Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 1, 91-103 ‘ ames

EVOLUTIONARY ALGORITHMS FOR JOB-SHOP SCHEDULING

KHALED MESGHOUNF, SLim HAMMADI *
PIERREBORNE*

* Ecole Centrale de Lille, LAIL - UMR 8021 BP 48
59651 Villeneuve d’Ascq Cedex, France
e-mail:{khaled.mesghouni, slim.hammadi, p.borne}@ec-lille.fr

This paper explains how to use Evolutionary Algorithms (EA) to deal with a flexible job shop scheduling problem, espe-
cially minimizing the makespan. The Job-shop Scheduling Problem (JSP) is one of the most difficult problems, as it is
classified as an NP-complete one (Carlier and Chretienne, 1988; Garey and Johnson, 1979). In many cases, the combination
of goals and resources exponentially increases the search space, and thus the generation of consistently good scheduling is
particularly difficult because we have a very large combinatorial search space and precedence constraints between opera-
tions. Exact methods such as the branch and bound method and dynamic programming take considerable computing time
if an optimum solution exists. In order to overcome this difficulty, it is more sensible to obtain a good solution near the
optimal one. Stochastic search techniques such as evolutionary algorithms can be used to find a good solution. They have
been successfully used in combinatorial optimization, e.g. in wire routing, transportation problems, scheduling problems,
etc. (Banzhatt al, 1998; Dasgupta and Michalewicz, 1997). Our objective is to establish a practical relationship between
the development in the EA area and the reality of a production JSP by developing, on the one hand, two effective genetic
encodings, such as parallel job and parallel machine representations of the chromosome, and on the other, genetic opera-
tors associated with these representations. In this article we deal with the problem of flexible job-shop scheduling which
presents two difficulties: the first is the assignment of each operation to a machine, and the other is the scheduling of this set
of operations in order to minimize our criterion (e.g. the makespan).

Keywords: job-shop scheduling, evolutionary algorithms, parallel representation

1. Introduction to our objective i.e. to find near-optimal solutions for a
wide range of combinatorial optimization problems.
Several problems in various industrial environments are I this article, we propose improved evolutionary al-

combinatorial. This is the case for numerous scheduling 90rithms (EAs) for solving a JSP. EAs are search and op-
and planning problems. Generally, it is extremely diffi- t|m|zafuon algorithms inspired by _thg process of natgral
cult to solve this type of problems in their general form. €volution. They employ a probabilistic search for locating
Scheduling can be defined as a problem of finding an op-2 globally optlma_ll solution. They have many advantages.
timal sequence to execute a finite set of operations sat-1hey are robust in the sense that they provide a set of so-
isfying most of the constraints. The problem so formu- !utions near the optimal one on a wide range of problems.
lated is extremely difficult to solve, as it comprises sev- T1hey can be easily modified with respect to the objective
eral concurrent goals and several resources which musfunction and constraints. In this article we describe the
be allocated to lead to our goals, which are to maximize incorporation of the scheduling specific knowledge in op-
the utilization of individuals and/or machines and to min- €rators and in the chromosome representation. In this con-
imize the time required to complete the entire process text, parallel representations of the chromosome and some
being scheduled. Therefore, the exact methods such ag§/€netic operators have been created. _

the branch and bound method, dynamic programming and _ This article is organized as follows: Section 2 con-
constraint logic programming need a lot of time to find Fams a detailed dgscrlptlon and formulatlon of our flexible
an optimal solution. So, we expect to find not necessarily /0P-shop scheduling. In Section 3, a description of evolu-
an optimal solution, but a good one to solve the problem. tionary algorithms adapted to scheduling problems is pre-
Realistically, we are satisfied by obtaining a good solution Sented. Implementation details of the proposed methodol-
near the optimal one. New search techniques such as ge99y and experimental results are presented in Section 4.
netic algorithms, simulated annealing (Kirkpatriekal., Flna[ly, the discussion and conclusion are presented in
1983) or tabu search (Golvet al, 1993) are able to lead ~ Se€ction 5.

amcs u

K. Mesghouni et al.

2. Description of Job-Shop Scheduling

The task of production scheduling consists in the tempo-
ral planning of the processing of a given set of orders. The

applied by many users in different areas of engineer-
ing, computer science, and operations research. Current
evolutionary approaches include evolutionary program-
ming, evolutionary strategies, genetic algorithms, and ge-

processing of an order corresponds to the production of anetic programming (Banzhat al, 1998; Dasgupta and

particular product. It is accomplished by the execution

Michalewicz, 1997; Fonseca and Fleming, 1998; Gold-

of a set of operations in a predefined sequence on ceryerg, 1989; Quagliarellet al, 1998).
tain resources, subject to several constraints. The result

of scheduling is a schedule showing the temporal assign-

ment of operations of orders to the resources to be used. I3-1. How Do EAs Work?

this study, we consider a flexible job shop problem. Each
operation can be preformed by some machines with dif-
ferent processing times, so that the problem is known to
be NP hard. The difficulty is to find a good assignment

of an operation to a machine in order to obtain a schedule
which minimizes the total elapsed time (makespan).

