
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 3, 407–418

ANALYSIS OF IMMUNOTHERAPY MODELS IN THE CONTEXT
OF CANCER DYNAMICS

ZUZANNA SZYMAŃSKA∗
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A basic mathematical model of the immune response when cancer cells are recognized is proposed. The model consists of
six ordinary differential equations. It is extended by taking into account two types of immunotherapy: active immunother-
apy and adoptive immunotherapy. An analysis of the corresponding models is made to answer the question which of the
presented methods of immunotherapy is better. The analysis is completed by numerical simulations which show that the
method of adoptive immunotherapy seems better for the patient at least in some cases.
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1. Introduction

The treatment of cancer is one of the most challenging
problems of modern medicine. An ideal treatment method
should fulfil two basic conditions. First, it should destroy
cancer cells in the entire body. Second, it should distin-
guish between cancerous and healthy cells. Immunother-
apy seems to be the method that best fulfils both of these
requirements (Chen and Wu, 1998).

The immune system comprises many types of lym-
phocytes which effectively destroy foreign strange cells
after activation. Some lymphocytes even exhibit natural
cytotoxicity, i.e., they do not require activation, e.g., Nat-
ural Killer (NK) cells. B and T lymphocytes have a wide
range of antigen receptors, which allows the immune sys-
tem to identify foreign antigens and to distinguish cancer
cells.

The stimulation of an immune system in order to pro-
vide an effective treatment of cancer diseases can by real-
ized with the aid of vaccinations. It is necessary to clarify
that the term “vaccine” with reference to cancer therapy
does not mean the prevention of the disease as is com-
monly understood. In the case of the application of vac-
cine against the cancer we still have to deal with the acti-
vation of the immune system. The difference is in the fact
that the vaccine now has the character of treatment, not
that of prevention.

In this paper we propose a mathematical model of
the immune system response to the identification of can-
cer antigens. Some other models can be found in (Foryś,
2002; Villasana, 2001). The presented model confirms the

well-known fact that if the cancer is very aggressive, then
despite the identification of cancer cells, the immune sys-
tem is unable to stop the development of the neoplasm.
In this case cancer vaccine can be very useful. The pro-
posed model is extended to allow the comparison of var-
ious types of anti-tumor vaccine. A mathematical anal-
ysis of the proposed models is carried out together with
a numerical simulation to determine which of the treat-
ment methods is more effective. In these models the three-
dimensional space structure of the neoplasm is not taken
into account. Our models can be used for cancers charac-
terized by easy access to cells, and best to disseminated
cancer cells. We mention, however, that in the litera-
ture one can find spatially structured models (Greenspan,
1972).

2. Basic Model

The model describes the dynamics of cancer cells and
some selected elements of the immune system whose role
seems significant, i.e., NK, LAK, T helper cells, B lym-
phocytes and cytotoxic T lymphocytes (CTL). The com-
ponents are identified by their concentration without tak-
ing into account their three-dimensional distribution. We
denote by T (t), K(t), L(t), H(t), C(t) and B(t)
the numbers of cancer cells, NK and LAK lymphocytes,
helper and cytotoxic T cells and B cells at time(t > 0),
respectively.

The total number of cancer cells in a body depends
on the rates at which they divide and are destroyed by the
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immune system. We assume that the number of cancer
cells increases exponentially by division and that their de-
cline occurs mainly through the action of NK and LAK
cells. We can describe these processes by (2). The term
a1T represents the growth in the number of cancer cells
due to proliferation, wherea1 is the tumor’s prolifera-
tion rate. The next two termsα1TK and β1TL describe
the reduction of tumor cells by the activity of NK and
LAK lymphocytes (the direct destruction of cancer cells
and their elimination through the production of the tumor
necrosis factor (TNF)). It is assumed that the amount of
the TNF produced by NK and LAK cells is proportional
to their number, but LAK cells are more effective in the
destruction of cancer cells (Jakóbisiak, 1995). Therefore
we have

α1 < β1. (1)

The model also takes into account the activity of B lym-
phocytes and cytotoxic T lymphocytes. The first factor
affects the tumor cells mainly by the mediation of the pro-
duction of antibodies. Due to the contact with antigens, B
cells are activated and begin producing antibodies. This
process is described by the termγ1TB. The last term
in (2), i.e., δ1TC is responsible for the loss of tumor cells
due to the activity of T cytotoxic cells. Finally, we have
the following equation:

Ṫ = a1T − α1TK − β1TL− γ1TB − δ1TC. (2)

NK cells are derived from precursor cells that mature
in the bone marrow. A certain number of mature lympho-
cytes circulate in the bloodstream, and some of them enter
lymphatic organs and tissues. Therefore it can be said that
the number of these lymphocytes depends on the rate at
which they enter the bloodstream. We can describe it us-
ing the quantitys2. The presence of foreign antigens in a
tissue may cause an additional increase in the number of
NK cells, mainly as a result of the intensified recruitment
of primary cells. This effect can be modeled by the term
β2T . The number of NK cells decreases mainly through
apoptosis. We describe this by the term−dK, whered is
the mortality coefficient. Some NK cells may undergo ac-
tivation and transformation into LAK cells. This process
occurs in the presence of large amounts of interleukin II,
which is one of the cytokines produced by T helper cells to
activate other immune cells. We assume that the amount
of interleukin II is proportional to the number of T helper
cells producing it. This phenomenon is described by the
term −αKH. The coefficientα is relatively small be-
cause the amount of interleukin II needed to transform NK
lymphocytes into LAK cells is very high. Finally, we ob-
tain the following equation:

