacity.

In (Kuznetsov and Taylor, 1994) it is claimed that
experimental observations motivate the approximation
dC/dt ≈ 0. Therefore, it is assumed thatC ≈ KET ,
whereK = k1/(k2 + k3 + k−1), and the model can be
reduced to two equations which describe the behavior of
ECs and TCs only. Moreover, in (Kuznetsov and Taylor,
1994) it is suggested that the functionF should be in the
following form:

F (C, T ) = F (E, T ) =
pET

r + T
,

wherep and r are positive constants.

The dimensionless form of the model studied in
(Kuznetsov and Taylor, 1994) is as follows:

dx
dt

= σ +
ρxy

η + y
− µxy − δx,

(2)
dy
dt

= αy(1− βy)− xy,

where x denotes the dimensionless density of ECs,y
stands for the dimensionless density of the population of
TCs,

σ =
s

nE0T0
, ρ =

fK

Kk2T0
, η =

g

T0
,

µ =
k2

k3
, δ =

d1

Kk2T0
, α =

a

Kk2T0
, β = bT0.

For better understanding of the model behavior, in
Fig. 2 the regions of different types of qualitative behav-
ior of solutions to Eqn. (2) are shown in the(σ, δ)-plane.
Equation (2) was proposed to describe two different stages
of the tumor: the dormant tumor and the sneaking-through
mechanism. Tumor dormancy means that the level of the
tumor cells does not change. Sneaking through refers to a
situation in which for some initial level of TCs, when the
initial level of ECs is sufficiently small, the state of tumor
dormancy is achieved in the organism, but if the initial
level of ECs is higher, then this initially high level of ECs
decreases due to the small and constant level of TCs and,
when the level of ECs is sufficiently small, the tumor cells
start to proliferate and they break through the immune de-
fense and successfully generate the tumor (Kuznetsov and
Taylor, 1994). The typical phase portraits for Regions
1–5 are shown in Fig. 3. These portraits were obtained
here as a result of numerical simulations. The steady state
on the x-axis means the total recovery (Fig. 3(a)). The
steady state with a low level of ECs and a medium level
of TCs corresponds to the dormant tumor (Figs. 3(b) and
(c)), whereas in Region 5 (Figs. 3(e) and (f)) we observe
the sneaking-through mechanism.

Fig. 2. Regions of qualitatively different types of be-
havior of Eqn. (2) (parametersσ and δ change
while other parameters remain constant).

2. Simplified Model

In the present paper we focus on the model with a time
delay. At the beginning, we study the behavior of a sim-
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Fig. 3. Phase portraits corresponding to Eqn. (2), for Regions 1–5 and(δ, σ): (0.1908,0.318), (0.545,0.318), (0.545, 0.182),
(0.009,0.045) and (0.545,0.073), respectively,α = 1.636, β = 0.002, ρ = 1.131, η = 20.19, µ = 0.00311.
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plified model (based on Eqn. (2)), then we include time
delay in it.

We change the model proposed in (Kuznetsov and
Taylor, 1994) by replacing the Michaelis-Menten form of
the functionF with a Lotka-Volterra form (i.e., the func-
tion F becomes bilinear and has the formF (E, T ) =
θET ). Therefore, the model takes the form

dE
dt

= s+ α1ET − dE,
(3)

dt
dt

= aT (1− bT )− nET,

whereα1 = θ −m, and the parametersa, b, s have the
same meaning as in Eqn. (1);n = K/k2, m = K/k3,
d = d1. All coefficients exceptα1 are positive.

The sign of α1 depends on the relation between
θ and m. If the stimulation coefficient of the immune
system exceeds the neutralization coefficient of ECs in
the process of the formation of EC-TC complexes, then
α1 > 0.

We use the dimensionless form of the model:

dx
dt

= σ + ωxy − δx,
(4)

dy
dt

= αy(1− βy)− xy,

where x, y, α, β, δ and σ have the same meaning as
in Eqn. (2) andω = α1/n.

This form of the model allows us to compare the be-
havior of solutions to Eqns. (2) and (4).

Now we shall study the basic properties of Eqn. (4).