The structure of the scheduling problem can be de-
scribed as follows:

e consider asetofV jobs {J;}1<;j<n; these jobs are

independent of one another;

each jobJ; has an operating sequence, callggt
each operating sequencg; is an ordered series of
x; operationsO; ; indicating the position of the op-

eration in the technological sequence of the job;

the realization of each operatiai; ; requires a re-

Evolutionary algorithms are inspired by genetic algo-
rithms. There are a relatively new contribution to the field
of artificial intelligence. They use various computational
models of evolutionary processes to solve problems on a
computer. They are based on the mechanism of natural
selection in biological systems. Evolutionary algorithms
use a structured but randomized way to utilize genetic in-
formation in finding a new search direction. They work
by defining a goal in the form of a quality criterion and
then use this goal to measure and compare solution candi-
dates in a stepwise refinement of set data structures. If
successful, an EA will return an optimal solution or a
near-optimal one after a number of iterations. The im-
provement process is accomplished using genetic opera-
tors such as crossover and mutation. There are several
variants of evolutionary algorithms, and also many hy-
brid systems which incorporate various features of these
paradigms. However, the structure of any evolutionary

source or a machine selected from a set of machines,method is very much the same. After defining a genetic

{Mj}1<k<m; M is the total number of machines
existing in the shop, this implying the existence of an
assignment problem;

there is a predefined set of processing times; for a
given machine, and a given operation, the processing
time is denoted byP; ; s, ;

an operation which has started runs to completion
(non-preemption condition);

each machine can perform operations one after an-
other (resource constraints);

the time required to complete the whole job consti-
tutes the makespa@l',, ..

Our objective is to determine the set of completion
times for each operatiofC; j x }1<i<x;, 1<j<N, 1<k<M
which minimizesC,.x.

3. Evolutionary Algorithms

Evolutionary algorithms are general purpose search pro-

cedures based on the mechanisms of natural selection
These algorithms have been

and population genetics.

representation, the simple structure of evolutionary algo-
rithms is shown as follows:

1. Selection of the chromosome structure

The problem has to be translated into a chromo-
some representation. Each gene of the chromosome
corresponds to a decision variable of the problem.
According to problem complexity, the chromosome
structure can be either conventional (a binary string)
or not (reals, a series or a sequence of orders, a par-
allel form, etc.).

. Initialization of the population of chromosomes
The initial population can be generated at random if
the problem structure allows it.

. Perform genetic operations on chromosomes
Some operators are introduced in genetic algorithms
to produce a solution. Among them there are two
categories of operators: crossover and mutation.

. Evaluation chromosomes
During evolutionary generation, an evaluating sys-
tem is set up to assess the chromosomes and to select
those chromosomes that are fit enough for the next
generation.

Evolutionary algorithms for job-shop scheduling a ames

3.2. Encoding Requirements M, (4,7, i j,m,)
My | (35" tir jo)

Problems of encoding have been observed in the GA liter-
ature (Dasgupta and Michalewicz, 1997), where slightly

different problems require completely different genetic M,
encodings for a good solution to be found. Choosing a
good representation is a vital component of solving any Fig. 1. Parallel machine encoding.

search problem. However, choosing a good representa-

tion for a problem is as difficult as choosing a good search the second is the number of the job to which this op-
algorithm for a problem. Care must be taken to adopt both eration belongs and the third is the starting time of the
representational schemes and the associated genetic opegperation if its assignment on this machine is definitive.
ators for an effective genetic search. Traditionally, chro- Thjs starting time is calculated taking into account all the
mosomes are simple binary vectors. This simple represengnstraints. Indeed, the parallel machine encoding is pre-

tation is an excellent choice for the problems in which a gented in Fig. 1. In a general manner, the line of the chro-
point naturally maps into a string of zeros and ones. Un- masome is represented as follows:

fortunately, this approach cannot usually be used for real-
word engineering problems such as combinatorial ones My : (iygoti) (255 st jroany)s - - -
(Portman, 1996). A modification should be suggested,
such as the permutation of a basic string like that used for
a Travelling Salesman Problem (TSP) (Della Cretal.,
1995). For instance, consider a TSP with cities. A per-
mutation of the numbers from 1 t&/ is a chromosome,
which codes a possible solution. This means that every
2’;(22' : ea: Steo_ aiﬁeiﬁre g ;Iysgﬁ;ﬁ ocztif:]atot)r:/eioif;rlsrgzsgkrﬂ eExample 1..Three jobs and five maqhines are considered.
tained by applying traditional genetic operators (crossoverThe opera_ltlng sequences of th_ese jobs are as follows (the
and mutation). Some different encodings are proposed inOlata of _th's _example.are used in all of the examples pre-
the literature (Baghet al., 1991; Bruns, 1993; Uckuat sented in this article):
al., 1993). These encodings are split into two categories. Joby: Oyq—Osq—Osq,
The first one is the direct chromosome representation. We . ’ ’ '
can represent a scheduling problem by using the sched- Joby: 02 =022 = Os2,
ule itself as a chromosome. This method generally re- Jobz: 013 —0a3,
quires .de_/elopmg specific genetic opera_tor‘s. The Secondwith 01, representing the first operation dbb; and
is the indirect chromosome representation: the chromo—O the second operation of the same j6hob,), etc
some does not directly represent a schedule, and transitiory, 2+ pera) A
We have a total flexibility, as any operation can be per-

from the chromosome representation to a legal SChedUIeformed equally well by anv machine with different pro-
builder (decoder) is needed prior to evaluation. qually y any P

)]) . ~cessing times. According to the machine used, the pro-

Inthis article, we chose a direct representation to give cegsing time of operations is different as described Ta-
viability and legibility to a chromosome and a simplicity pje 1. One possible chromosome has the following par-
of utilization for a user. We suggest two new direct repre- j¢| machine representation:

sentational chromosomes with their genetic operators.

where i represents the operation to be executed by ma-
chine My, j is the job to which this operation (i) belongs
and ¢; ; a7, is the starting time of the operationof job

j on machineMj. This time is calculated taking into
account the precedence and resources constraints.

