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We consider a general class of mathematical models P for cancer chemotherapy described as optimal control problems over
a fixed horizon with dynamics given by a bilinear system and an objective which is linear in the control. Several two- and
three-compartment models considered earlier fall into this class. While a killing agent which is active during cell division
constitutes the only control considered in the two-compartment model, Model A, also two three-compartment models,
Models B and C, are analyzed, which consider a blocking agent and a recruiting agent, respectively. In Model B a blocking
agent which slows down cell growth during the synthesis allowing in consequence the synchronization of the neoplastic
population is added. In Model C the recruitment of dormant cells from the quiescent phase to enable their efficient treatment
by a cytotoxic drug is included. In all models the cumulative effect of the killing agent is used to model the negative effect
of the treatment on healthy cells. For each model it is shown that singular controls are not optimal. Then sharp necessary
and sufficient optimality conditions for bang-bang controls are given for the general class of models P and illustrated with
numerical examples.
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1. Introduction

Mathematical models for cancer chemotherapy have a
long history (see, e.g., (Eisen, 1979; Martin, 1992; Swan,
1990)). In the past years there has been renewed inter-
est in these models (Fister and Panetta, 2000; Ledzewicz
and Schättler, 2002b), partially due to better modeling ca-
pabilities, but also due to a refinement of the techniques
which can be used to estimate the necessary control pa-
rameters and to analyze the problems. In this paper we
consider a specific class of mathematical models based on
cell-cycle kinetics which was introduced by Kimmel and
Świerniak (Kimmel and́Swierniak, 1983;́Swierniak and
Kimmel, 1984) and has been analyzed in numerous pa-
pers (Ledzewicz and Schättler, 2002a; 2002b;Świerniak
and Duda, 1995;́Swierniaket al., 1992; 1996), from both
the numerical and theoretical perspectives. Here we give a
review of some of these results, extend them to a broader
class of models and outline some open questions.

The model is based on cell-cycle kinetics and treats
the cell cycle as the object of control (Świerniak, 1995).
The cell cycle is modeled in the form of compartments
which describe different cell phases or combine phases of
the cell cycle into clusters. Each cell passes through a se-
quence of phases from cell birth to cell division. The start-
ing point is the growth phaseG1 after which the cell en-
ters the phaseS, where the DNA synthesis occurs. Then
the second growth phaseG2 takes place in which the cell
prepares for mitosis or phaseM . Here cell division oc-
curs. Each of the two offspring cells can either reenter the
phaseG1 or may simply lie dormant for some time in a
separate phaseG0 until reenteringG1, thus starting the
entire process all over again.

The simplest mathematical models which describe
the optimal control of cancer chemotherapy treat the en-
tire cell cycle as one compartment (Świerniak, 1994), but
solutions to these single compartment models are not very
informative due to the over-simplified nature of the model.
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Of the more detailed multi-compartment models, the sim-
plest and at the same time most natural ones, are still mod-
els which divide the cell cycle into two and three compart-
ments (́Swierniaket al., 1996). In these models theG2

and M phases are combined into one compartment. In
the two-compartment modelG0, G1 andS form another
compartment while different three-compartment models
arise by separating the synthesis phaseS or the dormant
stageG0 for the three-compartment model. The purpose
of this division is to effectively model various drugs used
in chemotherapy like killing agents, blocking agents or re-
cruiting agents.

The first class is represented byG2/M specific
agents, which include the so-called spindle poisons like
Vincristine, Vinblastine or Bleomycin, which destroy a
mitotic spindle (Calabresi and Schein, 1993), and Taxol
(Fister and Panetta, 2000) or 5-Fluorouracil (Chabner and
Longo, 1996), affecting mainly cells during their divi-
sion. Killing agents also includeS specific drugs like
Cyclophosphamide (Fister and Panetta, 2000) and Metho-
traxate (Panettaet al., 2002a), acting mainly in the DNA
replication phase, or Cytosine Arabinoside-Ara-C, rapidly
killing cells in phaseS through the inhibition of DNA
polymerase by competition with deoxycytosine triphos-
phate (Colyet al., 1984). Among the blocking drugs
we can distinguish antibiotics like Adriamycin, Dauno-
mycin, Dexorubin, Idarudicin, which cause the progres-
sion blockage on the border between the phasesG1 and
S by interfering with the formator of the polymerase com-
plex or by hindering the separation of the two polynu-
cleotide strands in the double helix (Alison and Sarraf,
1997). Another blocking agent is Hydroxyurea – HU (Di-
brov et al., 1986; Lyss, 1992), which is found to syn-
chronize cells by causing brief and invisible inhibition
of the DNA synthesis in the phaseS and holding cells
in G1. The recruitment action was demonstrated (An-
dreef et al., 1992) for Granulocyte Colony Stimulating
Factors – G-CSF, Granulocyte Macrophage Colony Stim-
ulating Factors – GM-CSF, Interleukin-3 – Il-3, espe-
cially when combined with the Human Cloned Stem Cell
Factor – SCF.

This classification of anticancer agents is not quite
sharp and there is some controversy in the literature con-
cerning both the site and the role of the action of some
drugs. For example, in spite of being active mostly in
specific phases, Cyclophosphamide and 5-Fluorouracil
kill cells also in other phases of the proliferation cy-
cle, which enables us to treat them as cycle specific
agents (Bonadonnaet al., 1995; Calabresi and Schein,
1993). On the other hand, some antimitotic agents like
curacin A (Kozuskoet al., 2001) act by increasing theS
phase transition (blocking) and decreasing theM phase
transition.