K̇ = s2 − dK − αKH + β2T. (3)

We assume that the increase in the number of LAK
cells occurs as a result of the transformation of NK cells

activated by the high level of interleukin II. This process
is described by the term+αKH. The decrease in the
number of these cells is a result of apoptosis. This effect
is represented by the term−dL. The equation describing
LAK cells dynamic reads as follows:

L̇ = −dL + αKH. (4)

Similarly to cytotoxic T lymphocytes and B lympho-
cytes, T helper cells arise in the bone marrow, and then
proceed through the process of maturation to enter finally
the circulatory system (Jakóbisiak, 1995). Its main goal is
to stimulate the immune response. The dynamics of this
population are described by the equation

Ḣ = s4−d4H+α4H(t−τ)
[
T (t−τ)−q4T

2(t−τ)
]
. (5)

The number of T helper cells depends mainly on the rate at
which new lymphocytes are produced in the bone marrow
and the rate of apoptosis. These phenomena are described
respectively by the termss4 and −d4H. The parame-
ter d4 is the mortality coefficient. The next term, i.e.,
α4H(t− τ)[T (t− τ)− q4T

2(t− τ)] describes the phe-
nomenon of the increasing number of tumor cells due to
the stimulation by the presence of identified tumor anti-
gens. In our model we assume that in patients with ad-
vanced, metastatic cancer, the strength of the immune re-
action is significantly reduced (Jakóbisiak, 1995). This
is the reason behind the occurence of the logistic com-
ponent in the considered equation. The termH(t − τ)
represents the relationship between the proliferation rate
of T helper cells and their number. This relationship is
twofold. First, the proliferation rate depends on the num-
ber of cells which can proliferate. Next, the proliferation
process needs the presence of some interleukins which
are mainly produced by some subpopulation of T helper
cells, the so called Th1. In the equations describing the
dynamics of T helper cells, cytotoxic T lymphocytes, and
B lymphocytes, the timeτ > 0 is taken into considera-
tion for the successive divisions of lymphocytes, because
these processes are relatively long.

The number of B lymphocytes depends on the level
of their production in the bone marrow, the rate at which
they are activated by an antigen and at which they prolif-
erate, and their characteristic level of apoptosis. We de-
scribe it using the following equation:

Ḃ = s5 − d5B + α5H(t− τ)
[
T (t− τ)

− q5T
2(t− τ)]B(t− τ). (6)

Similarly to (3) and (5), the constant flow of B cells is
modeled by the terms5. The expression−d5B is re-
sponsible for the loss of B cells due to apoptosis. In the
next term, i.e.α5H(t−τ)[T (t−τ)−q5T

2(t−τ)]B(t−τ),
we describe the increase in the number of B cells caused
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by activation. As has previously been mentioned, T helper
cells play a very important role in the regulation of the im-
munological response. They facilitate activation, prolifer-
ation and the differentiation of B helper cells, as well as
the precursors of T cytotoxic cells. Therefore the term
H(t − τ) occurs in the expression considered. More-
over, the proliferation rate depends on the number of cells
which can divide. This process could be represented by
the termB(t−τ). The logistic term is used once again for
the same reason as in the previous case. We assume that
the time needed for cells to divide is comparable. There-
fore we use the same time delayτ .

The equation describing the dynamics of cytotoxic T
lymphocytes is analogous to the previous one. The activ-
ity mechanisms of B and T lymphocytes are completely
different, but the appearance, the loss through apoptosis,
and the activation process can be modeled in the same
way. Thus we obtain the following equation:

Ċ = s6 − d6C + α6H(t− τ)
[
T (t− τ)

− q6T
2(t− τ)

]
C(t− τ). (7)

Finally, we study the system of six ordinary differen-
tial equations with time delay that consists of Eqns. (2)–
(7). We assume that all coefficients are positive, but in
Section 5, in order to simplify the model, we setq4 = 0.

3. Extension of the Model to Include
Immunotherapy

Of great interest is to study the possibility of making use
of the immune system in tumor therapy. This raises the
activity of the tumor necrosis factor, TNF. It affects the
tumor cells, induces alterations in the tumor’s blood ves-
sels and stimulates the immune response of other lympho-
cytes. While operating directly on tumor cells, the TNF
causes their decomposition, stops their proliferation and
induces differentiation. In cells subjected to the activity of
the TNF we can observe DNA spallation and death similar
to apoptosis.

Both of the examined ways of the activation of the
immune system are aimed at stimulating it mainly to pro-
duce the TNF. The first way is based on introducing T
helper cells into the patient’s body. These cells secrete
interleukin causing the transformation of NK into LAK
cells. The second way is the administration of vaccine
that stimulates the production of T helper cells.

