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A new method of detecting deadlocks and traps in Petri nets is presented. Deadlocks and traps in Petri nets can be represented
by the roots of special equations in CNF form. Such equations can be solved by using the search tree algorithm proposed
by Thelen. In order to decrease the tree size and to accelerate the computations, some heuristics for Thelen’s method are
presented.
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1. Introduction boundedness, persistence, etc., and also the reachability
analysis.
Petri nets (Murata, 1989) are a mathematical model de- The calculation of deadlocks and traps is one of

scribing parallel discrete systems. They are used fory,o most important analysis tasks. For some classes of
the modelling, simulation, analysis and synthesis of @ peyi nets (and their extensions) properties like liveness
wide range of systems, such as parallel algorithms, asyn-, 4 reversibility can be checked by an analysis of dead-
chronous digital circuits, networks, multitasking operat- locks and traps (Barkaoui and Minoux, 1992; Jetaal.

ing systems, communication protocols, distributed soft- 5495. gchmidt. 1997: Ohtet al. 1999° Beskt al. 1990).
ware, industrial control systems, etc. (Girault and Valk, ’ " ' ’ ' S
2003). Several languages for the description of logi- The detection of deadlocks and traps is also impor-

cal control algorithms, e.g. a standard industrial languaget@nt as an independent task. In this paper a general form of
SFC (Lewis, 1995), are based on Petri nets or similar mod-this task is considered, i.e. detecting all the deadlocks and
els. The Petri net approach has also been used for simu{raps of a given net. Deadlocks and traps of a Petri net cor-

lating computation processes, neural networks and logical™®SPond to the decisions of some logical equations, which
reasoning. can be represented in conjunctive normal form. Thelen’s

] . o ] _method (Thelen, 1988; Mathony, 1989) enables efficient
The analysis of Petri nets is importantin most of their ca\cylation of prime implicants of a Boolean function rep-

applications. It often turns out to be a time- and memory- yesented in such a form. In this paper applying Thelen’s

consuming task. The number of reachability states of & method to the above-mentioned logical equations is dis-

Petri net depends exponentially on its size, so the brutec;ssed. It makes it possible to obtain sets of deadlocks

force approach does not allow a practical analysis of big 5ng traps in the form of ternary vectors. Some heuristics

nets. Thus many advanced methods of a Petri net analysi$y; Thelen’s method are suggested and computer experi-

have been developed. Generally, those methods can bgnants are performed.

divided into three classes: those based on the analysis of

the state space, reduction of nets (keeping the properties

to be analyzed) and solving systems of equations, linear L

or logical. The main tasks of a Petri net analysis are the 2. Definitions

checking of some properties of the nets, i.e. the Iiveness,zll_ Petri Nets

t The paper contains some results from the Ph.D. dissertation of . . .
A. Wegrzyn (2003) and results of new research partially supported Formally, a Petri net (Murata, 1989) is a triple N =

by the State Committee for Scientific Research in Poland under the (P, T, F), where P is a set of places]" is a set of tran-
grant no. 4T11C006 24. sitions, PNT =0, FF C (P x T)(T x P).
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The sets of input and output transitions of plaee
are defined respectively as follows:

*p={teT: (t,p) € F},

p*={teT: (pt) € F}.

For example, for the net shown in Fig. 1 we have
*p1 = {ts,t5} andp,® = {t1}.

p,

Fig. 1. Petri net (Kotov, 1984).

The sets of input and output places of transittoare
defined respectively as follows:

‘t={pepP:(pt)cF}
t*={peP: (t,p) € F}.

For example, for the net shown in Fig. 1 we hatte =
{p1} andt:* = {p2,p3}.
Graphically, a Petri net is represented as a bipartite

oriented graph whose nodes correspond to places and tran-

sitions, and arcs go from transitions to their output places
and from places to their output transitions (cf. Fig. 1).