Killing agents which we consider in our model are
used in theG2/M phase, which makes sense from a bio-
logical standpoint for a couple of reasons. First, in mitosis
M the cell wall becomes very thin and porous. Hence the
cell is more vulnerable to an attack, while there will be a
minimal effect on the normal cells. Second, chemotherapy
during mitosis will prevent the creation of offspring cells.
While the killing agent is the only control considered in
the two-compartment model A below, in Model B a block-
ing agent is additionally considered which slows down the
development of cells in the synthesis phaseS and then
releases them at the moment when anotherG2/M spe-
cific anticancer drug has a maximum killing potential (the
so-called synchronization (Brown and Thompson, 1975)).
This strategy can have the additional advantage of protect-
ing the normal cells, which would be less exposed to the
second agent (e.g., due to a lesser dispersion and a faster
transit throughG2/M ) (Agur et al., 1988; Dibrovet al.,
1985). This cell cycle model includes separate compart-
ments for theG0/G1, S and G2/M phases.

One of the major problems in the chemotherapy of
some leukemias is constituted by the large residuum of
dormant G0 cells, which are not sensitive to most cy-
totoxic agents (Chabner and Longo, 1996; Holmgrenet
al., 1995; Luzziet al., 1998). Similar findings for breast
and ovarian cancers were reported, e.g., in (Clareet al.,
2000; Fister and Panetta, 2000). As indicated by these au-
thors, the insensitivity of dormant cells to the majority of
anticancer drugs and the percentage of tumor mass rest-
ing is a fact which, if ignored, leads not only to clinical
problems but also to some erroneous theoretical findings.
Experiments with Ara-C (Colyet al., 1984) indicated that,
while double injected during a cell cycle or combined with
Adriamycin or anthracyclines, it led to a serious reduc-
tion in the leukemic burden without an evident increase
in the negative effect on normal tissues. This therapeutic
gain was attributed to the specific recruitment inducing ef-
fect of Ara-C on leukemic cells in the dormant phase. It
became possible to efficiently recruit quiescent cells into
the cycle using cytokines (Andreefet al., 1992; Tafuri and
Andreeff, 1990) (substances playing a role in the regu-
lation of normal the hemopoiesis) like G-CSF, GM-CSF,
and especially Il-3 combined with SCF. Then, a cytotoxic
agent like Ara-C or anthracyclines may be used. Model C
below uses separate compartments for theG0, G1 and
S + G2/M phases and includes such a recruiting agent.
Moreover, it also enables an analysis of the alteration of
the transit time through theG0 phase due to the feed-
back mechanism recruiting the cells into the cycle when
chemotherapy is applied. In a similar way, we can model
other types of manipulation of the cell cycle as, e.g., the
use of triterpenoids to inhibit proliferation and to induce
differentiation and apoptosis in leukemic cells (Konopleva
et al., 2002).
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In Models A–C considered here the problem of find-
ing an optimal cancer chemotherapy protocol is formu-
lated as an optimal control problem over a finite time-
interval being the fixed therapy horizon. The state vari-
able is given by the average number of cancer cells and
the control is the effect of the drug dosages on the respec-
tive subpopulation. The goal is to maximize the number
of cancer cells which the agent kills and to appropriately
minimize the number of cancer cells at the end of the ther-
apy session, while keeping the toxicity to the normal tis-
sues acceptable. The last aspect is modeled implicitly by
including an integral of the control over the therapy inter-
val in the objective so that minimizing controls will have
to balance the amount of drugs given with the conflicting
objective to kill cancer cells.

In this paper we formulate and analyze a general
mathematical model P which has an arbitrary number of
compartments. The models mentioned above all fall into
this class and other compartmental models whose dynam-
ics arise from balance equations with constant transition
rates will fit this class as well. For example, more compli-
cated models involving drug resistance match this frame-
work with the extra compartments representing various
levels of drug resistant sub-populations of cancer cells.
Analyzing the general model P has the obvious advantage
that the mathematics which is common to all these mod-
els only needs to be carried out once. But, clearly, for a
complete analysis of the problems, specific forms of the
data for the models (matrices, parameters, etc.) need to be
then taken into account.

Analytical approaches to these models are based on
applications of the Pontryagin Maximum Principle (Pon-
tryagin et al., 1964), which results in both bang-bang
and singular controls as candidates for optimality. While
bang-bang controls corresponds to treatment protocols
which alternate maximum doses of chemotherapy with
rest periods when no drug is administered, singular con-
trols correspond to applying varying doses at less than
their maximum. Bang-bang controls, which are widely
used as protocols in medical treatments, are the more nat-
ural choice as candidates for optimality, and it even has
been observed numerically that singular protocols actually
give the worst performance (Duda, 1994; 1997;Świer-
niaket al., 1996). In the papers (Ledzewicz and Schättler,
2002a; 2002b) singular arcs were indeed excluded from
optimality for Models A and B with the use of high-order
necessary conditions for optimality. In this paper we ex-
tend these results to Model C. This result seems to be im-
portant from a practical point of view since it indicates
that in the case of cell recruitment bang-bang protocols
should be considered as optimal strategies. Once singular
controls are excluded from optimality, bang-bang controls
become the natural candidate. However, the Maximum
Principle only gives first order necessary conditions for

optimality and therefore the trajectories it identifies may
not be optimal. In fact, some of them, like the singular
arcs for Models A–C, are maximizing rather than mini-
mizing ones. In (Ledzewicz and Schättler, 2002a), exam-
ples of both optimal and non-optimal bang-bang controls
are given for Model A. It is therefore important to further
investigate the optimality of these candidates. While the
analysis of singular controls in Section 3 depends on the
matrices in the dynamics and thus necessarily is model
specific, in Section 4 we formulate an algorithm for the
general model P which allows us to determine whether
or not a bang-bang control which satisfies the conditions
of the Maximum Principle is locally optimal, cf. Theo-
rems 2 and 3, respectively. For Models A–C considered
in this paper, the general structure simplifies somewhat
because of special properties of the matrices in the mod-
els and the simplified formulas are given in Corollary 2.
The algorithm as presented applies to any model which
fits the general class P.

