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The paper reviews the basic mathematical methodology of modeling neutral genetic evolution, including the statistics of the
Fisher-Wright process, models of mutation and the coalescence method under various demographic scenarios. The basic
approach is the use of maximum likelihood techniques. However, due to computational problems, intuitive or approximate
methods are also of great importance.
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1. Introduction

The interaction of demography and genetics is of basic
importance for the genetic structure of human as well as
animal and plant populations. The impact is visible par-
ticularly in genetic epidemiology, as well as in physical
anthropology and molecular ecology. Genetic epidemiol-
ogy is a branch of science which is concerned with the
distribution and evolution of genetic diseases in human
populations. Many of these populations went through de-
mographic events such as bottlenecks, splits and admix-
tures (Weiss, 1993). The entire modern human popula-
tion resulted from a major expansion, which started 50–
100 thousand years ago (Relethford, 2001). These de-
mographic events resulted in an uneven distribution of
genetic disorders in different human populations. Typi-
cal examples are the occurrence of the mutation causing
the Tay–Sachs disease in Ashkenazi Jews (Weiss, 1993,
pp. 183–184), and the occurrence of diabetes in Amerindi-
ans (Weiss, 1993, Table 10.4). In addition, under suitable
assumptions, all individuals with a given disease muta-
tion can be considered a growing subpopulation originat-
ing from the individual in whom the original disease muta-
tion occurred. This observation helps in developing meth-
ods mapping disease genes (Kaplanet al., 1995; Pankratz,
1998).

Demography and genetics also are intertwined in
physical anthropology, which is concerned, among other

things, with the origins of modern humans. These studies
were in the past dominated by fossil evidence, which is
still playing an important role. However, the fossil record
is very spotty and recent approaches involve the examina-
tion of molecular markers to decipher past demographic
events that occurred in human populations. Among the
most important achievements of this methodology are the
demonstration that modern humans originated in Africa
(Cannet al., 1987) and the demonstration of genetic sig-
natures of the expansion of the modern human population
(Rogers and Harpending, 1992). Recent books by Releth-
ford (2001) and by Klein and Takahata (2002) provide a
detailed coverage of the topic.

Last but not least, very similar approaches are now
commonly employed in molecular ecology, which is con-
cerned with following the structure and dynamics of an-
imal and plant populations based on molecular mark-
ers. These approaches supplement the traditional con-
siderations of the dynamics of the coexistence of differ-
ent species drawing nutrients and energy from shared and
limited resources, predator-prey interactions and others.
Without detailed references, let us note that recent issues
of even a single journal, Molecular Ecology, provide ex-
amples of this approach.

In this paper, we focus on methodological issues con-
cerning the estimation of the influence of demography on
the genetic structure of populations. In last decades, there
has been observed an extensive development of mathe-



A. Polański and M. Kimmel348

matical models describing genetic evolution with its ba-
sic forces, mutation, genetic drift, recombination and se-
lection. Research in this area was evolving along several
paths:

1. Mathematical formulation of simplifying hypothe-
ses leading to the description of the genetic drift in
terms of the Fisher-Wright process, and the descrip-
tion of mutation as a Poisson process with appropri-
ate range assumptions. This allowed the derivation of
analytical expressions for the statistics of DNA poly-
morphisms at the mutation-drift equilibrium (Ewens,
1972; Felsenstein, 1981; Fu and Li, 1993a; Watter-
son, 1975; Griffiths, 1989).

2. Statistical verification of the validity of assumptions
of evolutionary neutrality that many models included
(Tajima, 1989; Fu and Li, 1993b).

3. Construction of estimators of model parameters (Fu
and Li, 1993a; Felsenstein, 1992; Griffiths and
Tavare, 1995; Kuhneret al., 1995).

4. Incorporation of various hypotheses concerning the
demographic structure, parameters and history of
populations. A number of modeling studies were
conducted concerning the evolution of populations
undergoing demographic events such as subdivi-
sions, admixture, and growth in size, in the course
of evolution (Bahlo and Griffiths, 2000; Beerli and
Felsenstien, 2001; Hudson, 1990; Kinget al., 2000;
Kuhneret al., 1998; Polanskiet al., 1998; Pybuset
al., 2000; Rogers and Harpending, 1992).