The first method constitutes a variant of a wider ap-
proach called adoptive immunotherapy. The patient is
given immune cells that have been activated outside his
body. In this case T helper cells can identify cancer anti-
gens. For simplicity, we assume that in both cases the

vaccine is introduced into the body in a continuous way.
The constant influx of T helper lymphocytes, caused by
the vaccination, is reflected by the termv4 and added
into the equation describing T helper cell dynamics. Fi-
nally, the model with the adoptive immunotherapy is the
following:

Ṫ = a1T − α1TK − β1TL− γ1TB − δ1TC,

K̇ = s2 − dK − αKH + β2T,

L̇=−dL + αKH,

Ḣ = s4 − d4H + α4H(t− τ)
[
T (t− τ)

− q4T
2(t− τ)

]
+ v4,

Ḃ = s5 − d5B + α5H(t− τ)
[
T (t− τ)

− q5T
2(t− τ)

]
B(t− τ),

Ċ = s6 − d6C + α6H(t− τ)
[
T (t− τ)

− q6T
2(t− τ)

]
C(t− τ). (8)

The administrated lymphocytes are an additional
source of lymphocytes needed to activate other compo-
nents of the immune system and compounds from the
group of interleukins, especially interleukin II.

The second method is an example of active im-
munotherapy. The patient is given vaccine, usually in the
form of attenuated cancer cells or their antigens. The ad-
ministration of the vaccine activates T helper cells. We
describe it by the following equation:

V̇ = s7 − d7V. (9)

The rate at which the vaccine enters the bloodstream
can be described using the terms7. The second expres-
sion, −d7V , is responsible for the loss of vaccine. In the
presence of the vaccine, we have to change the equation
describing the dynamics of T helper cells. The additional
term β4H(t − τ)V (t − τ) describes the increase in the
proliferation of T helper cells as a result of the adminis-
trated vaccine. Finally, we obtain the following model:

Ṫ = a1T − α1TK − β1TL− γ1TB − δ1TC,

K̇ = s2 − dK − αKH + β2T,

L̇=−dL + αKH,

Ḣ = s4 − d4H + α4H(t− τ)
[
T (t− τ)

− q4T
2(t− τ)

]
+ β4H(t− τ)V (t− τ),

Ḃ = s5 − d5B + α5H(t− τ)
[
T (t− τ)

− q5T
2(t− τ)

]
B(t− τ),

Ċ = s6 − d6C + α6H(t− τ)
[
T (t− τ)

− q6T
2(t− τ)

]
C(t− τ),

V̇ = s7 − d7V. (10)
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4. Simplified Models

Equations (8) and (10) are quite complicated. In order to
analyze the behavior of their solutions, we simplified them
by excluding certain components of the immune response.
We assume that both the antibodies and the cytokines pro-
duced by cytotoxic T lymphocytes act only minimally on
the populations of cancer cells. Therefore the expressions
and equations describing these lymphocytes are excluded
from both models.

The next simplification is the assumption thatτ = 0.
It is justified by the fact that in a situation where a menace
is recognized, the specific immune response is very quick.
Therefore we neglect the cell division time in the models
considered.

Consider the model with adoptive immunotherapy.
Instead of constantss4 andv4, we introduce the new con-
stants∗4 into Eqn. (5). This constant is responsible for the
increase in the number of T helper cells due to the rate at
which these lymphocytes enter the bloodstream and vacci-
nation. After these simplifications the model is as follows:

Ṫ = a1T − α1TK − β1TL,

K̇ = s2 − dK − αKH + β2T,

L̇=−dL + αKH,

Ḣ = s∗4 − d4H + α4H[T − q4T
2]. (11)

Consider now the model with active immunotherapy.
Equation (9), describing the dynamics of the adminis-
trated vaccine, is independent of other equations. Solving
it, we obtain

V (t) =
s7

d7
(1− e−d7t), V (0) = 0, (12)

which exponentially tends to the values7/d7. Therefore,
still making a simplification, we assume that the amount
of vaccine does not change in time and is equal tos7/d7.
Hence we find that the termβ4V can be approximated by
a constant values7/d7.

For this reason, instead of the termd4H, we can con-
sider the expressiond∗4H. The new coefficientd∗4 reflects
the loss of T helper cells caused by the apoptosis as well
as the increase of this lymphocytes due to the adminis-
trated vaccine. We would like to stress that the coefficient
d∗4 is the only parameter in both models which can take a
negative value. Finally, we obtain the following model:

Ṫ = a1T − α1TK − β1TL,

K̇ = s2 − dK − αKH + β2T,

L̇=−dL + αKH,

Ḣ = s4 − d∗4H + α4H[T − q4T
2]. (13)

We emphasize once more the differences between
these two models because formally they are the same. In
the case of the model with adoptive immunotherapy we
have s∗4 = s4 + v4, where v4 > 0, while in the case of
the model with active immunotherapyd∗4 = d4 − s7/d7,
where s7/d7 > 0. We want to study the behavior of the
solutions to the models when the coefficientsv4, s7 and
d7 change.

In Section 6 we perform numerical simulations for
Eqns. (11) and (13). However, to make a mathematical
analysis, we assume thatq4 = 0. Therefore, in Section 5
we consider the model with adoptive immunotherapy

Ṫ = a1T − α1TK − β1TL,

K̇ = s2 − dK − αKH + β2T,

L̇=−dL + αKH,

Ḣ = s∗4 − d4H + α4HT. (14)

and the model with active immunotherapy

Ṫ = a1T − α1TK − β1TL,

K̇ = s2 − dK − αKH + β2T,

L̇=−dL + αKH,

Ḣ = s4 − d∗4H + α4HT. (15)

5. Analysis of the Simplified Models

First, we study the existence, uniqueness and non-
negativity of solutions. We should stress that only nonneg-
ative solutions (corresponding to nonnegative initial data)
make biological sense.