2. Mathematical Models for Cancer
Chemotherapy

We formulate a generaln-compartment model for cancer
chemotherapy as an optimal control problem over a fixed
therapy interval with dynamics described by a bilinear
system. LetN = (N1, . . . , Nn)T denote the state-vector
with Ni denoting the number of cancer cells in thei-th
compartment,i = 1, . . . , n. The control is a vectoru =
(u1, . . . , um)T with ui denoting the drug dosage admin-
istered. The control setU is a compactm-dimensional
interval of the form[α1, β1]× · · · × [αm, βm] with each
interval [αi, βi] ⊂ [0,∞). Let A and Bi, i = 1, . . . ,m,
be constantn×n matrices, letr = (r1, . . . , rn) be a row
vector of positive numbers and lets = (s1, . . . , sm) be a
row vector of non-negative numbers. The vectorsr and
s represent subjective weights in the objective. We then
consider the following optimal control problem:

(P) Minimize the objective

J = rN(T ) +
∫ T

0

su(t) dt → min (1)

over all Lebesgue-measurable functionsu : [0, T ] → U
subject to the dynamics

Ṅ(t) =
(
A +

m∑
i=1

uiBi

)
N(t), N(0) = N0. (2)

We briefly recall three two- and three-compartment
models which fit into this general class. For a more de-
tailed description of the models we refer the reader to
(Świerniaket al., 1996).
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Model A: In a two-compartment model the phasesG0,
G1 and S are clustered into the first compartment,G2

and M are combined into the second compartment, and
only a killing agentu = u1 is considered. Thusn = 2,
m = 1, and the matricesA and B = B1 are given by

A =

(
−a1 2a2

a1 −a2

)
, B =

(
0 −2a2

0 0

)
. (3)

The ai’s are positive coefficients related to the mean tran-
sit times of cells through thei-th compartment.

Model B: In this three-compartment model a blocking
agentv = u2 is additionally considered which is active
in the synthesis phaseS and thusS is modeled as a sep-
arate compartment. Nown = 3, m = 2, and the matrices
are given by

A =

 −a1 0 2a3

a1 −a2 0
0 a2 −a3

 , (4)

and

B1 =

 0 0 −2a3

0 0 0
0 0 0

 , B2 =

 0 0 0
0 a2 0
0 −a2 0

 .

(5)

In both models the controlu = u1 represents the
dose of the killing agent administered with the value
u = 0 corresponding to no treatment andu = 1 corre-
sponding to a maximum dose. It is assumed that the dose
stands in direct relation to the fraction of cells which are
being killed in theG2/M phase. Therefore only the frac-
tion 1 − u of the outflow of cells from the last compart-
ment undergoes cell division and reenters the first com-
partment. However, all cells leave compartmentG2/M .
In Model B the blocking agentv = u2 is additionally ap-
plied to slow the transit times of cancer cells during the
synthesis phaseS. As a result, the flow of cancer cells
from the second into the third compartment is reduced by
a factor of1−v of its original flow to (1−v(t))a2N2(t),
0 ≤ v(t) ≤ vmax < 1. Here the controlv(t) = 0 corre-
sponds to no drug being applied while a maximal reduc-
tion occurs with a full dosevmax.

Model C: A second three-compartment model can be de-
rived from Model A if the dormant phaseG0 is consid-
ered separately. In this case the newly born cells either
enter G1 and immediately start the cell division process
or they may enter the dormant stageG0. Let b0 and b1,
b0 + b1 = 1, be the corresponding probabilities. In ad-
dition to that, in this model we also consider a recruiting
agentw = u3 which is applied to reduce the average se-
jour time in the quiescent phase. As a result, the average

transit time through the compartmentG0 is reduced, re-
sulting in the outflow being increased by a factor of1+w,
0 ≤ w ≤ wmax. Here again the controlw = 0 corre-
sponds to no drug being applied whilew = wmax occurs
with a full dose. For this model it is more natural to label
the compartments withi = 0, 1, 2 and the matrices for
this three-compartment model are given by

A =

 −a0 0 2b0a2

a0 −a1 2b1a2

0 a1 −a2

 , (6)

and

B1 =

 0 0 −2b0a2

0 0 −2b1a2

0 0 0

 , B3 =

 −a0 0 0
a0 0 0
0 0 0

 .

(7)

For all three models we take the objective as

J = rN(T ) +
∫ T

0

u(t) dt, (8)

(i.e., s1 = 1 and s2 = s3 = 0 in the general formula-
tion (1)). The penalty termrN(T ) in the objective rep-
resents a weighted average of the total number of cancer
cells at the end of an assumed fixed therapy interval[0, T ].
The number of cancer cells which do not undergo cell di-
vision at time t and are killed are given by the portion
u(t) of the outflow of the last compartment, i.e.,u(t)
is proportional to the fraction of ineffective cell divisions.
Since the drug kills healthy cells at a proportional rate, the
control u(t) is also used to model the negative effect of
the drug on the normal tissue or its toxicity. Thus the in-
tegral in the objective models the cumulative negative ef-
fects of the treatment. In the three-compartment model B
it is assumed that the negative influence of the blocking
agent v which does not kill cells is negligible and it is
therefore not included in the objective. However, since, as
has been mentioned above, some blocking agents exhibit
also killing effects, it may be reasonable to include their
cytotoxicity on normal tissues. It could easily be incorpo-
rated with a small weights2 without changing the struc-
ture of the results. For the three-compartment model C the
only reasonable choice for the recruitment agent is weight
s3 = 0.

Returning to the general model P, we also make the
assumption that the control system isinternally positive
(Kaczorek, 1998):

(+) The first orthant of the control system is positively in-
variant, i.e., for any admissible controlu, if Ni(0) >
0 for all i = 1, . . . , n, then Ni(t) > 0 for all
i = 1, . . . , n, and all timest > 0.
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Thus the obvious modeling state-space constraints
Ni(t) ≥ 0 for i = 0, 1, . . . , n, need not be included in
our model explicitly, and the analysis simplifies. A sim-
ple sufficient condition for(+) to hold (for example, see
(Kaczorek, 1998)) is that

(M) all the matricesA +
∑m

i=1 uiBi, u ∈ U , are so-
called M -matrices, i.e., they have negative diagonal
entries, but non-negative off-diagonal entries.