We proceed by introducing the basic mathematical
methodology for modeling neutral genetic evolution, in-
cluding the statistics of the Fisher-Wright process, mod-
els of mutation and the method of coalescence, and re-
viewing the recent results concerning interactions of ge-
netic forces and demography. Some of the recent results
are quite involved computationally. They employ Monte
Carlo and Markov chain simulations to obtain solutions
to model equations in the framework of the general time-
dependent coalescent process. However, the application
of efficient methods, like the Metropolis-Hastings sam-
pling algorithm, allows obtaining numerical results. Also,
some very useful approximations are known, which allow
the evaluation of demographic scenarios with simple com-
putational tools.

2. Interaction between Genetic Drift
and Mutation

DNA sequences passed from one generation to the next
are randomly chosen, and therefore some are left out. This

mechanism is called the genetic drift and is modeled by
the Fisher-Wright stochastic process, in which DNA in
the progeny generation is sampled with replacement from
a finite number of individuals of the parental generation.
Genetic drift shrinks the genetic diversity and eventually
would lead to a fixation of only one allele in the whole
population.

Mutation at the analyzed locus is assumed to follow
a Poisson process with intensityµ measured per locus
(per site) per generation. Spatial characterization of places
and the effects caused further specifies a mutation model.
Most often applied are the infinite sites model, in which it
is assumed that each mutation takes place at a DNA site
that never mutated before; the infinite alleles model, in
which each mutation produces an allele never present be-
fore in the population; the recurrent mutation model, in
which multiple changes of the nucleotide at a site are pos-
sible; and the stepwise mutation model, in which muta-
tion acts bidirectionally, increasing or reducing the num-
ber of repeats of a fixed DNA motif. Mutation introduces
new alleles in the population, and so it increases the diver-
sity. Genetic drift and mutation act in opposite directions,
and their interaction results in the observed distributions
of quantities that describe the genetic structure of the pop-
ulation, like the numbers of pairwise differences, numbers
of segregating sites, frequencies of alleles, and so forth. In
many cases, this interaction leads to balance distributions
which are invariant in time.

The most efficient way of analyzing and modeling
the joint effects of the genetic drift and mutation is through
the use of the coalescence approach. In this approach, one
considers the past history of ann-sample of sequences
taken at present. Possible events that happened in the past
are coalescences leading to common ancestors of the se-
quences, and mutations along branches of the ancestral
tree. The coalescent process can be defined as a compo-
sition of a pure death Markov process and a jump chain
(Kingman, 1982; Tavare, 1997; Nordborg, 2001). The use
of coalescence theory allows the formulation of models
and provides a basis for hypotheses testing or parameter
estimation.

An example of an ancestral tree forn = 5 DNA
sequences, labeled with numbers1, 2, . . . , 5, is given in
Fig. 1. This figure also introduces the notation to be sub-
sequently used. The topology of the tree is defined by the
configuration of branches and nodes. The nodes are com-
mon ancestors of sequences in the sample. The root of the
tree is the most recent common ancestor (MRCA) of all
sequences in the sample. Mutations that occurred in the
course of the evolution of DNA sequences are denoted by
open circles. There are6 mutations labeled with numbers
1, 2, . . . , 6. The tree is also characterized by the times in
the coalescent process. Random coalescence times for the
sample of sizen are denoted byTn, Tn−1, . . . , T2, and
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their realizations bytn, tn−1, . . . , t2. The times between
the coalescence events and their realizations are denoted
by Sn, Sn−1, . . . , S2, and sn, sn−1, . . . , s2, respectively.
As seen in Fig. 1, the coalescence timesTn, Tn−1, . . . , T2

are measured backwards: from the present to the past.

The tree depicted in Fig. 1 provides a model of evo-
lution that led to DNA sequences1, 2, . . . , 5. However,
this model is not directly observed. Many ancestral trees
may lead to the same DNA sequence data. The data for in-
ference on the population evolution and parameters look
like those shown in Fig. 2, where the structure of muta-
tions in sequences consistent with the tree from Fig. 1 is
presented. Labels for the samples and mutations are the
same as in Fig. 1. An infinite sites model of mutations is
assumed, so that all mutations that happened in the history
since the MRCA are seen in the sample.

Fig. 1. Ancestral tree of five DNA sequences.

Fig. 2. DNA sequences1, 2, . . . , 5 with mutations1, 2, . . . , 6.
A sample of such a structure of mutations will be ob-
served if the sequences evolve as shown in Fig. 1.