Ml (1a230> (23271)
3.2.1. First Approach M, | (2,3,2)
Encoding problem Ms | (1,1,0) | (2,1,3) | (3,2,5)
The first approach is based on the parallel machine en- My | (3,1,5)
coding (PME) (Mesghouni, 1999; Mesghowtial., 1998) Ms | (1,3,0)

which represents directly feasible scheduling, gives a user
all the necessary information, and also permits to treat This encoding possesses some advantage, as it gives di-
jointly the assignment and scheduling problems. In the rectly a feasible schedule. The obtained solution contains
case of our problem, the chromosome is represented byall information which a user needs, e.g. which machines
a set of machines put in parallel and each machine is awill execute every operations and at what time, which are
vector which contains its assignment operations. Theseloaded machines and which machines are underused. This
operations are represented by three terms. The first is thellows the user to best manage park machines, and thereby
order number of the operation in its operating sequence,the production. ¢

admcs u K. Mesghouni et al.

one or more child chromosomes. The role of the crossover
is to generate a better solution by exchanging informa-
tion contained in the current good ones (Michalewicz,
1992). The idea is that useful building blocks for the so-
lution of a problem are accumulated in the population and

Table 1. Processing time of the operations on
different machines.

| | My | My | M5 | My | M |

O] 1 8 3 7 S that crossover allows for the aggregation of good build-
02,1 3 5 2 6 4 ing blocks into ever better solutions to the problem. For
Os,| 6 7 1 4 3 scheduling problems, different crossover operators have

’ been designed and presented in the literature (Portman,
O1,2 1 4 5 3 8 1996; Syswerda, 1990). Inspired by them, we propose two
O22 | 2 8 4 9 3 new crossover operators adapted to our encoding. These
Os.2 9 5 1 2 4 operators always generate new legal offspring (a child).
O3] 1 8 9 3 2 Child 1 is given by the following algorithm (Mes-
Ons 5 9 > 5 3 ghouni, 1999):

Step 1.Parent 1, Parent 2 and machiné, are randomly
Initial population selected.
The choice of the first population is an important part in .
the search for a good solution. Generally, when we deal St€P 2. {0i;} € My of Child 1 — {0, ;} € M), of
with an optimization problem using a binary coding, the Parent1/ — 1.
initial population is usually chosen randomly. Such an en- , ,
coding is efficient when our problem does not impose any SteP 3.(M is the total number of machines)

order. In this case, the initial population is usually chosen While (I < M) do

at random. But in a combinatorial problem such as job- If (I # k) then

shop scheduling, some constraints such as precedence and Copy the non-existing operations of;
resources constraints must be satisfied. In this case, the bi- of Parent 2 into Child 1

nary representation is not convenient and another chromo- J—T+1

some syntax must be found to fit the problem. For these End If

reasons, we have designed a parallel representation of the gnd while

chromosome, and in order to create and to permit our set

of solutions to evolve in a very large domain, we shall use siep 4. 7 — &

a combination of some methods. In this article we gener- ywe syppose that; ; is the missing operation. So we
ate an initial population using a combination between the gcan machinelz,, af)plying the following rules:

following methods:

. . : : If (I =1) then

1. We use a set of solutions given by Constraint Logic I .
Programming (CLP) as a first population (Mes- End :?Ut Oy; atthe beginning of machina/;
ghouniet al, 1999).

2. Given a solution to our problem found by other meth- If (I =;) then
ods, such as the branch and bound method or the tem- Put O, ; atthe end of machiné/,

poral decomposition approach, we then apply genetic End If

operators, especially the mutation ones, to extend the
If (I €]l,z;]) then

population. . o _ Find the row of O;_, ; and the row ofO; ,; ;
3. We use a combination of the following priority rules: in Child 1
e SPT: a high priority for the operation that has Put O; ; between the row oD;_; ; and that
the Shortest Processing Time, of O;4+1,; on machineM;, /
e LPT: a high priority for the operation that has End If

the Longest Processing Time,
e LM: a high priority for the operation that per-
mits to balance the load of the machine.

To obtain Child 2, go to Step 2 and invert the roles of
Parents 1 and 2.

However, it is necessary to be very careful as for the
Crossover operator problem which admits a total flexibility (any operation can
The predominant operator used is crossover. It involvesbe performed by any machine) the sequence of operations
combining elements from two parent chromosomes into defined by a chromosome may be incompatible with the

Evolutionary algorithms for job-shop scheduling a ames

precedence constraints of the operations. We create a cyStep 2. Copy the operations assigned id, of Parent 1
cle in the precedence constraint graph (Crecal., 1995) (respectively Parent 2) in Child 1 (resp. Child 2) on the
and some of the generated chromosomes define infeasisame machingM,).

ble schedules. This problem is illustrated in the following
example: Consider two jobs and two machines. The oper-

. ; Child 1 in construction
ating sequences of these jobs are presented as follows:

J0b1: 0171 — 02,1, Ml
Jobs: 0172 — 02,2. Mo
S that the ch i My
uppose that the chromosome is My | 3L
Ml (2a27?) (131’?) M5
M, | (2,1,7) | (1,2,7)
Machine M; should first execute Operation 2 of Job 2, Child 2 in construction
but it cannot do this until Operation 1 of Job 2 has been
completed. Likewise, M, should first execute Opera- M,
tion 2 of Job 1, but it cannot do so until Operation 1 of Mo
Job 1 has been completed. A deadlock situation arises and Ms
thgrefore the chrompsome does not define any feasible so- My | (1,2, | 21,7] (3,1,7)
lution (the starting time is represented by the symbol ‘?"). i
This case of an illegal schedule is produced by a violation 5

of the precedence constraints.