This condition is natural and will be satisfied for
any compartmental model whose dynamics are given by
balance equations where the diagonal entries correspond
to the outflows from thei-th compartments and the off-
diagonal entries represent the inflows from thei-th into
the j-th compartment,i 6= j. It is satisfied for each of
Models A, B and C described above. More generally, if
condition (+) were violated, this would be a strong indi-
cation that the modeling is inconsistent.

Necessary conditions for optimality are given by the
Pontryagin Maximum Principle (Pontryaginet al., 1964):
if u∗ = (u∗1, . . . , u

∗
m) is an optimal control, then it fol-

lows that there exists an absolutely continuous function
λ, which we write as a row vector,λ : [0, T ] → (Rn)∗,
satisfying the adjoint equation

λ̇ = −λ
(
A +

m∑
i=1

u∗i Bi

)
, λ(T ) = r, (9)

such that the optimal controlu∗ minimizes the Hamilto-
nian H over the control set along(λ(t), N∗(t)),

H = λAN +
m∑

i=1

ui (si + λBiN) . (10)

If the control system satisfies the condition(M),
then from the adjoint equation (9) it follows that for any
admissible control the first orthant in theλ-space is neg-
atively invariant under the flow of the adjoint system, i.e.,
if λi(T ) > 0 for all i = 1, . . . , n, then λi(t) > 0 for
all i = 1, . . . , n, and all timest ≤ T . In this case, since
N(0) and λ(T ) have positive components, it follows that
all statesNi and costatesλi are positive over[0, T ].

Corollary 1. If the condition (M) is satisfied, then all
statesNi and costatesλi are positive over[0, T ].

Since the control set is a cube, the minimization of
the Hamiltonian splits intom separate one-dimensional
minimization problems. If we define thei-th switching
function as

Φi = si + λBiN, (11)

then the optimal controls satisfy

u∗i (t) =

{
αi if Φi(t) > 0,

βi if Φi(t) < 0.
(12)

Thus for Models A–C we have

u∗(t) =

{
0 if Φ1(t) > 0,

1 if Φ1(t) < 0,
(13)

v∗(t) =

{
0 if Φ2(t) > 0,

vmax if Φ2(t) < 0,
(14)

and

w∗(t) =

{
0 if Φ3(t) > 0,

wmax if Φ3(t) < 0,
(15)

where Φ1(t) = 1 + λ(t)B1N(t), Φ2(t) = λ(t)B2N(t)
and Φ3(t) = λ(t)B3N(t).

A priori the controls are not determined by the min-
imum condition at times whereΦi(t) = 0. However, if
Φi(t) vanishes on an open interval, also all its derivatives
must vanish and this may determine the control. Controls
of this kind are calledsingularwhile we refer to piecewise
constant controls asbang-bangcontrols. Optimal controls
then need to be synthesized from these candidates.

3. Singular Controls

In this section we show how singular arcs can be excluded
from optimality for Models A–C using high-order nec-
essary conditions for optimality. These calculations are
model specific and we refer the reader to (Ledzewicz and
Schättler, 2002a; 2002b) for the details of calculations for
Models A and B, but we give the calculations for Model C.
We refer to the killing agent asu, the blocking agent as
v, and the recruiting agent asw. If any of these controls
are singular on an open intervalI ⊂ [0, T ], then the cor-
responding switching function and all its derivatives must
vanish onI. Singular controls are calculated by differen-
tiating the switching functions with respect to time until
the control variable explicitly appears in the derivative,
say in Φ(l)(t), and then solving the resulting equation
Φ(l)(t) ≡ 0 for the control. For a single-input system
which is linear in the control it is known (Krener, 1977)
that l must be even, sayl = 2k, and k is called the
order of the singular arc on the intervalI. It is a neces-
sary condition for the optimality of a singular arc of order
k, the so-called generalized Legendre-Clebsch condition
(Krener, 1977), that

(−1)k ∂

∂u

d2k

dt2k

∂H

∂u
≥ 0. (16)

Note that the term∂H/∂u in (16) represents the switch-
ing function for the problem. This framework directly ap-
plies to the two-compartment model A which has a scalar
control. Elementary and direct calculations (Ledzewicz
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and Schättler, 2002a) show that in this case singular arcs
are of order 1 and that

∂

∂u

d2

dt2
∂H

∂u
= 4a1a2 > 0, (17)

violating the Legendre-Clebsch condition. For the three-
compartment model B the generalized Legendre-Clebsch
condition (16) still applies to the first controlu if we
freeze the second controlv. Assuming thatv is con-
stant, it can be shown that a singular controlu must be
of order 2, but again (16) is violated. Direct, but longer
calculations yield

∂

∂u

d4

dt4
∂H

∂u
= −12a1a2a

2
3(1− v)

(
a1 + a2(1− v)

)
×λ1(t)N2(t) < 0. (18)

(See (Ledzewicz and Schättler, 2002b), but note that we
replaced what wasv in this paper with1−v. In this way,
zero values of the control correspond to no treatment.)
Furthermore, if the controlv is singular on an interval
I, then it can be easily seen thatu also must be singular
on I. In this case it is a necessary condition for optimal-
ity, the so-called Goh condition (Krener, 1977), that onI
we have

∂

∂v

d
dt

∂H

∂u
≡ 0. (19)

However, a direct calculation gives

∂

∂v

d
dt

∂H

∂u
= 2a2a3λ1(t)N2(t) > 0, (20)

violating the Goh-condition (Ledzewicz and Schättler,
2002b). Note that these results strongly depend on the
fact that states and both multipliers are positive.