3. Statistical Inference on Demographic
Hypotheses and Parameters

The basic method for statistical inference on demographic
hypotheses and parameters is the computation of likeli-
hoods. If we denote byD the data (set of DNA se-
quences), and byG the genealogy, the latter including
both the topology and coalescence times in the ancestral
tree, then the likelihood of the sample,P (D), can be
written as

P (D) =
∫
{G}

P (D|G) dP (G), (1)

where P (D|G) is the conditional probability of the data
given a genealogy,P (G) denotes the probability of the
genealogy and{G} denotes the set of all possible ge-
nealogies. The conditional probabilityP (D|G) is com-
puted as the product of Poisson probabilities (Tavare,
1997; Nordborg, 2001). When computingP (G), the hy-
pothesis of the independence of the metrics (coalescence
times) and the topology is used. Topologies of trees (with
ordered branches) are all equally probable. Distributions
of metrics (branch lengths) of trees are determined by the
coalescence process, which depends on demographic hy-
potheses and population parameters. Probability density
functions for lengths of ancestral tree branches, for three
cases of demographic scenarios, homogeneous constant
size population, a variable size population, and a popula-
tion with geographic structure, are provided below.

3.1. Homogeneous Population of a Constant Size

For the case of a homogeneous population of a
constant size, the times between coalescence events,
Sn, Sn−1, . . . , S2, are independent random variables
which are distributed exponentially. Basic parameters are
the mutation intensityµ and the population’s effective
size N . The probability distribution function (pdf) de-
pends on the composite parameterθ = 4µN, and has the
following form (Watterson, 1975; Fu and Li, 1993a):

p(s2, . . . , sn) =
n∏

k=2

(
k
2

)
θ

exp(−
(
k
2

)
θ

sk), (2)

where (k
2) is the binomial symbol. The mutational

time scale t = 2µτ is used to measure times
Sn, Sn−1, . . . , S2 ( τ is time in the numbers of genera-
tions). In the mutational time scale, the intensity of the
mutation process becomes1/2. The exponents(k

2)/θ are
the intensities of the coalescence process, which change
after each coalescence event.



A. Polański and M. Kimmel350

3.2. Population with Time-Varying Size

The mutational time scale is used analogously as in the
previous paragraph. If the population’s effective size
N(t) changes in time, then the composite parameter is
also a time functionθ(t) = 4µN(t). The times be-
tween the coalescence events,Sn, Sn−1, . . . , S2, are no
longer independent. It is more convenient to write the ex-
pression for the distribution in terms of coalescence times
Tn, Tn−1, . . . , T2. The joint probability density function
becomes (Griffiths and Tavare, 1994; Kuhneret al., 1998)

p(t2, . . . , tn) =
n∏

k=2

(
k
2

)
θ(tk)

exp

(
−
∫ tk

tk+1

(
k
2

)
dσ

θ(σ)

)
, (3)

where t2 ≥ t3 ≥ · · · ≥ tn, tn+1 = 0.

3.3. Geographic Structure

There areM subpopulations. We assume that their ef-
fective sizesN1, N2, . . . , NM are constant. Composite
parameters areθm = 4µNm, m = 1, 2, . . . ,M . A new
type of events that can happen in the past regards migra-
tions between subpopulations. The intensity of the migra-
tion process from subpopulationj to subpopulationi, per
sequence and per generation, is denoted bymji. The ra-
tios of migration and mutation intensities are denoted by
mji = mji/µ. An example of a genealogy forM = 2
populations with migration events in the past is shown in
Fig. 3. The migration events are represented by horizontal
arrows.

The expression for the pdf of ancestral tree metrics
can be written conditionally on the sequence of events that
happened in the past. It takes the following form (Beerli
and Felsenstein, 2001; Bahlo and Griffiths, 2000; Hudson,
1990):

p(u) =
T∏

k=1

[
δkmwk,vk + (1− δk)

(nwk
2 )
θj

]
(4)

× exp

−uk

s∑
j=1

(nkj

2

)
θj

+ nkj

s∑
m6=j

mjm

 .

In the above expressionT is the number of the
events that happened in the past,u = [u1, . . . , uT ] is the
vector of times (the mutational time scale is used again)
between events, as depicted in Fig .3;nkj denotes the
number of lineages in subpopulationj in the time interval
k; s is number of non-empty (nkj > 0) subpopulations
during the time intervalk; δk is an indicator variable of
the type of event, equal to one if the event at the bottom
of interval k is a migration, or equal to zero if it is coa-
lescence;wk, vk is a pair of indices denoting migration
from populationw to populationv at time uk; and wk

denotes coalescence in populationw at time uk.