There are two possible ways of solving this problem: Step 3. Copy the non-existing operations off;, Mo,

1. By modifying genetic operators so that they can al- M3 and Ms of Parent 2 (resp. Parent 1) into Child 1
ways produce (through suitable manipulations) chro- (resp. Child 2).
mosomes to which feasible schedules correspond

(such as our crossover operators). Child 1 in construction
2. By defining a different encoding where all chromo- M | (LL7)
somes produce feasible schedules (this method will ! I
be presented in the second approach). M | (3,2,7)
>
We shall illustrate the crossover with the following Ms | (2,3,7)
example. My | (3,1,7)
Ms | (1,3,7) | (2,2,7)

Example 2.

Step 1.Suppose that Parent 1, Parent 2 and machihe
are randomly selected.

Parent 1 M| (2,2,7)
M M2 (27 3a 7)
1 (17270) (232a1) M3 (1717?) () ’?
M, | (2:3,2) My | (1,2,7) | (2,1,7) | (3,1,7)
M; (17170) (271a3) (3’275) Ms (1737?)
M4 (37 1a 5)
Ms | (1,3,0)
Step 4.1s any operation missing?
Parent 2
The answer is ‘no’ for Child 2. Then we have a new chro-
M; | (1,1,0) mosome. But for Child 1, two operations are missing: Op-
M, | (3,2,6) eration 1 of Job 2 and Operation 2 of Job 1. We put these
v 2’ 3’ 2 operations following Step 4 of the crossover algorithm and
3 | (2,3,2) we calculate the starting time of each operation respecting
My | (1,2,0) | (2,1,3) | (3,1,9) the precedence and resource constraints according to the
Ms | (1,3,0) | (2,2,3) formula indicated in Section 3.4. Finally, we obtain:

admcs a K. Mesghouni et al.

Child 1 M, | (1,2,0) | (2,2,1)
Z\/[l (1’ 170) M2 (2a372)
M2 (372,6) M3 (17130) (3?2)3)
M3 (2a 37 2) M4 (3’ 1’ 7)
My | (1,2,0) | (21,3) | 3.1,9) Ms | (1,3,0) | (2,1,3)
M5 (1a370) (23273) ’
Child 2 B. Swap mutationThe algorithm of the swap mutation is
M, | (2,2,3) as follows:
My | (2,3,2) Step 1. We randomly select one chromosome, one posi-
M; | (1,1,0) 12,5) tion, one direction and two machines.
My | (1,2,0) | (2,1,3) | (3,1,9) Step 2.If (direction = false) then
Ms | (1,3,0) make a left swap.
Else If (direction= true) then
¢ make a right swap.
End if
Mutation operators
Example 4.

Mutation is the other of the two main transformation op-
erators in an evolutionary algorithm. It is the principal Step 1. Assume that the following chromosome is ran-
source of variability in evolution and it provides and main- domly selected and machined; and s, and the sec-
tains diversity in a population. Normally, after crossover, ond position are randomly selected.

each child produced by the crossover undergoes mutation

with a low probability. We consider here two operators Position 1 2 3
of mutation: the assigned mutation and the swap mutation M, (1,2,0) | (2,2,1)
(Mesghouni, 1999). M, (2,3,2)
A. Assigned mutationin this case, we use the flexibility M (1,1,0) | (2,1,3) | 3,2,5)
of our problem, as the operation can be performed by one M,y (3,1,5)
or more machines. The algorithm of the assigned mutation Ms (1,3,0)
is as follows:
Step 1.0ne chromosome and one operation are randomly Step 2. The first case: directior: false — Make a left
selected. swap, we obtain the following chromosome:
Step 2. Re-assign this selected operation to another ma-
chine in the same position if possible, respecting the M, | (1,1,0) | (2,2,1)
precedence and resource constraints. My | (2,3,2)

M3 (1727 0) (23175) (37277)
Example 3. | My | (3,1,7)
Step 1. Suppose that the following chromosome and Op-

M5 (15 37 0)

eration 2 of Job 1 are randomly selected (this operation is
assigned to machind/; in the second position):

The second case: directientrue — Make a right swap,
we obtain the following chromosome:

M, | (1,2,0) [(2,2,1)
M, | (2,3,2) My | (1,2,0) | (2,2,1) | (3,2,3)
M; | (1,1,0) | (2,1,3) | (3,2,5) My | (2,3,2)
My | (3,1,5) Ms | (1,1,0) | (2,1,3)
M5 <1a370) M4 (3,1,5)
Step 2. We re-assignOs ; to machine M5, and obtain Ms | (1,3,0)

the following chromosome:

Evolutionary algorithms for job-shop scheduling a ames

3.2.2. Second Approach A. Row crossoverthe algorithm of this crossover is pre-

Encoding problem sented as follows:

The second approach is based on the second chromosometep 1.Choose randomly two parents (chromosomes) and
representation. It is a direct encoding which permits to one job (a row of the matrix). We suppose that Parents 1
solve some of the problems met in the first encoding suchand 2 andiob J are randomly selected.