In order to prove the uniqueness of solutions, we use
the Picard-Lindelöf theorem. To investigate the stability
of the solutions, we use the method of linearizations (Hart-
man, 1964).

Proposition 1. (Global existence and uniqueness.)If
the initial valuesT0, K0, L0 and H0 are nonnegative,
then there exist nonnegative, unique global solutions to
Eqns. (14) and (15).

Proof. We can outline the proof only for Eqn. (14), not-
ing that the corresponding proof for Eqn. (15) is the same.
The existence and uniqueness of solutions follows directly
from the Picard-Lindelöf theorem. Now we should prove
that the solutions are nonnegative for the nonnegative ini-
tial data.

Assume that(T (t),K(t), L(t),H(t)) is a solution
to (14). ThenT (t) satisfies the following integral equa-
tion:

T (t) = T0e
∫ t
0

(
a1−α1K(s)−β1L(s)

)
ds. (16)
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Since T0 ≥ 0, we haveT (t) ≥ 0 for t ≥ 0 for which
the solution exists.

From
K̇ ≥ −dK − αKH, (17)

we obtain

K(t) ≥ K0e
∫ t
0

(
−d−αH(s)

)
ds. (18)

If K0 ≥ 0, then we haveK(t) ≥ 0 for any t ≥ 0 for
which the solution exists.

Since
Ḣ ≥ H(−d4 + α4T ) (19)

and

H(t) ≥ H0e
∫ t
0

(
−d4+α4T (s)

)
ds, (20)

if the initial value H0 is nonnegative, then so isH(t).

From αKH ≥ 0 we have

L(t) ≥ L0e
∫ t
0 (−d) ds = L0e

−dt, (21)

and L(t) ≥ 0 for L0 ≥ 0 and t ≥ 0 for
which the solution exists. Therefore the solution
(T (t),K(t), L(t),H(t)) is nonnegative for nonnegative
initial data.

Consider the first equation of (14). It follows that

T (t) ≤ T0e
a1t. (22)

The right-hand side of (22) is bounded on any[0, t).
HenceT (t) is also bounded on[0, t).

Now consider the inequality

K̇ ≤ s2 − dK + β2T. (23)

It implies

K(t) ≤ e−dt
(
K0 +

∫ t

0

eds
[
s2 + β2T (s)

]
ds

)
. (24)

Using (22), we obtain

K(t) ≤ K0e
−dt + s2

d + T0
β2
d ea1t. (25)

Thus K(t) is bounded on any compact time interval.

We have
Ḣ ≤ s∗4 + α4HT, (26)

and

H(t) ≤
(
H0 + s∗4

∫ t

0

e−α4
∫ τ
0 T (s) dsdτ

)
eα4

∫ t
0 T (s) ds.

(27)

We use again (22) and obtain

H(t) ≤ (H0 + s∗4t)e
T0α4

a1
ea1t

. (28)

Thus H(t) is bounded on any[0, t).

The third equation of (14) can be estimated in the
following way:

L̇ ≤ dL + αKH. (29)

Hence

L(t) ≤ edt
(
L0 + α

∫ t

0

e−dsK(s)H(s) ds
)
. (30)

H(t) and K(t) are nonnegative and therefore (30) im-
plies thatL(t) is bounded on every[0, t). Thus the solu-
tion (T (t),K(t), L(t),H(t)) is global in time.

Equation (14) has three stationary points which are

A0=
[
0,

s2d4

dd4 + αs∗4
,

αs2s
∗
4

d(dd4 + αs∗4)
,
s∗4
d4

]
, (31)

A1=
[
pK1+q, K1,

αr

d
(a1−α1K1),

r(a1−αK1)
K1

]
, (32)

A2=
[
pK2+q, K2,

αr

d
(a1−α1K2),

r(a1−αK2)
K2

]
, (33)

where

K1 =
a1u + α1w + s∗4 +

√
∆

2α1u
,

K2 =
a1u + α1w + s∗4 −

√
∆

2α1u
, (34)

∆ =(−a1u + α1w + s∗4)
2 + 4a1s

∗
4u, (35)

u =α4pr, w = r(d4 − α4q),

p =
d(β1 − α1)

β1β2
, q =

a1d− s2β1

β1β2
, r =

d

αβ1
. (36)

Note that the new parametersu, p and r are always pos-
itive (cf. (1)). It is also easily seen that all coordinates
of the point A0 are nonnegative. It remains to check the
nonnegativity of the coordinates of the pointsA1 andA2.

Proposition 2. The coordinates of the pointA1 do not
satisfy the nonnegativity condition.

Proof. Consider the third coordinate ofA1.1 L1 is non-
negative if and only ifa1 − α1K1 ≥ 0, which leads to

a1u− α1w − s∗4 ≥
√

∆. (37)

1 The consecutive coordinates of the pointA1 are denoted byT1,
K1, L1 and H1, and those of the pointA2 by T2, K2, L2

and H2.
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Note that (37) is satisfied only ifa1u − α1w − s∗4 > 0.
Assuming this, we obtain the conditiona1us∗4 ≤ 0, which
is never satisfied. Therefore, the pointA1 does not sat-
isfy the basic condition of the nonnegativity of the coordi-
nates.