Fig. 3. Example of an ancestral tree for two populations
with possible migrations.

3.4. Monte Carlo Markov Chain (MCMC) Methods

Generally, it is not possible to perform the integration in
Eqn. (1) directly, due to a large number of genealogies.
Instead, Monte Carlo techniques are employed. The most
straightforward Monte Carlo approach is as follows:

1. Generate a random ancestral tree with the number of
leaves equal to the number of the analyzed DNA se-
quences.

2. Introduce random mutations according to the Poisson
process.

3. Compute an approximate value ofP (D) by repeat-
ing Steps 1 and 2, and summing over the condi-
tional probabilities of the data, given the generated
genealogies.

However, this approach is highly inefficient, espe-
cially for larger data sets, because among the very large
number of ancestral trees, most are very improbable or
impossible given data. For the infinitely many sites model
of mutations, the above random simulation procedure will
typically lead to DNA sequences with a mutation structure
inconsistent with data and, therefore, with zero probabil-
ity. Feasible mutation patterns will be encountered very
rarely. For the recurrent mutation model the situation is
similar. The probabilities are greater than zero, but typi-
cally very small, so they do not contribute substantially to
the sum approximatingP (D).

The above problem can be solved by confining the
domain of sampling genealogies to those with sufficiently
high posterior probabilities. For the infinitely many sites
model, the methods of defining all trees consistent with
data, under different hypotheses concerning the popula-
tion evolution, were elaborated by Griffiths (1989), and
Griffiths and Tavare (1995) (a constant population size),
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Griffiths and Tavare (1994) (a time-varying population
size), and Bahlo and Griffiths (2000) (a geographic struc-
ture with possible changes of sizes of subpopulations).
For recurrent mutations, the first step of the numerical pro-
cedure is the reconstruction of the maximum likelihood
tree. The most likely tree is found by a partly heuristic
algorithm (Felsenstein, 1981). Then the likelihood of the
DNA sample is computed by introducing random changes
in the tree topology and summing over the generated trees.
An algorithm for a constant population size was given by
Kuhneret al. (1995), for a time variable population size
by Kuhneret al. (1998), and for a geographically struc-
tured population by Beerli and Felsenstein (2001).

In order to account properly for tree probabilities
and to avoid generating improbable trees, the Metropolis-
Hastings sampling scheme (Metropoliset al., 1953; Hast-
ings, 1970) is used, with the states of the Markov chain
defined as corresponding to possible ancestral trees. Ap-
propriate transmission rules enforce the reversibility of the
defined Markov chain, and the desired values of its sta-
tionary probabilities.

Computer software is available via the Internet for
algorithms described in the above mentioned papers. For
example, given the data set shown in Fig. 2, the likelihood
curve for the parameterθ, under a constant population
size model, can be computed using the program Genetree
(Bahlo and Griffiths, 2000). The result is shown in Fig. 4.
From Fig. 4 the maximum likelihood estimate of the pa-
rameterθ is θ̂ = 3.73.
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Fig. 4. Likelihood curve for the parameterθ under the con-
stant population size hypothesis, for the sample shown
in Fig. 2 obtained with the use of the program Genetree.

4. Approximate Approaches

Despite high computation power and the use of high ef-
ficiency algorithms, the maximum likelihood techniques
may be difficult or impossible to apply for large DNA

samples. Also, methods which are strictly numerical give
little insight into the understanding of the relations be-
tween model parameters and outcomes of computations.
Therefore the techniques based on approximations and
simplifications are an important and promising area of re-
search.