A marking of a net is defined as a functidd : P —
{0,1,2,...}. It can be considered as a number of tokens

situated in the net places. The number of tokens in a place

p for marking M is denoted byM (p). A transition¢ is
enabled and can fire if/(p) > 0, Vp € *t. Transition

firing removes one token from each input place and adds

one token to each output place of it. A marking can be
changed only by transition firing. The initial marking
is usually specified.

2.2. Deadlocks and Traps in Petri Nets

A deadlock is a set of places such that every transition

which outputs to one of the places in the deadlock also

inputs from one of these places. This means that once all
of the places in the deadlock become unmarked, the entire
set of places will always be unmarked; no transition can

place a token in the deadlock because there is no token
in the deadlock to enable a transition which outputs to a

place in the deadlock (Peterson, 1981) (Fig. 2). Formally,

a nonempty subset of places of a net NV is a deadlock

if *S C S°.
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Fig. 2. Example of a deadlockS = {p1,p2,ps3},
*S = {t1}, S* = {t1,t2).

A trap is a set of places such that every transition
which inputs from one of these places also outputs to one
of these places. This means that once any of the places in a
trap has a token, there will always be a token in one of the
places of the trap. Firing transitions may move the token
between places but cannot remove a token from the trap
(Peterson, 1981) (Fig. 3). Formally, a nonempty subset of
places@ ofanetN isatrapif@® C *Q.

The union of two deadlocks (traps) is again a dead-

Fig. 3. Example of a trapQ = {p1,p2,p3},
Q* ={t1}, Q= {t1,t2}.
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lock (trap). A deadlock (trap) is called a basic deadlock Animplicant k£ of a Boolean expressioR’ is a con-
(basic trap) if it cannot be represented as a union of otherjunction of literals such that — F. A prime implicant
deadlocks (traps). So all the deadlocks (traps) in a Petrik, of a Boolean expressiof’ is an implicant of ' such
net can be generated by the union of some basic deadthat removing any literal fronk,, leads to a conjunction
locks (traps). A deadlock (trap) is said to be minimal ifit %’ such thatk’ is not an implicant ofF.

does not contain any other deadlock (trap). Minimal dead-

locks (traps) are basic deadlocks (traps), but not all basic )
deadlocks (traps) are minimal. 3. Known Methods of Calculating Deadlocks

The Petri net shown in Fig. 1 contains 10 deadlocks ~ and Traps
and 10 traps (excluding the entire set of places, which is
both a deadlock and a trap). In Table 1 all those dead-
locks and traps are listed; minimal deadlocks and traps

3.1. Detecting Deadlocks and Traps by Solving
Logical Equations

are marked. Deadlocks and traps do not depend on the initial markings
and can be detected by a structural analysis of the net. A
Table 1. Sets of deadlocks and traps of the Petri deadlock S has to satisfy the set of conditiong; € T':
net shown in Fig. 1. t;*NS #0:= *;NS # (. Analogous conditions exist
for a trap. They can be represented in a natural way by
Deadlock | Minimal Trap Minimal logical equations.
deadlock trap . .
Consider a set of Boolean variableX =
{ps,po} Y {p1,p2} Y {z1,29,...,2m}, wherem = |P| and z; = 1 if and
{p1,p5,p6} N |{p1,p2,p5,p6} N only if p; belongs to a subset of places. Denote Xy
{p1,p2,p3,P6} Y {p1,p2,pa} N and X the subsets ofX' corresponding td¢; and ¢;°,
{p1,p2,p5,P6} N {p1,p2,p4,p6} N respectively. Denote by [X;] and V[X/] the disjunc-
{(p1, 2,73, P5, P6} N {(p1, 02,035,959} | N t!ons of the corfgsponding variables. Then the condi-
{(p12ps,pa, o} v (P12 p2, pa pos po} N tion zor the transitiont; can be expressed by the formula
{p1,p2,p3,pa,p6} | N [{p1,ps,pa,p6} Y viXd = vixd = 1. :
(p1.p1,porpo} N (1. popspepol | N '_I'_hen all the deadlocks of_ the Petri _n(e‘t’, T,F) are
(oo popo) N (P12 o po) N specified by the roots of a logical equation.
{prpapaspsipet] N [{prpspspe) Y Affirmation 1 (Aff. 4.9 from (Zakrevskij, 1999)). Al
the deadlocks of a Petri neP N are defined by the roots
of the logical equation
2.3. Normal Forms and Implicants of Boolean AL (VX = VX)) =1, (3)

Expressions

. L " L wheren = |T|.
A literal is either a propositional lettep (a positive lit-

eral) or the negatiom of a propositional lettep (a neg- The situation with traps is analogous:
ative literal).