Lemma 1. For every nonnegative initial condition
(x0, y0), a nonnegative unique solution(x(t), y(t)) to
Eqn. (4) exists for everyt > 0.

Proof. Since the right-hand side of Eqn. (4) is a poly-
nomial, there exists a unique local solution to Eqn. (4) for
any initial data. It is easy to see that for allt > 0

y(t) = y0e
∫ t
0 (α(1−βy(s))−x(s)) ds

and
x(t) ≥ x0e

∫ t
0 (ωy(s)−δ) ds.

Thus, if x0, y0 ≥ 0, then x(t) and y(t) remain nonneg-
ative for everyt > 0.

Sincex(t) and y(t) are nonnegative, we have

ẏ ≤ αy(1− βy)

and then

y(t) ≤ max
(
y0,

1
β

)
= ymax.

Using ymax, we can estimate the first equation:

ẋ ≤ σ + xγ

and then

x(t) ≤ xoeγt + σeγt
∫ t

0

e−γs ds,

where

γ =

{
ωymax − δ if ω ≥ 0,
−δ if ω < 0.

This implies that for any finite time moment,x(t)
and y(t) are bounded, and this is a sufficient condition
for the existence of solutions for everyt > 0.

Now, we study the asymptotical behavior of the
model. There exist up to three steady states. The steady
stateP0 = (σ/δ, 0) always exists. Other steady states are
described by the system of equations:{

0 = αβωy2 − α(βδ + ω)y + αδ − σ,

x = −αβy + α.
(5)

If ∆ = α2(βδ−ω)2+4αβσω > 0, then additionally
there are two solutionsP1 = (x1, y1) andP2 = (x2, y2)
to this system, where

x1 =
−α(βδ − ω)−

√
∆

2ω
, y1 =

α(βδ + ω) +
√

∆
2αβω

,

x2 =
−α(βδ − ω) +

√
∆

2ω
, y2 =

α(βδ + ω)−
√

∆
2αβω

.

The characteristic polynomial for Eqn. (4) and the point
P0 is

W (λ) =
(
α− σ

δ
− λ

)
(−δ − λ)

and, therefore, the following lemma is true:

Lemma 2. If α > σ/δ, then the pointP0 is unstable. If
α < σ/δ, then the pointP0 is stable.

For the pointsP1 and P2 we can prove the follow-
ing result:

Lemma 3. If the point P1 exists and has nonnegative
coordinates, then it is unstable.

Proof. To examine the stability of Eqn. (4) at the point
P1, we linearize Eqn. (4) around (0,0) and then we have
to find the sign of the trace of the Jacobi matrix

J =

[
ωy1 − δ ωx1

−y1 α− 2αβy1 − x1

]
.
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If tr(J) > 0, then the pointP1 is unstable. We have

trJ =
ω2 − ω(αβ + βδ)− αβ2δ

2βω

+
ω − αβ
2αβω

√
α2(βδ+ω)2−4αβω(αδ−σ). (6)

The inequalitytr(J) > 0 is true if the following condi-
tion is fulfilled:

α
(
ω2 − ω(αβ + βδ)− αβ2δ

)
> (−ω + αβ)

√
α2(βδ + ω)2 − 4αβω(αδ − σ).

The pointP1 exists and has nonnegative coordinates
when αδ < σ and ω < −βδ. Then it is easy to verify
that ω2 − ωβ(α + δ) − αβ2δ > 0 and both sides of the
inequality are positive. Squaring and simplifying yield

− σω2 − ω(α2βδ − 2αβσ) + α2β2δ2

+ α3β2δ − α2β2σ < 0. (7)

It is easy to verify that forω < −βδ andαδ < σ this in-
equality is true. If the pointP1 exists and has nonnegative
coordinates, thentr(J) > 0 and the pointP1 is unstable.

Analogously, it is possible to prove the following
lemma:

Lemma 4. If the point P2 exists and has nonnegative
coordinates, then it is stable.

Now we will examine the existence of closed orbits
in the system. To this end, the Dulac-Bendixon criterion
(see, e.g., (Perko, 1991)) is applied.

Lemma 5. There is no nonnegative periodic solution to
Eqn. (4).