We now show how the optimality of singular con-
trols can be excluded for the three-compartment model C.
Suppose that the controlu is singular on an open inter-
val I ⊂ [0, T ] and consider the system as a single-input
optimal control problem with driftA+wB3. For the mo-
ment also assume that the controlw is constant overI.
Then the first two derivatives of the switching function
Φ1(t) = 1 + λ(t)B1N(t) are given by

Φ̇1(t) = λ(t)[A + wB3, B1]N(t), (21)

Φ̈1(t) = λ(t)
[
A + uB1 + wB3, [A + wB3, B1]

]
N(t),

(22)

where [F,G] = GF − FG denotes the commutator of
matrices. (The opposite sign has been chosen to be consis-
tent with the definition of the Lie-bracket of linear vector
fields.) Note that

∂

∂u

d2

dt2
∂H

∂u
= λ(t)

[
B1, [A + wB3, B1]

]
N(t). (23)

Direct calculations verify that this double bracket term sat-
isfies the relation[

B1, [A + wB3, B1]
]

= −4a1a2b1B1. (24)

Hence

∂

∂u

d2

dt2
∂H

∂u
= −4a1a2b1λ(t)B1N(t)

= 4a1a2b1 > 0, (25)

violating the Legendre-Clebsch condition. Here, in the
last step we use the fact that the switching function van-
ishes identically onI,

Φ1(t) = 1 + λ(t)B1N(t) ≡ 0. (26)

These calculations therefore exclude the optimality
of a singular controlu when w is constant. It might
still be possible, however, thatw is not constant over any
subintervalJ ⊂ I. In this casew must also be singular
on I. It turns out that for this example the Goh condition
is actually satisfied and thus a further analysis of necessary
conditions becomes indispensable. Now we also have on
I that

Φ3(t) = λ(t)B3N(t) = a0N0(t)
(
λ1(t)− λ0(t)

)
≡ 0

(27)
and thusλ1(t) ≡ λ0(t). But

λ̇0(t) = a0

(
λ0(t)− λ1(t)

)(
1 + w(t)

)
≡ 0 (28)

and thus bothλ0 and λ1 are constant. Since

0 ≡ λ̇1(t) = a1

(
λ1(t)− λ2(t)

)
, (29)

it follows that

λ0(t) ≡ λ1(t) ≡ λ2(t) ≡ const = λ̄ > 0. (30)

But then the adjoint equation forλ2 becomes

0 ≡ λ̇2(t)=a2

[
λ2(t)−2

(
1−u(t)

)(
b0λ0(t)+b1λ1(t)

)]
= a2λ̄

(
2u(t)− 1

)
(31)

implying u(t) ≡ 1/2. (In particular, this also means that
u must be singular if so isw.) Sinceu is singular, by (26)
we also have

0 ≡ 1− 2a2N2(t)λ̄ (32)

and thusN2(t) ≡ N̄2 = const. But then also

0 ≡ Ṅ2(t) = a1N1(t)− a2N2(t) = a1N1(t)− a2N̄2

(33)
implying N1(t) ≡ N̄1 = const as well. Thus

0 ≡ Ṅ1(t) = a0N0(t)
(
1 + w(t)

)
− a1N̄1 + 2b1a2N̄2

(
1− u(t)

)
= a0N0(t)(1 + w(t))− (1− b1)a2N̄2. (34)
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But then

Ṅ0(t) = −a0N0(t)
(
1 + w(t)

)
+ 2b0a2N̄2

(
1− u(t)

)
= −a0N0(t)

(
1 + w(t)

)
+ (1− b1)a2N̄2 ≡ 0

(35)

and thus alsoN0(t) ≡ N̄0 = const. In fact, if u(t) ≡
1/2, then the matrixA + 1

2B1 + wB3 has eigenvalue0
with left-eigenvectorλ̄ = (1, 1, 1) and right-eigenvector
N̄ = (N̄0, N̄1, N̄2), which gives an equilibrium for the
system and the adjoint equations. But this finally implies

(
1 + w(t)

)
= b0

a2N̄2

a0N̄0
= const. (36)

Thus, if at all admissible, the controlw is constant and
thus the optimality of the overall control pair(u, w) is
excluded by the deliberations above. In summary, neither
u nor w can be singular on any subinterval.

Theorem 1. For Models A–C optimal controls are not sin-
gular on any subintervalI ⊂ [0, T ].

4. Bang-Bang Controls

Once singular controls have been eliminated from opti-
mality, bang-bang controls become the natural candidates.
We now state sharp necessary and sufficient conditions for
the optimality of bang-bang controls for the generaln-
compartment model P.

Let (N∗, u∗) be a reference extremal pair where
all the components ofu∗ are bang-bang controls with
switchings at timestk, k = 1, . . . ,m, 0 < tm < · · · <
t1 < t0 = T and N∗ being the corresponding trajectory.
Denote byλ∗ the corresponding adjoint variable. We as-
sume that(i) at every switchingtk only one of the control
components has a switching. This implies that the switch-
ing functions are absolutely continuous functions with the
derivatives

Φ̇i(t) = λ(t)

A +
i−1∑
j=1

ujBj +
m∑

j=i+1

ujBj , Bi

N(t).

(37)

We then also assume that(ii) at each switchingtk the
derivative of the corresponding switching functionΦi,
i = i(k), does not vanish attk, Φ̇i(tk) 6= 0, and we call
a triple Γ = (N∗, u∗, λ∗) along which the conditions (i)
and (ii) are satisfied aregular strictly bang-bang extremal
lift . We construct a parametrized family of regular strictly
bang-bang extremal lifts which containsΓ by integrating
the dynamics and the adjoint equation backward from the
terminal timeT with the terminal conditionN(T ) = p
being a free parameter.