A conjunctive normal form (CNF) formula is the one  Affirmation 2 (Aff. 4.8 from (Zakrevskij, 1999)). All
which is a conjunction of disjunctions of literals, i.e. a the traps of a Petri neP N are defined by the roots of the

formula of the form logical equation
(a1 Voo V) A ALt Voo NV ), (1) n (VXS] - VX)) =1, (4)
where eachl;; is either of the formp, or of the formp wheren = |T|.
for some propositional lettep.
_ Adisjunctive normal form (DNF) formula is the one So, deadlocks and traps of a Petri net can be calcu-
which is a disjunction of conjunctions of literals, i.e. a |ateq by solving logical equations. This methodology is
formula of the form described in (Zakrevskij, 1999). How to solve efficiently

U A M) VooV Gd Ao Allm)s— (2) equations of such kind? One of the methods is the elimi-
nation of implications and transformation of the equation

where eachl;; is either of the formp, or of the formp into a DNF, from which the roots can be obtained. An-
for some propositional lettep. other approach allows simplifying the calculations, taking
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into account the fact that in (3) and (4) all the variables are 1. A particular class of Boolean equation systems can

met without negation. In that approach the ternary matri-
ces are used to represent the equations and the roots are
obtained by combinatorial operations on those matrices.
For details, see (Zakrevskij, 1999). Another approach to
symbolic calculation of deadlocks and traps is described
in (Schmidt, 1996a; 1996b).

Let us consider some more transformations of the
equations which can simplify their solving. Let = |¢,°|
and zi",... 2! be the variables corresponding to the

output places ot;.

VIXG] = VIX] = VIXF] Vv (VX)

(3

= i:lxg* v (VX))
= A (a7 v vIXD). 6

So the equation is transformed into the conjunctive
normal form. Note that changing the interpretation of the
variables so that the belonging of a place to a set means
that the corresponding variable has valdiewould lead
to the inversion of all the literals in (5) and the obtained
expression turns out to be a conjunction of Horn clauses.

There is an efficient polynomial-time algorithm solv-
ing the satisfability of a Horn expression and finding a de-
cision with a minimal number of variables having value
(Papadimitriou, 1994). So for a given subset of places itis
possible to calculate efficiently tmeaximal deadlock con-
tained in it This approach is used in (Barkaoui and Mi-
noux, 1992). There are also methods of finding minimal
deadlocks or minimal deadlocks containing given places
(Tanimotoet al, 1996; Yamauchet al., 1996; Yamauchi

be transformed into systems of linear inequalities, by
solving which the deadlocks or traps can be detected
(Silva, 1985).

. The so-called p-invariants can be obtained by solving

a linear equationrdz = 0, where A is the incidence
matrix of a net (Murata, 1989). The set of states
corresponding to a p-invariant is an st-component (a
deadlock and a trap at the same time). But not every
deadlock and trap has a corresponding p-invariant.
In the second approach (Lautenbach, 1987) the net
is transformed in such a way that for every deadlock
(or trap) of the initial net there is a correspondipg
invariant of the transformed net. So, the detection
of the deadlocks (traps) of the initial net can be per-
formed by solving linear equations generated accord-
ing to the transformed net.

3. The support of a vector being a solution of the linear

inequality Az > 0 is atrap in the corresponding net,
but not every trap corresponds to such a solution. In
the third approach (Sifakis, 1979) the incidence ma-
trix is transformed in such a way that it describes the
same underlying graph of the net, but with weighted
arcs. Solving the obtained inequality allows us to de-
tect the traps of the net. As far as the tasks of detect-
ing deadlocks and traps are equivalent (a deadlock
of anet N is a trap in the net obtained frony by
reversing all arcs), the approach can be used for de-
tecting deadlocks, too.