Under the assumption that the population is ho-
mogeneous and remains constant in size in the course
of its evolution, estimates of the composite parameter
θ = 4µN were proposed by several authors under var-
ious hypotheses on the mutation model (Ewens, 1972;
Felsenstein, 1992; Fu and Li, 1993a; Watterson, 1975).
By conditioning the Poisson process on branch lengths
Sn, Sn−1, . . . , S2, it is easy to write an expression for the
probability generating function (pgf) for the number of all
mutationsNS (segregating sites) in the sample ofn se-
quences, under the infinite sites mutation model. It takes
the following form, related to the sum of independent geo-
metric distributions (Fu and Li, 1993a; Watterson, 1975):

PNS
(z) = E(zNS ) =

n∏
k=2

1
1 + θ

k−1 − z θ
k−1

. (5)

From (5) the expectationE(NS) is

E(NS) = θ
n∑

k=2

1
k − 1

, (6)

so a simple estimate of the product parameterθ (called
the Watterson estimate) is

θ̂W = (observedNS) /
n∑

k=2

1
k − 1

. (7)

Another estimate is based on the number of pair-
wise differencesDP . We defineDP (i, j) as the number
of differences seen when comparing a pair of sequences:
numberi and j, and DP as the average number of pair-
wise differences in the sample. For example, in Fig. 2 we
haveDP (1, 2) = 1, DP (2, 4) = 5, and DP = 3.0. The
distribution of DP (a geometric distribution) is a special
case of (5), forn = 2, and the expected value ofDP is
E(DP ) = θ, which gives Tajima’s estimate

θ̂T = observedDP . (8)

For the data of Fig. 2, we havêθW = 2.88 and
θ̂T = 3.0, which do not differ drastically from the maxi-
mum likelihood estimatêθ = 3.73 from Fig. 4. However,
it can be demonstrated (Felsenstein, 1992) that bothθ̂W

and θ̂T have significantly larger variances than the maxi-
mum likelihood estimate. A good and yet simple estimate
of θ was obtained in (Fu and Li, 1993a) based on linear-
quadratic techniques. It was shown that the proposed es-
timate, for largen, becomes equivalent to the maximum
likelihood estimate.
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For the time varying population size, several approxi-
mate approaches to estimatingθ(t) were also proposed in
the literature. Assuming the infinite sites mutation model,
simple estimates of the time functionθ(t) were obtained
based on the statistics of pairwise differencesDP . A co-
alescence intensity function for pairs is a special case of
(3), with n = 2, t = t2 and

p(t) =
1

θ(t)
exp

[
−
∫ t

0

dσ

θ(σ)

]
. (9)

Combining (9) with the Poisson distribution, one can
get the following expression for the pgf of the number of
pairwise differencesPDP

(z),

PDP
(z) =

∫ ∞

0

exp[(z − 1)t]p(t) dt. (10)

The exponential term in the integral is the pgf of
the Poisson distribution. In the paper (Rogers and Harp-
ending, 1992), a method for fitting the parametric sce-
nario of a stepwise change in the effective population
size at timets before now, based on Eqns. (9) and (10),
was developed. This method used for data on worldwide
pairwise differences between samples of mitochondrial
DNA (Cannet al., 1987) produced the estimate of the hu-
man population effective size historyθpresent = 410.69,
θancestral= 2.44, and ts = 7.18. A nonparametric method
for inferring θ(t), based on (9) and (10), was shown in
(Polanskiet al., 1998). This method uses the observa-
tion that estimation ofθ(t) can be understood as a two-
step inverse problem defined by the relations (9) and (10).
Computingp(t) from PDP

(z), by virtue of (10), can be
formulated as an inversion of the Laplace transform (Bell-
manet al., 1966), while the inverse relation for computing
θ(t) from p(t) follows from the standard definition of the
hazard function (Cox and Oakes, 1984):

θ(t) =

∫∞
t

p(σ) dσ

p(t)
. (11)

In Fig. 5 data on pairwise differences between the se-
quences of mitochondrial DNA from (Cannet al., 1987)
are presented together with the resulting estimates ofθ(t)
from (Rogers and Harpending, 1992; Polanskiet al.,
1998). Both the estimates predict a sharp increase in the
human population size at approximately7 units of the
mutational time ago (60000–120000 years), which may
correspond to a known fossil evidence (Rogers and Harp-
ending, 1992).

The detection of a population expansion under a step-
wise mutation model was studied in (Kimmelet al., 1998;
King et al., 2000). Let us assume that the data at the Short
Tandem Repeat (STR) locus areX1, X2, . . . , Xn, where
Xi is the number of repeats of a short motif at thei-th
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Fig. 5. Top panel: data on pairwise differences between the se-
quences of mitochondrial DNA from (Cannet al., 1987).
Bottom panel: the resulting estimates ofθ(t) from
(Polanskiet al., 1998; Rogers and Harpending, 1992).

chromosome in the sample. Then the estimates of the ge-
netic varianceV (t) = E[Xi −Xj ]2 and the average ho-
mozygosityP0(t) = P [Xi −Xj = 0] are