The terminal values for the adjoint variables are all
the same and are given by the row vectorr of weights
for the coordinates of the terminal stateN(T ). Note,
however, that the positivity of the trajectories needs to
be enforced once we integrate the trajectories backward
from a free terminal pointp. Choosing the controls
ui = ui(t, p) to maintain the minimum condition of the
Maximum Principle, the system and adjoint equations are
thus given by

Ṅ(t, p) =
(
A +

m∑
i=1

uiBi

)
N(t, p) (38)

and

λ̇(t, p) = −λ(t, p)
(
A +

m∑
i=1

uiBi

)
,

with terminal values

N(T, p) = p and λ(T, p) = r. (39)

Settingp∗ = N∗(T ), the controlsu(t, p∗) are given
by the reference controlsu∗, and N(t, p∗) and λ(t, p∗)
are the reference trajectory and the corresponding mul-
tiplier, respectively. It can be shown that there exists a
neighborhoodW of p∗ and continuously differentiable
functions τk defined onW , k = 1, . . . ,m, such that for
p ∈ W the controlsu(·, p) are bang-bang with switch-
ings in the same order as the reference control at the times
0 < τm(p) < · · · < τ1(p) < T and the correspond-
ing triples Γp = (N(·, p), u(·, p), λ(·, p)) for p ∈ W
are regular strictly bang-bang extremal lifts. This allows
us to use field-theoretic concepts to develop sufficient op-
timality conditions. Essentially, if the system flow is a
diffeomorphism away from the switching surfaces and if
it crosses the switching surfaces transversally, then using
the method of characteristics, a differentiable solution to
the Hamilton-Jacobi-Bellman equation can be constructed
(Noble and Schättler, 2002). This implies then the opti-
mality of the flow.

Theorem 2. Let Γ = (N∗, u∗, λ∗) be a regular strictly
bang-bang extremal lift without simultaneous switchings,
and letΦ∗

i (t) = si+λ∗(t)BiN∗(t) be the switching func-
tion associated with the controlui, i = 1, . . . ,m. Denote
by tk, k = 1, . . . ,m the switching times of the controls,
0 < tm < · · · < t1 < t0 = T and let uk

i denote the
constant values of the controls on the interval(tk, tk−1).
For the k-th switching letι = ι(k) be the indicator of the
control that switches and denote byθι the absolute jump
in the control, i.e.,θι = βi−αi if ι(k) = i. SetS−

0 = 0
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and for k = 1, . . . ,m define

S+
k = exp

(A +
m∑

j=1

uk
j Bj

)T

(tk−1 − tk)

S−
k−1

× exp

(A +
m∑

j=1

uk
j Bj

)
(tk−1 − tk)

 , (40)

Gk = − θι

|Φ̇∗
ι (tk)|

(
λ∗(tk)Bι + NT

∗ (tk)BT
ι S+

k

)
, (41)

S−
k =

(
BT

ι λT
∗ (tk)Gk + S+

k

)(
Id +

BιN∗(tk)Gk

1−GkBιN∗(tk)

)
.

(42)

If we have∣∣∣Φ̇∗
ι (tk)

∣∣∣+ θι

(
λ∗(tk)Bι + NT

∗ (tk)BT
ι S+

k

)
BιN∗(tk) > 0

(43)
for k = 1, . . . ,m, then the matricesS−

k , k = 1, . . . ,m
are well defined andu∗ is a relative minimum for then-
compartment model. More precisely, there exists a neigh-
borhoodW of N∗(T ) such that the flowσ restricted to
[0, T ]×W defines a field of strictly bang-bang extremals
without simultaneous switchings andu∗ is optimal rela-
tive to any other control whose trajectory lies in the image
R of [0, T ]×W under the flow map

σ : [0, T ]×W → R, (t, p) 7→
(
t, x(t, p)

)
. (44)

A special version of this algorithm was proven for
Model A in (Ledzewicz and Schättler, 2002a) and for
Model B in (Ledzewicz and Schättler, 2002b). The algo-
rithm here applies to the general model P and differs from
those given in (Ledzewicz and Schättler, 2002a; 2002b) in
the extra termθιλ∗(tk)B2

ι N∗(tk) in (43). The reason is
that for the general dynamics some simplifying properties
of these models no longer apply (see Corollary 2 below).
The proofs of Theorems 2 and 3 are lengthy and are omit-
ted since they follow the same pattern as in the case of
the result proven in (Ledzewicz and Schättler, 2002b), but
with the required technical modifications to allow for gen-
eral n-dimensional dynamics.

Theorem 3. With the notation of Theorem 2 assume that
the transversality condition∣∣∣Φ̇∗

ι (tk)
∣∣∣+θι

(
λ∗(tk)Bι + NT

∗ (tk)BT
ι S+

k

)
BιN∗(tk) > 0

(45)
is satisfied fork = 1, . . . , h− 1, but∣∣∣Φ̇∗

ι (th)
∣∣∣+θι

(
λ∗(th)Bι + NT

∗ (th)BT
ι S+

h

)
BιN∗(th) < 0.

(46)

Then there exists a neighborhoodW of p∗ = N∗(t) such
that the flowσ restricted to Dh = {(t, p) : th < t ≤
T, p ∈ W} defines a field of regular strictly bang-bang
extremals without simultaneous switchings andu∗ is op-
timal relative to any other control whose trajectory lies in
the imageRh = σ (Dh) . But u∗ is no longer optimal for
initial times t ≤ th.

t
T

N

q

Sh S1

p

p'

Fig. 1. Optimal and non-optimal switchings.

Figure 1 reflects the geometric meaning of the
transversality conditions (45) and (46). If the combined
flow crosses the switching surfaces transversally like for
the switching surfaceS1 (the condition (45) is satisfied),
the trajectories cover the time-state space injectively and
no local improvements are possible at such a switching.
But if the flow reflects off the switching surface like for
the switching surfaceSh (the condition (46) holds), then
it is possible to do better even locally with exactly one
switching less by eliminating the corresponding junction.
In this case there exist exactly two trajectories in our
parametrization of bang-bang controls which start from
points q close to the switching surfaceSh. Out of these
the one which ends at the terminal pointp and does not
encounterSh satisfies the sufficient optimality conditions
given in Theorem 2 and corresponds to a strong local min-
imum. The trajectory which reflects offSh and ends in
p′ is not optimal by Theorem 3. Intuitively, we can say
that we can move down the flow to avoid the transversal
fold. The switching surfaceSh exactly acts like an enve-
lope in the Calculus of Variations and the local optimality
of the flow ceases there.