Proof. Define the auxiliary function which appears in the
Dulac-Bendixon criterion asM(x, y) = 1/xy. Then

divMF =
d
dx

(
M

dx
dt

)
+

d
dy

(
M

dy
dt

)
=

d
dx

[ 1
xy

(σ + ωxy − δx)
]

+
d
dy

[ 1
xy

(αy(1− βy)− xy)
]

= −
( σ

x2y
+
αβ

x

)
< 0.

The Dulac-Bendixon criterion implies that there is no
closed orbits in the region {(x, y) : x ≥ 0, y ≥ 0}.

Table 1. Stationary points with nonnegative
coordinates and their stability.

Region Conditions P0 P1 P2

1 ω > 0, αδ < σ stable — —

2 ω > 0, αδ > σ unstable — stable

3 ω < 0, αδ > σ,
unstable — stable

α(βδ − ω)2 + 4βωσ > 0

4 ω < 0, αδ < σ,

ω + βδ < 0, stable unstable stable

α(βδ − ω)2 + 4βωσ > 0

5 ω < 0,
stable — —

α(βδ − ω)2 + 4βωσ < 0

In Table 1 we present all possible cases of stability
and instability for the pointsP0, P1, P2. In turn, in
Fig. 4 we present all types of possible asymptotical be-
havior of Eqn. (4) for nonnegativex and y. The steady
state on thex-axis means a total recovery (Fig. 4(a)). The
steady state with a low level of ECs and a medium level
of TCs (Figs. 4(b), (c) and (d)) corresponds to the state
of the dormant tumor. Unfortunately, in the model (4) the
sneaking-through mechanism is not described.

Summing up, the dynamics of Eqn. (4) are simpler
than the dynamic of Eqn. (2). However, usually the so-
lutions to both models are similar (see Figs. 7 and 8(a),
(b)). In Eqn. (4) it is possible to describe the dormant tu-
mor. The sneaking-through mechanism is not described,
but the tumor escape under immunoregulation appears.

3. Model with Time Delay

In Eqn. (4) the parameterω describes the immune re-
sponse to the appearance of the tumor cells. The immune
system needs some time to develop a suitable response
after the recognition of non-self cells and therefore, we
introduce time delay into the model.

Now, the model takes the form

dx
dt

= σ + ωx(t− τ)y(t− τ)− δx,
(8)

dy
dt

= αy(1− βy)− xy,

where the parametersα, β, δ, σ and ω have the mean-
ing introduced previously andτ is constant time delay.
Time delays in connection with the tumor growth also ap-
pear in (Bodnar and Foryś, 2000a; 2000b; Byrne, 1997;
Forýs and Kolev, 2002; Forýs and Marciniak-Czochra,
2002). We study Eqn. (8) with nonnegative continuous
initial functions x0 and y0 defined on[−τ, 0].
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Fig. 4. Phase portraits of Eqn. (4), for Regions 1–5, respectively.
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Lemma 6. A unique solution to Eqn. (8) exists for every
t > 0.

Proof. Since the right-hand side of Eqn. (8) is a Lipschitz
continuous function, then, locally, there exists a unique
solution to Eqn. (8) for any continuous initial function
(x0, y0) (see (Hale, 1997)). We will show that this solu-
tion exists for everyt > 0.

Let t ∈ [0, τ ]. We know x(t − τ) and, y(t − τ)
and, therefore, we can solve the first equation using the
formula

x(t) = x0(0)e−δt

+ e−δt
∫ t

0

eδs
(
σ + ωx0(t− τ)y0(t− τ)

)
ds.

Knowing x(t), we can estimate the second equation:

ẏ(t) ≤ αy(t)
(
1− βy(t)

)
+ xmaxy(t),

wherexmax is the maximal value ofx on [0, τ ]. Hence

ẏ(t) ≤ (α+ xmax)y(t)
(
1− αβ

αxmax
y(t)

)
and therefore

y(t) ≤ max
(
y0(0),

α+ xmax

αβ

)
.

This implies thaty(t) and its derivative are bounded
on the interval[0, τ ]. Hence the solution to Eqn. (8) exists
on the whole interval[0, τ ]. Using the step method, we
can obtain similar estimates on every interval[kτ, (k +
1)τ ], k ∈ N, which guarantee the existence of solutions
for every t > 0.