as illegal solutions (schedule) after a crossover operation

and the creation of the first population. Indeed, this encod- S;i?:&;?ﬁ.ﬁg:;?::;f ?]j:;)t‘é ;Eecsh;d 1 rgfclgglree%ttqe
ing integrates the precedence constraints. Consequently,S ! '9 '

we can create randomly the first population, and the ge-step 3.Browse all of the jobs (the rowR « 1

netic operators are very simple and produce a feasible While (R < N) and (R # J)) do

schedule. The second encoding is called the Parallel Jobs Copy the remainder of the machines
Encoding (PJE). It also enables us to treat together assign- assigned to the operations.bfb R

ment and scheduling problems. The parallel job encoding of Parent 2 in the same jol&] of Child 1
is given as follows: The chromosome is represented by R—R+1

a matrix where each row is an ordered series of the op- End

erating sequences of this job, each element of this row .) .

containing two terms. The first is the machine which per- To obtain Child 2, go to Step 2 and interchange the
forms the operation considered, the second is the starting©/€s ©f Parent 1 and Parent 2.

time of this operation if its assignment to this machine is

definitive. This starting time is calculated taking into ac- Example 5.

count the resource constraints. The general configurationStep 1.Assume that two chromosomes. Parent 1 and Par-
of this encoding is shown in Fig. 2. Each row of this ma- gp¢ 2, andJob, (the second row in the chromosome) are
randomly selected.

Job; | Operation 1| Operation 2| Operationz;

Joby | (My,tar,) | (Ma,tar,) Parent 1
J0b2 (M?MtMS) (MlvtM1)

Joby | (M3,0) | (M3,3) | (M4,5)
J0b2 (Ml,O) (Ml,l) (M3,5
Jobz | (M5,0) | (M2,2)

~~

Job, | (Ma,tm,) (Ms, tar,)

Fig. 2. Parallel job encoding.

. . Parent 2
trix (chromosome) is presented as follows:

Joby | (My,0) | (My,3) | (M4,9)
Joby | (My,0) (Ms, 3) (Mo, 6)

where each column (operation) of this job contains the Jobz | (M5,0) | (Ms,2)
machine which performs this operation and the starting
time of this operation performed on this machine. For
Jobj, the first operation is performed on machiné, at
time t5,, and Operation 2 is performed on maching,
attimetyy, .

For the example presented in Section 3.2.1, one pos-
sible chromosome has the following parallel job encoding:

JObj : (Ma,atMa); (Mb,th), ey

Step 2. The operation ofJobs in Child 1 (resp. Child 2)
received the same machines as those assignéditg of
Parent 1 (resp. Parent 2).

Child 1 in construction

JObl
Joby | (M3,0) | (M3,3) | (My,5) Joby | (M1,?7) | (My1,7) | (Ms,?)
J0b2 (M170) (M171) (MS’S) Jobd
JObS (M530) (M232)

Child 2 in construction

Crossover operators

In this section we present two new crossover operators Joby
adapted to our parallel job encoding. These operators al- Joby | (My,?) | (M5,7) | (My,?)
ways generate a new legal offspring. Jobs

admcs a K. Mesghouni et al.

Step 3. Copy the remainder of the machines assigned To obtain Child 2, go to Step 2 and inverse the roles
to the operation of the other jobs (in this example it was of Parent 1 and Parent 2.
about Job, and Jobs) of Parent 1 (resp. Parent 2) in the The following example explains the use of this oper-
same jobs of Child 2 (resp. Child 1). ator.
Child 1 in construction Example 6.
Joby | (Mq1,7?) | (My,?) | (My,?) Step 1. It is assumed that the parents of the previous ex-
Joby | (My,?) | (My,?) | (M3,7) ample and Operation 2 are randomly selected.
Jobs | (Ms5,?) | (Ms,7) Step 2. Operation 2 of all the jobsJpb;, Joby, and
Jobs) in Child 1 (resp. Child 2) received the same ma-
Child 2 in construction chines assigned to Operation 2 of all the jobs of Parent 1

(resp. Parent 2) indicated in boldface in Fig. 2.

Joby | (M3,?) | (Ms,7) | (My4,?) . . .

Joby | (M ?) | (Ms,7) | (Ma,?) Step 3. Copy thg: remainder pf the machines assigned to
! ! ! the other operations (Operations 1 and 3Job;, Job,

Jobs | (M5,7) | (M3,?) and Operation 1 ofobs) of Parent 2 (resp. Parent 1) in

the same operations of Child 1 (resp. Child 2) indicated in

We can remark that the two offspring (Child 1 and Child 2)

) ditalic in Fig. 2.
are legal, all of the precedence constraints are respected,
and the starting time of each operation can be calculated Child 1
while satisfying resource constraints. The following solu-
tions, representing feasible schedules, are obtained: Joby | (My,0) | (M3,1) | (My,3)

JObQ (M4,0) (M1,3) (Mg,ll)
Jobs | (M5,0) | (Ma,2)

Child 1

J0b1 (Ml,O) (M4, 1) (M4,7)
JObQ (Ml,].) (M1,2) (M3,4) Child 2
J0b3 (M5,0) (M3, 2)

JObl (Ml,O) (M4, 1) (M477)
Child 2 Joby | (M1,0) | (Ms,2) | (Ms,5)
JObg (M5, 0) (M3, 2)

J0b1 (Mg,O) (M3,3) (M475)
Jobg | (My4,0) | (M5,3) | (Ma,11) Fig. 3. Two new correct children after a column crossover.
J0b3 (Mf)a 0) (MQa 2)

¢

¢
Operator of mutation

B. Column crossoverwe illustrate this operator by the In this part, we present a new mutation operator, called
following algorithm. the controlled mutation operator, designed especially for

Step 1.Choose randomly two parents (chromosomes) and our parallel jobs _encoding,. as it can b_alance the machine
one operation (a column of the matrix). We suppose that loads. The algorithm of this operator is presented as fol-
Parent 1, Parent 2 and Operatibmare randomly selected. :

Step 2. Operationi of all jobs in Child 1 received the SteP 1. Choose randomly one chromosome and one op-

same machines as those assigned to Operatiof all eration from the set of operations assigned to a machine

jobs of Parent 1. with a high load.