Corollary 2. For the compartmental problems A–C de-
scribed above, the expressions in (43), (45), and (46) can
be simplified to∣∣∣Φ̇∗

ι (tk)
∣∣∣+ θιN

T
∗ (tk)BT

ι S+
k BιN∗(tk) > 0 (47)

satisfied fork = 2, . . . , h− 1, but∣∣∣Φ̇∗
ι (th)

∣∣∣+ θιN
T
∗ (th)BT

ι S+
h BιN∗(th) < 0. (48)

Proof. The result follows from special properties
of the matrices Bι which make each of the terms
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λ∗(tk)B2
ι N∗(tk) vanish. For the matricesB1 in all the

models this is trivial sinceB2
1 = 0. For B2 and B3

this holds since we have the relationsB2
2 = a2B2 and

B2
3 = −a0B3 . This implies

λ∗(tk)B2
2N∗(tk) = a2λ∗(tk)B2N∗(tk) = −a2s2, (49)

where the last equality follows since the switching func-
tion Φ2 = s2 +λB2N vanishes at the switching timetk.
For Model B we have assumeds2 = 0 and thus this term
vanishes. Similarly,

λ∗(tk)B2
3N∗(tk) = −a0λ∗(tk)B3N∗(tk) = a0s3, (50)

which vanishes sinces3 = 0. Furthermore, in these cases
we therefore haveS+

1 = 0 and thus the condition (47) is
trivially satisfied fork = 1.

5. Numerical Simulations

Examples of both locally optimal and non-optimal
bang-bang extremal trajectories for the two-compartment
model A were given in (Ledzewicz and Schättler, 2002a).
Here we include some new simulations for the three-
compartment models B and C. In order to facilitate the
computations (which illustrate the mathematical theory)
we integrate the systems backward from the terminal time
T and take the terminal values of the states as parameters,
p = N(T ).

The data for Model B with a blocking agent are
given by a1 = 0.197, a2 = 0.395 and a3 = 0.107,
vmax = 0.3, and the weights inr were chosen asr1 = 1,
r2 = 0.5 and r3 = 1. The terminal time isT = 7 and
the parameter values arep1 = p2 = 5 and p3 = 8.5. For
these parameters there are three switchings in the controls
and the results are summarized in Table 1 below. Since
all transversality conditions are positive, the correspond-
ing controls are locally optimal. The graphs of the corre-
sponding controls and states are given in Figs. 2–4.

The data for model C with a recruiting agent were
chosen asa0 = 0.05, a1 = 0.5 and a2 = 1, wmax = 6,
b0 = 0.9 = 1 − b1 and the weights inr were as above,
r0 = 1, r1 = 0.5 and r2 = 1. Now the terminal
time is T = 4 and the parameter values arep0 = 2.2,
p1 = 2.145 and p2 = 1.08. For these parameters there

Table 1. Data for the switchings for Model B.

switching time switch in control transversality condition

t1 = 3.56 v .1541

t2 = 3.28 u .2905

t3 = 3.09 v .1191
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0.8
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u(t) 

Fig. 2. Killing agent (Model B).
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Fig. 3. Blocking agent (Model B).
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Fig. 4. States (Model B).



A. Świerniak et al.366

Table 2. Data for the switchings for Model C.

switching time switch in control transversality condition

t1 = 1.96 u .7445

t2 = 0.28 w 1.3456

are two switchings in the controls corresponding to the
killing and recruiting agents. The results are summa-
rized in Table 2 below. Since all transversality conditions
are positive, these controls are also locally optimal. The
graphs of the corresponding controls and states are given
in Figs. 5–7.

6. Discussion

In this paper we discussed the cell-cycle-phase depen-
dence of cytotoxic drug action in the context of the op-
timization of cancer chemotherapy. Besides the emer-
gence of drug resistance (see, e.g., (Goldie and Coldman,
1998; Kimmelet al., 1998), the phase sensitivity and the
cycle specificity are viewed by many authors, as one of the
major obstacles against successful chemotherapy (Chab-
ner and Longo, 1996; Fister and Panetta, 2000).

The simplest cell-cycle-phase dependent models of
chemotherapy can be classified based on the number of
compartments and the types of drug action modeled. In
all these models the attempts at finding optimal controls
have been confounded by the presence of singular and pe-
riodic trajectories, and multiple solutions. However, in
this paper we developed efficient analytical and numeri-
cal methods which allow us to overcome the difficulties.
In simpler cases, it is possible to eliminate singular pro-
tocols as non-optimal and give sufficient conditions for
the optimality of bang-bang trajectories. Moreover, we
formulated and solved a quite general multicompartment
model of chemotherapy which facilitates the discussion of
other types of protocols and other phenomena than those
considered in the paper.

All possible applications of the mathematical mod-
els of chemotherapy are contingent on our ability to esti-
mate their parameters. Recently there has been progress
in that direction, concerning particularly precise estima-
tion of drug action in culture and the estimation of cell
cycle parameters of tumor cellsin vivo. The stathmoki-
netic or “metaphase arrest” technique consists in block-
ing cell division by an external agent (usually a drug, e.g.,
vincristine or colchicine). The cells gradually accumulate
in mitosis, emptying the postmitotic phaseG1 and with
time also theS phases. Flow cytometry allows precise
measurements of the fractions of cells residing in a differ-
ent cell cycle phase. The pattern of cell accumulation in
mitosis M depends on the kinetic parameters of the cell
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Fig. 5. Killing agent (Model C).
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Fig. 6. Recruiting agent (Model C).
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Fig. 7. States (Model C).
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cycle and is used for the estimation of these parameters.
Exit dynamics fromG1 and transit dynamics throughS
andG2 and their subcompartments can be used to charac-
terize very precisely both unperturbed and perturbed cell
cycle parameters. A plethora of methods have been devel-
oped to analyze the stathmokinetic data. The application
of these methods allow the quantification of the cell-cycle-
phase action of many agents.