The following lemmas result immediately from
(Bodnar, 2000):

Lemma 7. If ω ≥ 0, then the solutions to Eqn. (8) are
nonnegative for any nonnegative initial condition.

Lemma 8. If ω < 0, then there exist nonnegative ini-
tial conditions such thatx(t) becomes negative in a finite
time interval.

The application range of this model is restricted to
the cases when both the variables are nonnegative, i.e., if
tmin min{t0 > 0 : ∃ε > 0 ∀t ∈ [t0, t0 + ε] x(t) < 0},
then for t > tmin we takex(t) = 0.

Steady states in Eqns. (4) and (8) are the same. In
the case of Eqn. (8), in order to prove the stability or the
instability of the steady states, we can use the following
Mikhailov criterion (Kuang, 1993):

Criterion 1. (Mikhailov) Let N and M be polynomi-
als, degM < degN = n (wheredeg denotes the degree
of a polynomial), and assume that the quasi-polynomial
D(p) = N(p) + M(p)e−pτ has no roots on the imagi-
nary axis. Then all the roots of the quasi-polynomial D
have negative real parts if and only if the argument of the
vectorD(iψ) increases bynπ/2 as ψ increases from0
to +∞.

Lemma 9. The steady stateP0 of Eqn. (8) is locally
asymptotically stable if

α <
σ

δ
and τ <

π

2δ
.

The steady stateP0 of Eqn. (8) is unstable if

α >
σ

δ
or

(
α <

σ

δ
and τ >

π

2δ

)
.

Proof. Consider Eqn. (8) and the steady stateP0 =
(σ/δ, 0). Let us introduce new variables̃x(t) = x(t) −
σ/δ and ỹ(t) = y(t). After rewriting Eqn. (8), we lin-
earize it around(0, 0) (see, e.g., (Hale, 1997)) and obtain
the following system:

dx̃
dt

= ω
σ

δ
ỹ(t− τ)− δx̃(t− τ),

(9)
dỹ
dt

= αỹ − ỹ σ
δ
,

which leads to the characteristic quasi-polynomial
W (λ) = (λ+ σ/δ − α)(λ+ δe−λτ ).

The form of the quasi-polynomialW implies that
the necessary condition for the asymptotic stability ofP0

is α < σ/δ. To find a sufficient condition for the asymp-
totic stability of the pointP0, we have to know whether
all roots of the quasi-polynomialD(λ) = λ+δe−λτ have
negative real parts. To this end, we use the Mikhailov cri-
terion. The first assumption of the criterion (i.e.,degM <
degN ) is fulfilled. Let ψ be a real number. Then

D(iψ) = iψ + δe−iψτ

= iψ + δ
(
cos(ψτ)− i sin(ψτ)

)
= δ cos(ψτ) + i

(
ψ − δ sin(ψτ)

)
,

and therefore<(D(iψ)) = δ cos(ψτ), =(D(iψ)) = ψ −
δ sin(ψτ).

Let ϕ be the argument ofD(iψ). It is easy to see
that

sinϕ =
ψ − δ sinψτ√

(ψ − δ sinψτ)2 + δ2 cos2 ψτ
−→ 1

as ψ → +∞,
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cosϕ =
δ cosψτ√

(ψ − δ sinψτ)2 + δ2 cos2 ψτ
−→ 0

as ψ → +∞.

Henceϕ(ψ)→ π/2 + 2kπ, k ∈ Z, asψ → +∞.

We haveϕ(0) = 0. To obtain stability, we need
∆ϕ = π/2, where ∆ϕ is the change in the argument
D(iψ) asψ increases from0 to +∞.

We have<(D(iψ)) = 0 for ψτ = π/2 + 2kπ or
ψτ = 3π/2 + 2kπ (k ∈ N):

• if ψτ = π/2 + 2kπ, then=(D(iψ)) = ψ − δ;

• if ψτ = 3π/2 + 2kπ, then=(D(iψ)) = ψ + δ.