The paper is dedicated to detecting deadlocks and

traps by solving logical equations, so the methods using

and Watanabe, 1999). But in this paper the task of gener-linear algebra are not considered here in detail.

ating all the deadlocks is considered. Applying the above-
mentioned approach to it would require a time-consuming
combinatorial search.

Note that the approach described in this subsection
does not lead to finding basic deadlocks (traps) only, un-

4. Thelen’s Prime Implicant Algorithm

Thelen (1988) proposed an efficient algorithm finding all

like the approaches described below. But this does notth€ Prime implicants of a Boolean expression in the con-

mean that all the deadlocks (traps) are calculated and repjunctive normal form. It is_ based on building a search tree,
resented explicitly; it would lead to non-compact repre- such that every level of it corresponds to a clause of the

sentations. The Boolean equations (3) and (4) can heCNF, and the outgoing arcs from a node correspond to the
solved in such a way that the set of their roots (dead- literals of the disjunction. The conjunction of all the liter-

locks, traps) is represented by a ternary matrix, every row als corresponding to the arcs down the path from the root

of which describes several solutions (see the example be_of the tree'to a node is associated with a nodg. The tree is
low). That is how we are going to solve the task. searched in the DFS order, and several pruning rules are

used to minimize it (Fig. 4). The rules are listed below:

3.2. Other Approaches to Detect Deadlocks and Traps  R;: An arc is pruned if its predecessor node-conjunction

) ) contains the complement of the arc-literal.
There are methods in which deadlocks and traps are cal-

culated by solving systems of linear equations or inequal- R2: A disjunction is discarded if it contains a lit-
ities. Those methods can be grouped into three classes  eral which appears also in the predecessor node-
(Ezpeleteet al.,, 1993): conjunction.
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exponentially depends on the expression size, and cannot
be less, because the number of prime implicants may be
exponential.

Mathony (1989) proposed the additional fourth re-
duction rule, which reduces the search tree up to 25%.
But using this rule complicates the algorithm remarkably,
and in such a variant of the algorithm linear memory is
not enough even for the tree searching. Another way of
improving Thelen’s method is reordering clauses in the
expression and literals into clauses. The next section is
dedicated to such heuristics.

b
5. Improvements of Thelen’s Method
Gb aD e As far as the algorithm requires exponential time, the min-
R,| R, /| imization of the search tree is important. Some heuristics
NIV al ld a d (Mathony, 1989) are known for doing this. One of them is

sorting the disjunctions by their size in ascending order.

ab ac abc bed

Heuristic 1. (Sort by Length)Choose a disjunctiorD;
with the smallest number of literals.

Fig. 4. Tree examplef = (aVbVc)A(aVh)A(bVe)A(aVd). Consider a complete search tree (without arc prun-
ing). Its size (the number of nodes) can be calculated ac-

] ] cording to the formula
Rs: An arc is pruned if another non-expanded arc on a 4
Vi=1+> [I%s 6)