One of the interesting findings was the existence of
after effectsin the action of many cytotoxic agents (Kim-
mel and Traganos, 1986). The action of these drugs, espe-
cially while highly dosed, may extend beyond the span of
a single cell cycle. For example, cells blocked in theS-
phase of the cell cycle and then released from the block
may proceed apparently normally towards mitosis, but
then fail to divide, or divide, but not be able to complete
the subsequent round of DNA replication. In some ex-
periments it was possible to trace the fates of individual
cells and conclude that their nuclear material divided, but
the cytoplasmic contents failed to separate. As indicated,
e.g., in (Panettaet al., 2002a; 2002b), the after effects due
to the accumulation of drugs (in this case methotrexate)
result in great interindividual differences in the treatment
effectiveness.

A consequence of after effects is that it may be diffi-
cult to infer the long-term effects of cytotoxic drugs based
on short term experiments like the stathmokinetic experi-
ment. One way of testing this assertion is to carry out both
types of experiments, short term and long term, subjecting
cells to the action of the same concentration of the same
drug. We may then estimate the parameters of the cell
cycle and of the drug action based on the short-term ex-
periment, substitute them into a mathematical model and
try to predict the results of the long-term experiment. Of
course, modeling after effects leads to the growth in the
dimension of the system of state equations and makes the
explicit results of our models questionable. It seems, how-
ever, that it is still possible to place the models in the gen-
eral model class P discussed in the paper.

The traditional application area of the ideas of cell
synchronization, recruitment and rational scheduling of
chemotherapy including multidrug protocols is in the
treatment of leukemias. It is there where potentially the
cell-cycle-phase dependent optimization is especially use-
ful. Moreover, our results could also be applied (with
minor modifications) to other types of cell cycle manip-
ulations like the induction of apoptosis and differentiation
(Konoplevaet al., 2002).
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dimensional model of evolution of drug resistance of can-
cer cells. — J. Math. Syst. Estim. Contr., Vol. 8, No. 1,
pp. 1–16.

Kimmel M. and Traganos F. (1986):Estimation and prediction
of cell cycle specific effects of anticancer drugs. — Math.
Biosci., Vol. 80, No. 2, pp. 187–208.

Konopleva M., Tsao T., Ruvolo P., Stiouf I., Estrov Z., Leysath
C.E., Zhao S., Harris D., Chang S., Jackson C.E., Munsell
M., Suh N., Gribble G., Honda T., May W.S., Sporn M.B.
and Andreef M. (2002):Novel triterpenoid CDDO-Me is
a potent inducer of apoptosis and differentiation in acute
myelogenous leukemia. — Blood, Vol. 99, No. 1, pp. 326–
335.

Kozusko F., Chen P., Grant S.G., Day B.W. and Panetta J.C.
(2001): A mathematical model of in vitro cancer cell
growth and treatment with the antimitotic agent curacin A.
— Math. Biosci., Vol. 170, No. 1, pp. 1–16.

Krener A. (1977):The high-order maximal principle and its ap-
plication to singular controls. — SIAM J. Contr. Optim.,
Vol. 15, No. 2, pp. 256–293.

Ledzewicz U. and Schättler H. (2002a):Optimal bang-bang
controls for a 2-compartment model of cancer chemother-
apy. — J. Optim. Th. Appl., Vol. 114, No. 3, pp. 609–637.

Ledzewicz U. and Schättler H. (2002b):Analysis of a cell-cycle
specific model for cancer chemotherapy. — J. Biol. Syst.,
Vol. 10, No. 3, pp. 183–206.

Luzzi K.J., MacDonald I.C., Schmidt E.E., Kerkvliet N., Mor-
ris V.L., Chambers A.F. and Groom A.C. (1998):Multi-
step nature of metastatic inefficiency: dormancy of solitary
cells after successful extravasation and limited survival of
early micrometastases. — Amer. J. Pathology, Vol. 153,
No. 3, pp. 865–873.

Lyss A.P. (1992): Enzymes and random synthetics, In:
Chemotherapy Source Book, (M.C. Perry, Ed.). — Balti-
more: Williams & Wilkins, pp. 403–408.

Martin R.B. (1992):Optimal control drug scheduling of cancer
chemotherapy. — Automatica, Vol. 28, No. 6, pp. 1113–
1123.

Noble J. and Schättler H. (2002):Sufficient conditions for rela-
tive minima of broken extremals in optimal control theory.
— J. Math. Anal. Appl., Vol. 269, No. 1, pp. 98–128.

Panetta J.C., Yanishevski Y., Pui C.H., Sandlund J.T., Rubnitz
J., Rivera G.K., Ribeiro R., Evans W.E. and Relling M.V.
(2002a): A mathematical model of in vivo methotrexate
accumulation in acute lymphoblastic leukemia. — Cancer
Chemother. Pharmacol., Vol. 50, No. 5, pp. 419–428.

Panetta J.C., Wall A., Pui C.H., Relling M.V. and Evans M.V.
(2002b): Methotrexate intracellular disposition in acute
lymphoblastic leukemia: A mathematical model of gam-
maglumatyl hydrolase activity. — Clinical Cancer Res.,
Vol. 8, No. 7, pp. 2423–2439.

Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V. and
Mishchenko E.F. (1964):The Mathematical Theory of Op-
timal Processes. — New York: MacMillan.

Swan G.W. (1990):Role of optimal control in cancer chemother-
apy. — Math. Biosci., Vol. 101, No. 2, pp. 237–284.
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Świerniak A., Polánski A. and Duda Z. (1992):“Strange” phe-
nomena in simulation of optimal control problems aris-
ing in cancer chemotherapy. — Proc. 8th Prague Symp.
Computer Simulation in Biology, Ecology and Medicine,
pp. 58–62.

Tafuri A. and Andreeff M. (1990): Kinetic rationale for
cytokine-induced recruitment of myeloblastic leukemia
followed by cycle-specific chemotherapy in vitro. —
Leukemia, Vol. 12, No. 4, pp. 826–834.