The first value ofψ for which <(D(iψ)) = 0 is ψ =
π/2τ . For this ψ we get =(D(iψ)) = π/2τ − δ. If
π/2τ > δ then for all values ofψ, if <(D(iψ)) = 0
then=(D(iψ)) > 0, and the pointP0 is stable.
If π/2τ < δ then

• =(D(iψ)) < 0 for ψ = π/2τ ,

• =(D(iψ)) > 0 (for ψ = 3π/2τ , the next value of
ψ for which <(D(iψ)) = 0),

• either =(D(iψ)) < 0 for the third value ofψ for
which <(D(iψ)) = 0, or for all ψ if <(D(iψ)) = 0
then=(D(iψ)) > 0.

Therefore, ifπ/2τ < δ, then the pointP0 is unstable.

Consequently, ifα < δ/σ and π > 2δτ , then the
point P0 is locally asymptotically stable. Ifα > σ/δ or
if α < σ/δ and π < 2δτ , then the pointP0 is unstable.

The analysis of stability for the remaining steady
states is much more complicated.

We consider the case ofω > 0 and α > σ/δ. Then
two steady states exist:P0 andP2. Lemma 9 implies that
the point P0 is unstable. Calculating the characteristic
quasi-polynomial for the pointP2, we obtain

D(λ) = P (λ) +Q(λ)e−λτ , (10)

whereP (λ) = λ2 + λ(δ + C) + Cδ, Q(λ) = A − λB,
and A = αωy2(1 − 2βy2) > 0, B = ωy2 > 0, C =
2αβy2 − α + y2 (herex2 and y2 are the coordinates of
the pointP2).

The pointP2 is stable forτ = 0. If it loses stabil-
ity, then there existsτ0 > 0 such that the corresponding
eigenvalue is purely imaginary. Therefore, there existτ0
and s0 such that

P (is0) +Q(is0)e−s0τ0 = 0

(i.e., |P (is0)| = |Q(is0)|). We consider the auxiliary
function Φ(s0) = |P (is0)|2 − |Q(is0)|2. The necessary
condition for the change in stability isΦ(s0) = 0.

If δ2C2 − A2 > 0 and δ2 + C2 − B2 > 0, then
Φ(s0) has no root and the pointP2 is stable.

Let λ be a root of the characteristic quasi-
polynomial (10),λ = f +hi, f = f(λ), h = h(λ). If the
steady stateP2 is stable forτ = 0, then the existence of
τ0 > 0 for which λ = is0 and df(s0, τ0)/dτ > 0 con-
stitutes a sufficient condition for a change in the stability
of the pointP2 (Hale, 1997). A numerical analysis shows
that a switching in the stability occurs, e.g., for the fol-
lowing values of the parameters:α = 1.636, β = 0.002,
σ = 0.1181, δ = 0.3747 (these parameter values come
from medical experiments (Kuznetsov and Taylor, 1994))
and 0.00184 < ω < 0.01185. A computer analysis of the
Mikhailov hodograph demonstrates the switching in the
stability (Figs. 5 and 6).

Fig. 5. Example of the Mikhailov hodograph in the
case of stability (τ = 0 and τ = 0.23).

Fig. 6. Example of the Mikhailov hodograph in the
case of instability (τ = 0.25 and τ = 5).

The behavior of the solutions to Eqn. (8) is more
complex than that for Eqn. (4). Oscillations appear in the
solutions to Eqn. (8), which are observed for neither (2)
nor (4). To compare solutions to Eqn. (8) with solutions
to Eqns. (2) and (4), in numerical simulations we used the
same values of parametersα, β, σ and δ for all equa-
tions (we refer to them as common parameters). In addi-
tion to that, in Eqn. (2) we could freely selectρ, η and
µ, in much the same way asω in Eqn. (4) andω and τ
in Eqn. (8). In most sets of common parameters we tried,
we found values of the other parameters such that solu-
tions to all systems behave in a similar manner. In Figs. 7
and 8 we present examples of the behavior of solutions
to Eqns. (2), (4) and (8) for the same values of common
parameters and the same initial conditions.
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Fig. 7. Solutions to Eqns. (2) and (4) ((a) and (b), respectively) and (8) ((c) and (d)) for the following parameter values:
α = 1.636, β = 0.002, σ = 0.1181, δ = 0.3743, ω = 0.04, n = 20.19, m = 0.00311, p = 1.131, τ = 0.01 (c)
and τ = 0.8 (d); the x variable is denoted by the solid line and they variable corresponds to the dashed line.