higher level still exists which has the same arc-literal.
i=1j=1

Leaf nodes of the tree are the elementary conjunc-
tions being the prime implicants of the expression or the Where L; is the number of literals in thg-th clause. It
implicants absorbed by the prime implicants|culated is easy to see that the size of the tree depends on the order
before So there is no need of calculatiay products and ~ Of clauses in the formula. So sorting clauses can reduce
keeping them in memory before one can decide whetherthe tree. Let a Horn formula consist of 5 clauses, each
the given product is a prime implicant. Thelen even claims having a distinct number of literals, from 2 to 6. If they
that his method has a linear space-complexity. This claim are sorted from the maximal to the minimal length, the
is based on the fact that for searching the tree it is enoughcomplete search tree will contain 1237 nodes. If the same
to keep in memory only the current path from the root, and is performed from the minimal to the maximal lenghts, the
its length depends linearly on the number of clauses. Buttree will contain only 873 nodes. In the second case the
for every leaf of the tree it is necessary to check whether cost is by 30% smaller. So sorting clauses influences the
the corresponding conjunction is absorbed by any of the tree size remarkably. Of course, for reduced search trees
previously calculated, so the algorithm has to keep in this relation may differ. In Table 1 the results of computer
memory all the prime implicants calculated before. And experiments are shown.
it is easy to show that in the worst case the number of Now let us turn to the pruning rules. Note that ev-
prime implicants exponentially depends on the expressionery rule can be implemented only if the disjunction under
size (for example, when the literals never repeat in the ex-consideration contains the same variables as the disjunc-
pression), hence Thelen’s method requires an exponentiations corresponding to the predecessor nodes. So we may
space in the worst case. But due to the reduction of thesuppose that sorting the clauses according to the variables
search tree, it requires less space than the straightforwardnay also lead to tree reduction. Consider the next sorting:
multiplication of the clauses. Concerning time complex- at each position in the Horn formula insert the conjunc-
ity, Thelen did not show any theoretical evaluation of it, tion which has a minimal number of variables that do not
but he showed that his method is faster than other knownbelong to any previous clause.
methods, e.g. (Reusch, 1975; Das and Khabra, 1972). It
is evident, however, that the worst-case time-complexity Heuristic 2. (Sort by Variables)IChoose a disjunctiorD;
of this algorithm is exponential: it cannot be greater, be- With the smallest number of literals that do not appear in
cause even without any pruning the size of the search treethe disjunctions chosen before.



A. Wegrzyn et al.

de ce be a

Fig. 5. Order of literals in disjunctions, formulg = (a VbV eV d) A (aV e): (a) worst case,
rule R, blocks all rulesRs, (b) best case, all rule®s occur before ruleR,.

Table 2. Results of computer experiments

Net | PI No Sort Sort by Length Sort by Variables || Reordering Literals SV +RL

Param. TS [NPI| TS [ NPI| % TS [NPI| % [[ TS |NPI] % | TS [NPI[ %
20x15| 144 42194| 6336|| 7680| 1296| 18.2| 7522|1296| 17.8| 2536 0 6.0|| 702 0| 1.7
20x18 | 145| 7755| 420|| 9504| 420|122.6|| 6391| 420| 82.4| 2596 0| 33.5|2191 0]28.3
20x18| 12| 1422| 150 645 24| 454 599 24| 42.1| 247 0| 17.4|| 283 0]19.9
20x18 | 105| 2486| 319| 3166| 319|127.4|| 3166| 319|127.4| 702 0| 28.2|| 1067 0]42.9
20x18| 70| 3024| 317| 1543| 125| 51.0|| 1435| 125| 47.5| 816 0| 27.0| 738 0| 24.4
20x18| 28| 1346| 168 671 84| 499 635 84| 47.2|| 333 0| 24.7| 247 0|18.4
20x20| 36| 4356| 377|| 1638, 48| 37.6| 1575| 48| 36.2| 705 0| 16.2| 654 0]15.0
20x20| 16| 2650 92 660| 56| 24.9 826| 56| 31.2|| 881| 0| 33.2| 391| 0]14.8
20x20 | 117| 3418| 406|| 4181| 406|122.3|| 4181| 406| 122.3| 773 0| 22.6( 1139 0]33.3
25x20 | 946 || 51275| 6111 || 26030| 6111| 50.8|| 26075| 4895| 0.9 6365| 0| 12.4|2910| 0| 5.7
25x20 | 144 || 55608| 9026|| 4222| 540| 7.6|| 1770, 540| 3.2||2283| O 41| 438| 0| 0.8
25x20 | 560|| 63234 | 5622 || 22826| 6226| 36.1| 18831| 6226| 29.8| 4170 0 6.6 2125 0| 34
25x20| 91| 6838| 288| 4603| 288| 67.3|| 4109| 288| 60.1]1917| 0| 28.0(| 970| 0] 14.2
Average 58.5 53.7 20.0 17.1