Proposition 3. The coordinates of the pointA2 are non-
negative if and only if

− a1d4pr

d4α1r + s∗4
≤ q <

d4

α4
. (38)

Proof. Proceeding similarly to the case ofL1, we obtain
that the coordinateL2 is positive. The coordinateK2 is
nonnegative if and only if

a1u + α1w + s∗4 ≥
√

∆. (39)

This yields a1u + α1w + s∗4 > 0. Squaring both sides
of (39), we obtaina1α1wu ≥ 0. This inequality is satis-
fied if and only if w ≥ 0, i.e.,q ≤ d4/α4. If w ≥ 0, then
a1u + α1w + s∗4 > 0. HenceK2 is nonnegative if and
only if q ≤ d4/α4.

H2 is nonnegative ifa1 − α1K2 ≥ 0 and K2 > 0,
or if a1 − α1K2 ≤ 0 and K2 < 0. The second case can
be rejected. The inequalitya1 − α1K2 ≥ 0 is satisfied.
ThereforeH2 ≥ 0 if and only if K2 > 0, i.e.,q < d4/α4.

T2 is nonnegative if and only ifpK2 + q ≥ 0. This
is certainly true whenq ≥ 0. Assume thatq < 0. The
inequality pK2 + q ≥ 0 leads to

a1u + α1w + s∗4 + 2α1α4qr ≥
√

∆, (40)

which is fulfilled only if a1u + α1w + s∗4 + 2α1α4qr >
0. Replacingw by r(d4 − α4q) and performing some
calculations, we obtain

q > −(
a1α4pr + d4α1r + s∗4

α1α4r
). (41)

This implies a1α4prq + α1qr(d4 − α4q) + s∗4q +
α1α4q

2r ≥ −a1d4pr + a1α4pqr. Hence

q ≥ − a1d4pr

d4α1r + s∗4
. (42)

Thus we obtain

d4

α4
> q, q > −a1α4pr + d∗4α1r + s4

α1α4r
,

and q ≥ − a1d
∗
4pr

d∗4α1r + s4
. (43)

Clearly, in this case

− a1d4pr

d4α1r + s∗4
> −a1α4pr + d∗4α1r + s4

α1α4r
.

Hence

− a1d4pr

d4α1r + s∗4
≤ q <

d4

α4
. (44)

Proposition 4. If

s∗4 >
dd4(s2α1 − a1d)
α(a1d− s2β1)

, (45)

then A0 is a stable node. If

s∗4 <
dd4(s2α1 − a1d)
α(a1d− s2β1)

, (46)

then A0 is a saddle.

Proof. The Jacobian for the pointA0 is as follows:
a1 − α1

s2d4
dd4+αs∗4

− β1
αs2s∗4

d(dd4+αs∗4) 0

β2 −α
s∗4
d4
− d

0 α
s∗4
d4

α4
s∗4
d4

0

0 0

0 −α s2d4
dd4+αs∗4

−d α s2d4
dd4+αs∗4

0 −d4

 . (47)

Hence the characteristic polynomial is

W0(λ) =
(

a1 −
α1s2d4

dd4 + αs∗4
− β1αs2s

∗
4

d(dd4 + αs∗4)
− λ

)

×
(
−αs∗4

d4
−d−λ

)
(−d−λ)(−d4−λ). (48)

W0(λ) has only real roots:

λ1 = a1 − α1
s2d4

dd4 + αs∗4
− β1

αs2s
∗
4

d(dd4 + αs∗4)
,

λ2 = −α
s∗4
d4
− d, λ3 = −d, λ4 = −d4.

It is obvious thatλ2, λ3, λ4 < 0. If λ1 < 0, then the point
A0 is a stable node. Ifλ1 > 0, then A0 is a saddle.

The sign of λ1 depends on the magnitude ofs∗4.
Consider the auxiliary function

f(s∗4) = a1 − α1
s2d4

dd4 + αs∗4
− β1

αs2s
∗
4

d(dd4 + αs∗4)
. (49)

The derivative of this function is always negative (because
α1 < β1). Thus the functionf(s∗4) is strictly decreasing,
and it is equal to zero if

s∗4 =
dd4(s2α1 − a1d)
α(a1d− s2β1)

.
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The case whenA0 is a stable node is good for the
patient. It is equivalent to a total recovery. WhenA0 is a
saddle, then the values ofK, L and H stabilize in time,
but the number of cancer cells increases. It is very harmful
for the patient. If the administrated vaccinev4 is greater
than dd4(s2α1−a1d)

α(a1d−s2β1)
− s4, then the patient has a chance for

a total recovery.