The state of the dormant tumor is reflected in
Figs. 7(a)–(c), and a breakdown in the immune response
by the tumor cells is shown in Figs. 8(a)–(d). When we
introduce higher values of time delay (for the same values
of the other parameters as for Fig. 7(c)), we may obtain
the state of a “returning” tumor (Kirschner and Panetta,
1998), which is shown in Fig. 7(d). Sometimes, when we
change the initial values of ECs (while the initial values
of TCs and the parameter values remain the same), the be-
havior of the solutions changes. For a smaller initial level
of ECs the state of a dormant tumor is achieved, whereas
for a higher level of ECs, a breakdown in the immune re-
sponse takes place. This is the sneaking-through mecha-
nism (Figs. 9(a) and (b)). Such behavior is not observed
for solutions to Eqns. (4) and (8) (Figs. 9(c)–(h)) because
when we increase the initial level of ECs, we obtain either
the same situation as for a smaller initial level of ECs, or
the level of TCs drops to zero (because then the immune
system is sufficiently strong).

4. Conclusions

We have compared three different models: the model pro-
posed by Kuznetsov and Taylor (Eqn. 2), a simplified ver-
sion of this model (Eqn. (4), we refer to it as a simplified
model), and a simplified version of the Kuznetsov-Taylor
model with time delay (Eqn. (8), we refer to it as a simpli-
fied model with time delay).

We present conclusions concerning the stability of
the steady state while assuming that a steady state exists
and has nonnegative coordinates.

Kuznetsov and Taylor’s model was proposed to de-
scribe two different stages of the tumor: the dormant tu-
mor and the sneaking-through mechanism. There exist up
to four steady states in this model. These steady states can
describe various stages of the tumor growth: a total recov-
ery, a dormant tumor and an escape under immunoregu-
lation. The steady state describing the total recovery al-
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Fig. 8. Solutions to Eqns. (2) and (4) ((a) and (b), respectively) and (8) ((c) and (d)) for the following parameter values:
α = 1.636, β = 0.002, σ = 0.1181, δ = 0.3743, ω = −0.04, n = 50, m = 0.05, p = 2, τ = 0.01 (c) and
τ = 0.1 (d); the x variable is denoted by the solid line and they variable corresponds to the dashed line.

ways exists and may change its stability. The steady state
referring to the dormant tumor and the steady state de-
scribing the tumor’s escape under immunoregulation are
always stable. Additionally, there may be another steady
state which is unstable.

After a modification and a transformation into the
simplified model, the dynamics of the solutions become
less complicated. In this model the sneaking-through
mechanism is not described, yet still the state of the dor-
mant tumor appears. There are up to three steady states in
the simplified model. In this model one steady state can
describe, depending on the parameter values, either the
dormant tumor or the tumor’s escape under immunoregu-
lation.

When time delay is additionally introduced into the
simplified model, a state of the “returning” tumor can be
observed. Steady states are the same as in the simplified
model, but the stability or unstability of these states are
more difficult to prove. The stability of the steady states
can be different than in the model without time delay, e.g.,
for some values of time delay, the pointP0 may be unsta-
ble, although in the simplified model for the same param-
eter values (without time delay) it is stable.

Therefore, it seems to us that only Kuznetsov and
Taylor’s model describes the sneaking-through mecha-
nism, but the simplified model with time delay is also in-
teresting because it allows us to get oscillating solutions,
which are also observed in reality (Kirschner and Panetta,
1998).
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Fig. 9. Solutions to Eqns. (2) ((a) and (b)), (4) ((c) and (d)) and (8) ((e) to (h)) for the following parameter values:
α = 1.636, β = 0.002, σ = 0.073, δ = 0.545, ω = 0.015, n = 20.19, m = 0.00311, p = 1.131,
τ = 0.01 ((e) and (f)) andτ = 0.8 ((g) and (h));y(0) = 250, x(0) = 3.6 ((a), (c), (e) and (g)) andx(0) = 4
((b), (d), (f) and (h)); thex variable is denoted by the solid lines and they corresponds to the dashed lines.
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