To the best of our knowledge, this is an original Heuristic 3. (Reordering Literals)Split the set of liter-
heuristic. It also allows a remarkable reduction of the als of every disjunctionD; into two parts. One part()
search tree. The results of computer experiments are preis formed from literals that appear in any of the clauses
sented in Table 2. D;y1,...,Dy (where k is the number of clauses) and

Sorting clauses in an expression can be used togeththe second part/{ C) contains the remaining literals. The
with reordering literals in disjunctions. Let us consider the OPtimized disjunction contains literals in order
next heuristic which reorders literals to optimize the usage
of pruning rulesR, and R3. These rules depend on each D, ={PV...VNP,VP,y1V...VP,}
other on every level. Asis shown in Fig. 5, rul&, blocks NC
the usage of ruleR; when R, occurs beforeR3. This
causes an unnecessary growth of the tree and a possibility ~ The literals in C) are sorted in the order of the grow-
to produce non-prime implicants. In most cases the effecting frequencies inD; 1, ..., Dx.
of blocking rules R3 by rule R, can be avoided.

C
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An additional positive feature of reordering literals in If necessary, the compactness of the representation
clauses is that almost all implicants produced by the algo- of the sets of traps (deadlocks) can be increased by using
rithm are prime (see Table 2). This effect is similar to the minimization methods of Boolean functions (De Micheli,
effect of the fourth pruning rule mentioned in Section 4 1994).

(Mathony, 1989), but can be obtained without any com-
plication of the algorithm of building the tree itself. Note
that there are still expressions for which the non-prime im-
plicants are generated, e(@.VbVc) A(dVbVe)A(aV
xVy)AdVuVz).

7. Example
7.1. Proposed Approach

Let us find all deadlocks for the Petri net from Fig. 6. First,

The results of computer experiments are summarized . .
a Boolean formula is generated according to (3):

in Tab. 2. For the tests the expressions corresponding

to deadlocks and traps of Petri nets (5) were used. The (21 — x6)(x2 V 23 — 1)(21 — 22 V 24),
Petri nets were randomly generated by the tool Paral, us-
ing the algorithm described in (Pottosin, 1995) (the EFC (6 — x3 V a5)(Ta V25 — 76) = 1. (7)

nets were generated). In the first column, the number of
places and the number of transitions of a net are given (e.g.
20 x 18). TS means the tree size (the number of nodes),
Pl stands for the number of prime implicants, NPI denotes
the number of non-prime implicants being the leaves of
the search tree. For every heuristic the column ‘%’ shows
the percentage of the tree size versus the size in the case
when no heuristic is used. The experiments show that the
best way is sorting disjunctions according to Heuristic 2,
and literals in the disjunctions according to Heuristic 3.

Fig. 6. Petri net (Zakrevskij, 1999).

6. Algorithm of Calculating Deadlocks

Next the formula is transformed into CNF using (5):
and Traps

(fl V xG)(fg V xl)(fg V xl)(Tl V X2 Vv 1’4),

As is shown in Subsection 3.1, a Boolean formula de-
scribing deadlocks or traps of a Petri net can be easily
transformed into CNF (5). So Thelen's method can be ef- Al prime implicants are found and the tree size for
ficiently applied to calculating deadlocks and traps. The {ifferent heuristics is shown below:

corresponding algorithm is presented below.

(fﬁ vV T3 \ :Z?5)(T4 \Y Iﬁ)(fg, vV Iﬁ) =1. (8)

No heuristic — order like in (8) 37 nodes,

Sort by Length 27 nodes,
Input: A Petri net Sort by Variables 25 nodes,
Output: The ternary matrix of (deadlocks) traps Reordering Literals 37 nodes,

SV+RL 25 nodes.