The task is now to examine the stability of the point
A2. The Jacobi matrix at this point is

−λ −α1T2 −β1T2 0

β2 −αH2−d−λ 0 −αK2

0 αH2 −d− λ αK2

α4H2 0 0 −d4+α4T2−λ

. (50)

The characteristic polynomial has the form

W2(λ) = λ4 + λ3

(
s∗4
H2

+ 2d + αH2

)

+ λ2

(
2d

s∗4
H2

+αs∗4+d2 + αdH2+α1β2T2

)

+ λ

(
α1β2dT2 + αβ1β2H2T2 + α1β2s

∗
4

T2

H2

+ dαs∗4T2+d2 s∗4
H2

+αα4K2H2T2(β1−α1)
)

+ T2

(
dα1β2s

∗
4

T2

H2
+αβ1β2s

∗
4T2

+αα4K2H2(β1 − α1)) . (51)

Our goal is to determine the signs of its roots. We start
with the observation that all the coefficients of this poly-
nomial are positive.

Using the Fourier theorem (Turowicz, 1967), we ob-
tain the following result:

Corollary 1. The characteristic polynomial (51) has no
nonnegative real roots. Moreover, it has exactly zero, two
or four negative, real roots.

Assume thatW2(λ) has complex roots. For simplic-
ity, denote byc3, c2, c1 and c0 the subsequent coeffi-
cients of (51). The polynomialW2(λ) can be represented
as a product of two polynomials of the second degree. We
have

W (λ) = (λ2 + m1λ + n1)(λ2 + m2λ + n2), (52)

where c3 = m1 + m2, c2 = m1m2 + n1 + n2,
c1 = n1m2 + n2m1 and c0 = n1n2.

It is easy to see that ifm1, m2, n1 and n2 are posi-
tive, then all the roots ofW2 have negative real parts. But
the situation whenm1 or m2 are negative is also possi-
ble. We assume thatm2 < 0. If the absolute value of
m2 is relatively small such that the following inequalities
hold:

c3 = m1 + m2 > 0,

c2 = m1m2 + n1 + n2 > 0,

c1 = n1m2 + n2m1 > 0, (53)

then the solution is unstable.

Corollary 2. The characteristic polynomial (51) always
has at least two roots which have negative real parts. The
point A2 is then stable or it is a saddle.

From a medical point of view, the stability of this
point means that the disease does not progress, but the pa-
tient is not definitely cured. The instability of this point
means that the immune system is unable to respond ade-
quately. The patient cannot reach the status of homeosta-
sis (Kuby, 1997).

We now turn to Eqns. (15). It is obvious that the sta-
tionary points are the same as for Eqns. (14).2 But now the
parameterd∗4 can have a negative value, so the nonnega-
tivity conditions for this point may have to be changed.

A necessary and sufficient condition for the nonneg-
ativity of all the coordinates of the pointA0 is d∗4 > 0. If
d∗4 = 0, then the stationary pointA0 does not exist. The
number of cancer cells, NK and LAK lymphocytes stabi-
lize, but the number of T helper cells increases and finally
reaches a size which can be dangerous for the patient, be-
cause T helper cells produce cytokinin which can be toxic
for the patient in large amounts (Kuby, 1997).

Proposition 5. The coordinates of the pointA1 do not
satisfy the nonnegativity condition. The coordinates of the
point A2 are nonnegative if and only if one of the follow-
ing systems of conditions is satisfied:

− a1d4pr

d4α1r + s∗4
≤ q <

d4

α4
and 0 < d∗4, (54)

−a1α4pr + d∗4α1r + s4

α1α4r
< q <

d4

α4

and − a1α4pr + s4

2α1r
< d∗4 < − s4

α1r
. (55)

Proof. If d∗4 ≥ 0, then the nonnegativity conditions of
A1 and A2 are the same as in (14). Assumingd∗4 < 0,
we haveL1 < 0 and L2 > 0. Hence we can exclude the

2 Instead ofs∗4 and d4 we haves4 and d∗4 , respectively.
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point A1. The coordinatesK2 andH2 are nonnegative if
w > 0, i.e., q < d4/α4. The task is now to find conditions
for the nonnegativity ofT2. From the analysis of (14) we
have that (43) has to be fulfilled. Clearly, it is necessary
that

d∗4
α4

>max
(
− a1α4pr+d∗4α1r+s4

α1α4r
,− a1d

∗
4pr

d∗4α1r+s4

)
, (56)

and therefore we assume thatd∗4α1r + s4 < 0. Now, we
obtain

−a1α4pr + d∗4α1r + s4

α1α4r
> − a1d

∗
4pr

d∗4α1r + s4
. (57)

Thus we see that the condition (56) is equivalent to the
conjunction of the conditions

d∗4
α4

> −a1α4pr + d∗4α1r + s4

α1α4r
and d∗4 < − s4

α1r
. (58)

The inequality

d∗4
α4

> −a1α4pr + d∗4α1r + s4

α1α4r

is satisfied if and only if

d∗4 > −a1α4pr + s4

2α1r
.

Finally, we obtain the condition (55).

Proposition 6. If d∗4 < 0, then A0 has negative coordi-
nates. If

0 < d∗4 <
αs4(s2β1 − a1d)
d(a1d− α1s2)

, (59)

then A0 is a stable node. If

d∗4 >
αs4(s2β1 − a1d)
d(a1d− α1s2)

, (60)

then A0 is a saddle.