Step 3.Browse all the other operations (columigs)— 1 Step 2. Ass_ign thi_s operation to another machine with a
While ((C < I) and (C # 1)) do ({ is the total small load, if possible.

number of operations in the shop)
Copy the remainder of the machines assigned Example 7.
to the other operations of all the jobs Parent2 Step 1. It is assumed that the chromosome of Fig. 4 is
in the same operatior($) of Child 1. randomly selected. The working times of the machines
C—C+1 are calculated, representing their hourly loads expressed
End while. in time units, cf. Fig. 5.

Evolutionary algorithms for job-shop scheduling a ames

Joby | (M1,0) | (M4,3) | (My,9) to the users. In this article, the objective is the minimiza-
Jobs | (My,0) | (Ms,3) | (Ms,6) tion of a makespan. The fitness function can be expressed
Jobs | (Ms,0) | (Ms,2) in two different manners:

1) corresponding to the time moment at which the be-

Fig. 4. Selected chromosome for the mutation.) . L .
lated machine finish executing its last operation, and

Machine | My | My | M3 | My | Ms; 2) corresponding to the time moment at which the be-
Hourly load | 1 5 2 | 13| 5 lated job ends.
Fig. 5. Hourly load of the machine before mutation. The makespanCnax) is calculated, according to

the following flow chart:

It can be observed that machide, has a highload step 1.Begini « 1
and then that machiné&/; has a small load. Operations 2

and 3 of Job; and Operation 1 offob, are performed Step 2.If (first approach (PME) is used) then

by machineM,. One operation is randomly chosen from While (I < M) do
this set. In this case Qperation 2 Qiabl. is assumed to CalculateCyyaa < Cijx (time of comple-
be randomly selected (in boldface in Fig. 4). tion of the last scheduling operation df)
Step 2.Re-assign the operation previously selected to ma- b l +1
) End While
chine M;. o Max(C o o)
maxch — a. max1l; Ymax2; -+ Ymax
After calculating the new starting time of all oper- End If " * ! 2 M
ations satisfying the resource constraints, we obtain the
chromosome of Fig. 6. If (second approach (PJE) is used) then
While (I < N) do
Joby | (My,0) | (My,1) | (My,4) C_:alculateCmaxl — ij:j,k (time qf comple—
Joby | (My,0) | (Ms,3) | (Ms,6) EI(CT (l)f-:hle last scheduling operation of jo)
Jobs | (M5,0) | (Ms,2) End While
.) Cmaxch - Max(cmaxla OmaxZa ceey CmaxN)
Fig. 6. Our chromosome after mutation. End If
The hourly load for this new solution is calculated, For each chromosome the fitness function aims to
giving the results shown in Fig. 7. find the minimum Cmax, and is represented as follows:
Machine Ml M2 M3 M4 M5 Fitness = Min (Cmaxchla CmaxchQa ceey Cmaxchpopsizc)a

Hourly load | 4 S 2 ! > where the subscripts represent the chromosomes.

Fig. 7. Hourly load of the machine after mutation.

¢

3.4. Computation of the Starting Time

For efficient use of evolutionary algorithms in such a com-

binatorial problem, we should choose efficiently a repre-

3.3. Fitness Function sentation of the solution, the encoding should be simple,
))) robust, and give the user the necessary information. Thus
Fltness_ is a measure of how We_II an algorithm has Iearntwhen designing our two-chromosome representation, to
to predict the outputs from the inputs. The goal of hav- 4\ the starting time of each operation on each chromo-
ing a fitness evaluation is to give feedback to the learn- gome js a piece of information. In order to calculate the

ing algorithm regarding which individuals should have a giarting time of each operation, we must define the follow-
higher probability of being allowed to multiply and repro- g yectors:

duce and which of them should have a higher probability _ _ _
of being removed from the population. Tr: Contains the deadline of the last operation scheduled

Evaluation functions play the same role in EAs as the on Job; (size(Tr) = N).
environment in natural evolution. It must indicate the as- D, : Contains the deadline of the last operation sched-
pects of schedules which make them seem right or wronguled on machinelf;, (size(Djy,,) = M).