BEGIN
The prime implicants are represented as a ternary
1. Generate a Boolean formula for deadlocks (traps) matrix. For the analyzed Petri net, there are 11 dead-

from the Petri net according to (3) and (4). locks, e.g. the first row defines 2 deadlocks;, ps} and
2. Transform the formula into CNF applying (5). {4, ps, D6}
3. Sort disjunctions and literals in disjunctions to mini-
mize the search tree.
(a) Sort disjunctions by variables (Heuristic 2). - q

P1 P2 P3 P4 P5 De

. C . - 0 0 0 — 1 1
(b) Sort literals in disjunctions (Heuristic 3). 000 1 1 1
4. Find all prime implicants of the Boolean formula us-
. 11 1 - =1
ing Thelen’s method. L1 L1 (9)
5. Representthe set of prime implicants as a ternary ma- 1 - 1 1 - 1
trix. Each row corresponds to one prime implicant
and represents one or more deadlocks (traps). 1 - -1 1 1]

END



dmCs @ A. Wegrzyn et al.

7.2. Some Other Symbolic Approaches may look as follows:

Using the method described in (Zakrevskij, 1999), the task b t2 ty s s

would be solved as follows: The expression in the left part - A

of (7) is transformed into a conjunction of DNFs and then P1 -1 2 -1 0 0

into DNF by removing parentheses: D2 0 -1 10 O
P3 0 -1 0 1 0 (12)

(515455 \/1'6)(5253 \/.’bl)(fl V o \/1'4)(56 \/1'3 \/(E5) o 0 0 1 0 -1

,,,,,, o _ s 0 0 0 1 -1

= T1T2X3T4T5T6 vV T1X2X3T5T6 V ToX3T4T5T g I 1 0 0 —1 9

\/1‘1.2321‘3%‘6 V T1T2T5T6 vV T1X3T4T¢

The support of any integer non-negative solution of
the above-mentioned system corresponds to a deadlock.
For example,(0,0,0,0,1,1) is a solution, and it corre-
sponds to the deadlocips, ps } -

Vx1242526 = 1. (10)

The DNF represents the set of deadlocks similarly
as (9) does. The transformation in (10) is performed by Note that the last two approaches lead to obtaining
multiplying directly the DNFs in the parentheses. The- the sets of deadlocks (traps) in an explicit representation,
len’s method cannot be used here because the disjunctiongnd the first two approaches represent those sets in a com-
to be multiplied are not elementary. For this example such pact form of ternary matrices.

a transformation requires 31 multiplications of the ele-

mentary conjunctions (compare with 24 multiplications of

an elementary conjunction and a literal in the best variant 8. Conclusions and Further Work
of our method).

) ] _ A symbolic method of calculating all deadlocks and traps
In another approach, also described in (Zakrevskij, of 5 petri net has been discussed. It is close to the

1999), aternary matriWT is constructed corresponding  known methods solving this or similar tasks (Sifakis,
to (3). For this example it looks as follows: 1979; Barkaoui and Minoux, 1992; Zakrevskij, 1999), but
differs in the fact that it uses Thelen’s prime implicant al-
P1 P2 P3 D4 D5 D gorithm which, being applied to the corresponding for-
mula describing a Petri net structure, allows the time-
o - - - -1 and memory-efficient obtaining of all the solutions with-
1 0 0 — — — out complex symbolic transformations or a combinatorial
0 1 — 1 — — (11) search on the matrices. In (Wegrzyn, 2003) it was sug-
gested to apply Thelen’s method to the Petri net analysis.
Our paper contributes by suggesting new efficient heuris-
- - - 0 0 1 tics for finding prime implicants. Those heuristics can be
applicable not only for a Petri net analysis, but also for
solving other tasks where Thelen’s method is used. Fur-
In this matrix the column minors not containing the  ther work will concentrate on a deeper investigation of the
so-called negative rows (rows with 0-elements, but with- heyristics, their comparative analysis (experimental and
out 1-elements) correspond to deadlocks. To find them, atheoretical) and methods of estimating the search tree size
combinatorial search is necessary. For example, the laskgr 3 more precise use of the heuristics. Also, we are go-
two columns satisfy the above-mentioned property and jng to study the applicability of binary decision diagrams
correspond to the deadlodlps, pg}. (BDD) for the representation of deadlocks and traps.
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