Proof. Now we study the stability of the stationary points
as solutions to (15). Assume thatd∗4 > 0. The Jacobian
for the point A0 has only real eigenvalues. The eigen-
values λ2 = −αs4/d∗4 − d, λ3 = −d and λ4 = −d∗4
are always negative. Hence the stability of the pointA0

depends on the sign of the first eigenvalue

λ1 = a1 − α1
s2d

∗
4

dd∗4 + αs4
− β1

αs2s4

d(dd∗4 + αs4)
. (61)

If λ1 < 0, then A0 is a stable node. Ifλ1 > 0, then A0

is a saddle. We check the sign ofλ1 depending on the
value of d∗4. Consider the auxiliary function

f(d∗4) = a1 − α1
s2d4

dd4 + αs∗4
− β1

αs2s
∗
4

d(dd4 + αs∗4)
. (62)

The derivative of this function is always positive. There-
fore the functionf(d∗4) is strictly increasing and is equal
to zero if

d∗4 =
αs4(s2β1 − a1d)
d(a1d− α1s2)

.

The stability analysis for the pointA2 in the case of
Eqns. (15) is the same as for Eqns. (14). Thus we do not
repeat it.

Corollary 3. If one of the conditions (54) or (55) is sat-
isfied, thenA2 is a saddle or a stable point with all non-
negative coordinates.

While comparing the two models, we should draw
our attention to the fact that the case described by (14)
seems to be safer for the patient. Even the administra-
tion of a high dose of vaccine does not cause a loss of the
stability of the pointA0. In the next part of our paper, us-
ing numerical simulations, we try to answer the question
which type of immunotherapy leads to a quicker cancer
remission.

6. Numerical Simulations

We perform numerical simulations for the models (11)
and (13). First we intend to present the way in which we
obtain some parameters. In our simulations we consider
one day as the most natural time unit.

We assume that the time of one mitosis of a cancer
cell is between 48 and 72 hours depending on the ma-
lignancy of the cancer (Villasana, 2001). On this basis
we can estimate the range of the cancer proliferation rate.
Thus we obtaina1 ∈ [0.23, 0.35].

T helper cells make up about 28% of all lymphocytes
presented in peripheral blood3 (Traczyk, 1997). Since
in 1 mm3 of the blood of a healthy individual there are
about 2500 different lymphocytes, we obtain that there
are about700 T helper cells in w 1 mm3. We assume
that the initial number of T helper cells is700. The
lifetime of these lymphocytes is very fluent, sometimes
it may be even equal to10 years, but on average it is
5 years (Traczyk, 1997). Under this assumption we can
compute that the death coefficient of T helper cells is
d4 = 0.00055. Of course, in the case of the lack of foreign
antigens the concentrations of the lymphocytes are on bal-
ance. Thus we obtains4 = 0.38 (becauses4/d4 = 700).

NK lymphocytes make up from 10% to 30% of all
lymphocytes presented in the peripheral blood and the
medium range is about 15% (Jakóbisiak, 1995; Traczyk,
1997). But the number of NK cells increases with age.

3 All the quoted values are estimated and concern peripheral blood.



Analysis of immunotherapy models in the context of cancer dynamics 415

For example, for persons with the Down syndrome ageing
is much quicker than for healthy individuals and in these
patients the cancer disease is more frequent (Jakóbisiak,
1995). The cancer occurs mainly in old persons and hence
we assume that NK lymphocytes make up 20% of all lym-
phocytes presented in peripheral blood. Therefore, we ob-
tain that in 1 mm3 of blood in healthy persons there are
about 2500 · 20%, that is, 500 NK cells. In homeostasis
in peripheral blood where there is only a small number of
LAK cells, we assume that the initial value of LAK lym-
phocytes is 1.

The determination of parameterss2 and d is more
difficult, because the proper lifetime of NK cells is un-
known (Jakóbisiak, 1995). We assume that it is2 years
(Michałkiewicz, 2003) and hence we obtaind = 0.0014
and s2 = 0.68.

The parametersβ2 and α4 describe the cancer im-
munogenity. We assume that their values belong to the
interval [0, 0.05] (Kirschner and Panetta, 1998). We also
assume that the parametersα1, β1, α and q4 are equal
to 0.00001, 0.001, 0.0001 and 0.0004, respectively.

Before considering the effects of the treatment meth-
ods referred to in the above neoplastic process, let us see
how the immune system reacts when it identifies cancer
antigens but does not receive additional support in the
form of vaccine.

Figures 1 and 2 show the numbers of the particular
types of lymphocytes and cancer cells when the patient
does not receive treatment. In both cases it was assumed
that the number of cancer cells at the time when the im-
mune system identified their antigens is 1000 per 1 mm3.
After having recognized the tumor antigens, the organism
is able to overcome the tumor if the tumor does not pro-
liferate too quickly, as presented in Fig. 1. However, in
the case when the tumor proliferates very quickly, the or-
ganism cannot recover by itself even if the immunological
system recognizes the foreign antigens (as presented in
Fig. 2).

Let us now study how the population of cancer cells
changes if the patient’s immune system is supplemented
by the investigated vaccine. From now on we make our
numerical simulations for the cancer with a proliferation
coefficient equal to0.35.

Figures 3 and 4 show two simulations of cancer evo-
lution when a patient is locally administered a high dose
of T helper cells activated outside the patient’s body. Our
simulations indicate that when the patient receives vaccine
in the form of adoptive immunotherapy administered in a
continuous manner, it may overcome the tumor.