K. Mesghouni et al.

amcs @

Table 2. Operating sequences of the jobs and their processing times on all machines.
Ops | Order| M1 M2 | M3 M4 | Ms Me | M7 | Ms | Mo | Mo
01 1 4 6 9 3 5 2 8 9 5
Job1 | O21 | 1,32 3 2 5 1 5 6 9 10 3
03, 4 1 1 3 4 8 10 4 11 4
O, 4 8 7 1 9 6 1 10 7 1
Joba | 022 2,1,3 2 10 4 5 9 8 4 15 8 4
032 6 11 2 7 5 3 5 14 | 9 2
O3 8 5 8 9 4 3 5 3 8 1
Jobs [O23 | 1,2,3 9 3 6 1 2 6 4 1 7 2
033 7 1 8 5 4 9 1 2 3 4
O14 5 10| 6 4 9 5 1 7 1 6
Jobs | O2a | 123]| 4 2 3 8 7 4 6 9 8 4
O34 7 3 12 1 6 5 8 3 5 2
O 5 6 1 4 1 10 4 3 11 13 9
Jobs | O2s 2,3,1 7 10 4 5 6 3 5 15 2 6
O35 5 6 3 9 8 2 8 6 1 7
O16 8 9 10 8 4 2 7 8 3 10
Jobe | Or6 | 1,2,3 7 3 12 5 4 3 6 9 2 15
036 4 7 3 6 3 4 1 5 1 11
O17 5 4 2 1 2 1 8 14 5 7
Job7 | O27 | 3,2,1 3 8 1 2 3 6 11 2 13 3
037 1 7 8 3 4 9 4 13 10] 7
018 8 3 10 7 5 13 4 6 8 4
Jobs | O28 | 3,12 6 2 13 5 4 3 5 7 9 5
O3 5 7 11 3 2 9 8 5 12 8
O19 3 9 1 3 8 1 6 7 5 4
Jobo | O29 | 12,3 4 6 2 5 7 3 1 9 6 7
O3 8 5 4 8 6 1 2 3 10 12
O1.10 9 2 4 2 3 5 2 4 10 23
Jobio | 0210 | 3,2,1 3 1 8 1 9 4 1 4 17 15
0310 4 3 1 6 7 1 2 6 20 6
Beg'h Procedure UpdatéTr[j], Das, [i])
i+ 1
While (i < I) do Begin
J—1 Trlj] < tijm, + Pijm,
While (Job; < N) do D, [i] < tijne, + Pijmy
Calculate(t; ;. ar,) End
Update (Tx[j], D, [i])
End while
End while 4. Simulation Results
End.

Procedure Calculatét; ; as,)
Begin
If (Tr[j] < Da,li]) then
ti g My, — Dy, m
Else
tija, — Tr[j]
End

Computer simulations were performed to evaluate the ef-
fectiveness of the parallel machine and parallel job encod-
ing. For this purpose, we analysed the following exam-
ple: We consider 10 jobs and 10 machines. This prob-
lem presents a total flexibility (any machine can perform
any operation). The makespan is known and equal to 16
units of time. Each job has 3 operations in its operating
sequence. The processing times of these operations are
presented in Table 2.

Evolutionary algorithms for job-shop scheduling a amcs

A) Using the first approach (parallel machine 60
encoding) - 451
The initial population has been created by taking the %30 |
known solution as the first chromosome. We applied vari- g
ous mutations to extend it and to obtain 50 chromosomes. ~ ™|
We used then genetic operators to improve this set of so- o ; ; ; ; ; ; ; ;
lutions towards an optimal one. Ten test runs were per- o 5 10 15 20 25 30 3 40 45 %0
formed with the following rates of genetic operators: Chromosomes
Crossover rate- 75%, Fig. 9. Makespan of the first randomly generated population.
Mutation rate= 5%,
Number of generations: 5000. after ten executions with different genetic parameters. The
Table 3 shows the generation number giving the bestcrossover and mutation rateB.(and P,,) were varying
makespan. The best result is presented in Fig. 8. and the population size was fixed to 50 chromosomes. The

makespan obtained in all the cases is equal to 7 time units.
Table 3. Generation number giving the best makespan. We run it for 5000 generations.

The best solution is obtained after 970 generations

Run number| Generation numbef Makespan with P, equal to 0.75,P,, equal to 0.1 and it presented

1 2265 7 in Fig. 10(a). We can remark that we obtained rapid con-

2 2136 7 vergence when the mutation rate varied between 0.1 and
0.2. The parallel machines encoding and the parallel jobs

3 1965 ’ encoding give very good results. Therefore, the PJE takes

4 1936 7 lower time regarding the PME.

5 2035 7

6 1853 7

7 1896 7 5. Conclusion

8 1906 ! The application of evolutionary algorithms to a flexible

9 1885 7 job-shop scheduling problem with real-world constraints

10 1869 7 has been defined. We demonstrated that choosing a suit-
able representation of chromosomes (parallel encoding) is
an important step to get better results.

20 We have developed genetic operators adapted for
c 151 each representation (swap and assigned mutation for the
a PME, and row and column crossover and controlled mu-
g ‘_I*\—‘ tation for the PJE), and an efficient method to create an
= 5 initial population (a combination of some methods for the

PME, and a random approach for the PJE because all of
0 ‘ ‘ ‘ ‘ the constraints are integrated on the chromosome syntax).
0 1000 2000 3000 4000 5000

A proper selection of genetic parameters for an ap-
plication of EAs is still an open issue. These parameters
Fig. 8. Decrease in the schedule cost. (crossover rate, mutation rate, population size, etc.) are
usually selected heuristically. There are no guidelines as
We can remark that an improvement @, was to the exact strategies to be adopted for different prob-
over 56% of time. The best makespan is equal to 7 time lems. In this work, we applied a fixed population size
units and was obtained in the best case compared with ouwith different values of crossover and mutation rates. The
ten test runs after 1853 generations. controlled mutation reduces the blind aspect of genetic
algorithms. Investigations are therefore necessary to de-
B) Using the second approach (parallel job encoding) termine these controlling parameters properly, in order to
In this case, the initial population was created randomly improve the performance of the proposed method. Sim-
and is shown in Fig. 9. We use ten simulations with ulation results show that the proposed parallel represen-
our evolutionary algorithms to improve the solution to- tations are suitable to the job-shop scheduling problem,
wards an optimal one, with different crossover and mu- confirming the effectiveness of the proposed approach.
tation rates. Figure 10 represents the solutions obtained

Generations

%
wn
Makespan 6

K. Mesghouni et al.

w
o

25 A

_ a N
o oo
TR

o
!

o

0 1000 2000 3000 4000 5000

Generations
(&) P. =0.75andP,, = 0.1.