V̂ =
2

n− 1

n∑
i=1

(Xi − X̄)2 (12)

and

P̂0 =
n
∑

k∈K

p2
k − 1

n− 1
, (13)

whereK is the set of allele sizes represented in the sam-
ple. Generally, the statisticsV (t) and P0(t) depend on
the genealogical time. In the case of a constant size popu-
lation, in the limit we have

V (∞) = θ (14)

and

P 2
0 (∞) =

1
1 + 2θ

. (15)

The expressions (14) and (15) lead to two different
estimators ofθ, θ̂V = V̂ and θ̂P0 = 1

2 (P̂−2
0 −1). Based
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on these estimators, the following imbalance index was
proposed in (Kinget al., 2000):

β(t) =
θV

θP0

=
2V (t)

P−2
0 − 1

. (16)

Its value can be estimated from data by using the expres-
sions (12) and (13). From the expressions (14) and (15) it
follows that β is equal to1 for constant-size populations
in the equilibrium state. When the population is grow-
ing, β assumes values less than1. In (Kimmel et al.,
1998), with the use of the introduced imbalance index, it
was demonstrated that the available data on short tandem
repeats in the human genome are consistent with the past
expansion of the population of modern humans.

An approach to the demographic inference, based
on the idea of using (3) as if coalescence times
tn, tn−1, . . . , t2 were known, was presented in (Pybus
et al., 2000). The same idea was earlier described in
(Felsenstein, 1992) for a constant population size. Under
this assumption maximum likelihood estimates (paramet-
ric or non-parametric) ofθ(t) are obtained by maximiz-
ing p(tn, tn−1, . . . , t2). Under the exponential scenario
of the population expansion

θ(t) = θ0 exp(−ρt), (17)

the maximum likelihood paradigm leads to the parameter
estimates

θ̂0 =

n∑
j=2

(j − 1)(exp(ρ̂tj)− 1)

ρ̂(n− 1)
(18)

and

ρ̂ = arg max

×

(n−1) ln


n∑

j=2

(j−1)
(
exp(ρtj)−1

)
ρ(n− 1)

+ρ

n∑
j=2

tj

. (19)

The maximization of one-parameter function (19) can be
accomplished numerically. Estimates of the population
parameters of the type (17)–(19) can be used to compute a
lower bound of estimate variances or to study the sources
of biases in estimation. They also can be applied jointly
with intuitive methods of the estimation of coalescence
times tn, tn−1, . . . , t2, such as UPGMA (Swofford and
Olsen, 1990). In (Pybuset al., 2000), an application of
this method to inferring patterns of growth in populations
of HIV viruses was presented.

5. Discussion

With the recent advance in molecular biology, experi-
mental data are becoming abundant and easily available.

Publicly available data sets grow in the number and size.
There is as increasing need for efficient tools for the anal-
ysis of these data, which stimulates the development of
models and algorithms like these shown in this paper. Fit-
ting mathematical models to genetic data has helped in
verifying, confirming or questioning hypotheses concern-
ing demographic scenarios or proposing new explanations
of the data.

Evaluating reliable values for parameters of models
of genetic forces, intensities of mutation and recombina-
tion processes, and effective populations sizes is of ba-
sic importance to many aspects of the analysis of genetic
data (Li, 1997). For example, when estimating the age of
mutant alleles (Serreet al., 1992) or veryfying the exis-
tence of a positive selection in favor of the allele (Sabeti
et al., 2002), hypothetic values of the parameters of ge-
netic forces are employed and conclusions of the studies
highly rely on the assumed numbers.

A significant portion of the literature concerning the
population genetics focuses on developing methods for
computing likelihoods for a given configuration of DNA
sequence data. This leads to stochastic simulations and
MCMC methods. These methods depend on high compu-
tational power and efficient algorithms. They are capable
of processing the ever growing sets of data.

Nevertheless, more intuitive approximate approaches
seem to gain in importance. In particular, it is the intensive
development of these approaches prompted by the need
for the analysis of several genetic forces and demographic
scenarios acting in parallel. The intuitive understanding
of the interaction between genetic forces and demographic
scenarios comes from approximate approaches with many
simplifying assumptions.

The final conclusion which follows from this paper is
that both directions of the research presented here are nec-
essary to facilitate the development of appropriate tools of
the DNA data analysis.
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