Performing the simulations of cancer evolution when
the patient is in active immunotherapy, we assume that
the coefficients2 is constant and equal to its physiolog-
ical value0.38. Now we change the value of parameter

Fig. 1. Simulation of the cancer behavior fora1 = 0.23.

Fig. 2. Simulation of the cancer behavior fora1 = 0.35.

d∗4. We assume that the administered vaccine may cause
an increased proliferation of T helper cells, by shortening
the time of the interphase between two consecutive mito-
sis phases, but the vaccine cannot make the proper time
of mitosis shorter.4 Therefore the absolute value ofd∗4
cannot be greater than0.6.

Figures 5 and 6 show two simulations of the can-
cer behavior when a patient is vaccinated to simulate the
proliferation of T helper cells. The vaccine is adminis-
tered in a continuous manner. The simulations show that
a proper application of active immunotherapy leads to a
recovery, although the final result strongly depends on the
right choice of the vaccine level. In Fig. 5 one can see
the simulation of the cancer behavior when the vaccine
level is not properly choosen. Although the cancer is fi-
nally eliminated, it is not satisfactory that before this hap-

4 The time of one cycle of mitosis is about thirty hours.
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Fig. 3. Simulation of the cancer behavior when adoptive im-
munotherapy is applied through a continuous five-day
administration of a high dose of helper T cells activated
outside the patient’s body (s∗4 = 380).

Fig. 4. Simulation of the cancer behavior when adoptive im-
munotherapy is applied through a continuous one-day
administration of a high dose of helper T cells activated
outside. The patient’s body (s∗4 = 760).

pens there are far too many cancer cells which may cause
metastasis.

A problem related to the treatment methods de-
scribed by us is the frequently significant increase in the
number of T helper cells in the final period of treatment.
Although the number of these lymphocytes returns to a
normal level in time, this occurs after a very long period
(Fig. 7).

The simulations conducted by us suggest at least a
partial solution to this problem. If the number of T helper
cells administered in the vaccine is increased and the du-
ration of the infusion is shortened, the subsequent increase
in the number of these lymphocytes is significantly lower
(Figs. 8 and 9).

Fig. 5. Simulation of the cancer behavior when active im-
munotherapy is based on a five-day administration of
vaccine stimulating the proliferation of T helper cells
(d∗4 = −0.2).

Fig. 6. Simulation of cancer behavior when active immunother-
apy is based on a two-day administration of vaccine
stimulating the proliferation of T helper cells (d∗4 =
−0.6.

7. Conclusions

The question arises which of the analysed treatment meth-
ods is better, i.e., which of them is more effective in de-
stroying the cancer and which is safer for patients. On the
basis of the results of all simulations it was found that the
optimal method of cancer treatment is the one leading to
a rapid rise in the level of T helper cells, but in which the
duration of administering the vaccine is as short as possi-
ble so as not to cause an excessive rise in the population
of T helper cells that may endanger the patient. Cytokines
produced by T helper cells are toxic also for normal cells.
A high number of T helper cells causes a high concentra-
tion of cytokines and may lead to self intoxication.
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Fig. 7. Simulation of the cancer behavior when adoptive im-
munotherapy is applied through a continuous five-day
administration.

Fig. 8. Simulation of the cancer evolution when adoptive im-
munotherapy is applied through a continuous fifteen-
hour administration of a very high dose of T helper cells
activated outside a patient’s body (s∗4 = 1140).

The analysis of the simulations shows that the
method of adoptive immunotherapy seems to better ful-
fil the hopes inspired by immunotherapy. When compar-
ing the effectiveness in terms of killing cancer cells, this
type of immunotherapy is presumably safer for the patient
since it causes the smallest increase in the number of other
lymphocytes. The simulations also show that the course of
active immunotherapy is highly dependent on the activity
of the vaccine and the proper time of its administration
(Figs. 5 and 6). The advantage of the adoptive over the
active immunotherapy can be seen by comparing Figs. 8
and 9.

The main problem in applying the presented models
is the determination of parameters used in these models. It
is difficult to obtain even such data as the average lifetime

Fig. 9. Simulation of the cancer evolution when active im-
munotherapy is based on a one-and-a-half-day admin-
istration of vaccine stimulating the proliferation of T
helper cells (d∗4 = −0.6).

of the particular types of lymphocytes or the intensity of
immune reactions in healthy subjects, not to mention data
for cancer patients. It should be emphasized, though, that
this is primarily because most of the necessary parameters
are difficult to measure.

The models should be improved to better reflect the
cancer evolution and its therapy using vaccine. It seems
to be a good modification to replace the square terms
describing the stimulations of individual groups of lym-
phocytes by a function in the Michaelis-Menten form
(Eqns. (5)–(7)). This type of kinetics was considered in
the paper (Mayeret al., 1995). Such changes would bring
our models closer to reality.

Another good modification of the presented models
can be extending them by including T suppressor lympho-
cytes, which are the lymphocytes responsible for the regu-
lation of the immune response. Taking them into account
could reduce the disadvantageous increase in some lym-
phocytes in the last part of treatment. We should mention
here that such modifications would probably make the sta-
bility analysis of stationary points impossible.

Although the presented models do not show all
the complicated physiological and patophysiological pro-
cesses, by describing their crucial factors they approach
the future methods of practically using the vaccinations in
cancer therapy.
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