30
§ 25 1
& 20 A
2 1o
2 5 i
0 T T T T
0 1000 2000 3000 4000 5000
Generations
(b) P. =0.75andP,, = 0.2.
30
g 25 N
S 20
E 15
s 10 |
2 5 |
0 . r . .
0 1000 2000 3000 4000 5000
Generations
(c) P. =0.75andP,, = 0.3.
25
= 20
[}
% 15 -
& 10
s 5
0
0 1000 2000 3000 4000 5000
Generations
(d) P. =0.95andP,, = 0.1.
30
= 25
& 20
2 50
E 5 |
0 r . . .
0 1000 2000 3000 4000 5000
Generations
(e)P. =0.95andP,, = 0.2.
30
g 25 +
& 20
<o
= 5
0

0 1000 2000 3000 4000 5000

Generations
(f) P. = 0.95 andP,,, = 0.3.

Fig. 10. Solutions obtained after ten exucutions.

References

Baghi S., Uckun S., Miyab Y. and Kawamura K. (199Explor-
ing problem-specific recombination operators for job shop
scheduling — Proc. 4-th Int. ConfGenetic Algorithms,
University of California, San Diego, pp. 10-17, July 13—
16.

Banzhaf W., Nordin P., Keller R.E. and Francone F.D. (1998):
Genetic Programming: An Introduction on the Automatic
Evolution of Computer Programs and Its Applicatier
San Francisco: Morgan Kaufmann.

Bruns R. (1993):Direct chromosome representation and ad-
vanced genetic operators for production schedulirg
Proc. 5-th Int. ConfGenetic Algorithms, University of Illi-
nois at Urbana-Champaign, pp. 352—-359.

Carlier J. and Chretienne P. (1988): Problemes
d’'ordonnancement: Modélisation / complexité / algo-
rithmes — Paris: Masson.

Croce F., Tadei R. and Volta G. (1995% genetic algorithm
for the job shop problem— Comp. Opers. Res., Vol. 22,
No. 1, pp. 15-24.

Dasgupta D. and Michalewicz Z. (1997Fvolutionary Algo-
rithms in Engineering Applications— Berlin: Springer-
Verlag.

Della Croce F., Tadei R. and Volta G. (1995) Genetic Al-
gorithm for Job Shop Problem— Comput. Ops. Res.,
Vol. 22, No. 1, pp. 15-24.

Fonseca C.M. and Fleming P.J. (1998Multiobjective op-
timization and multiple constraint handling with evolu-
tionary algorithms, Part |: Unified formulation— IEEE
Trans/SMC, Part A: Syst. Hum., Vol. 28, No. 1, pp. 26-37.

Garey M.R. and Johnson D.S. (1979Computers and In-
tractability: A Guide to Theory of NP-Completeness
New York: W.H. Freeman and Co.

Goldberg D.E. (1989)Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning— Massachusetts: Addison
Wesley.

Golver F., Taillard E., De Werra D. (1993A user’s guide to
tabu search— Ann. Opers. Res., Vol. 41, No. 1, pp. 3-28.

Kirkpatrick S., Gelatt C.D. and Vecchi M.P. (1983)Opti-
mization by simulated annealing— Science, Vol. 220,
No. 4598, pp. 671-680.

Mesghouni K., Hammadi S. and Borne P. (1998h modeling
genetic algorithm for flexible job-shop scheduling problem
— Stud. Inform. Contr. J., Vol. 7, No. 1, pp. 37-47.

Mesghouni K. (1999):Application des algorithmes évolution-
nistes dans les problemes d’optimisation en ordonnance-
ment de la production— Ph.D. Thesis, Lille 1 University,
France.

Mesghouni K., Pesin P., Trentesaux D., Hammadi S., Tahon C.
and Borne P. (1999}ybrid approach to decision making
for job-shop scheduling— Prod. Plann. Contr. J., Vol. 10,
No. 7, pp. 690-706.

Michalewicz Z. (1992):Genetic Algorithms + Data Structures
= Evolution Programs— Berlin: Springer.

Evolutionary algorithms for job-shop scheduling @ amcs

Portman C.M. (1996):Genetic algorithms and scheduling: A Syswerda G. (1990)Schedule optimization using genetic algo-

state of the art and some propositioa- Proc. Workshop rithm, In: Handbook of Genetic Algorithm. — pp. 323—

Production Planning and Control, Mons, Belgium, pp. i- 349, New York: Van Nostrand Reinhold.

XXIV. Uckun S., Baghi S. and Kawamura K. (1998)anaging genetic
Quagliarella D., Périaux J., Poloni C. and Winter G. (199%): search in job-shop scheduling— IEEE Expert, Vol. 8,

netic Algorithms and Evolution Strategies in Engineering No. 5, pp. 15-24.

and Computer Sciences- England: John Whiley.

Received: 12 February 2001
Revised: 23 July 2001
Re-revised: 2 July 2003

