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A new method of detecting deadlocks and traps in Petri nets is presented. Deadlocks and traps in Petri nets can be represented
by the roots of special equations in CNF form. Such equations can be solved by using the search tree algorithm proposed
by Thelen. In order to decrease the tree size and to accelerate the computations, some heuristics for Thelen’s method are
presented.
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1. Introduction

Petri nets (Murata, 1989) are a mathematical model de-
scribing parallel discrete systems. They are used for
the modelling, simulation, analysis and synthesis of a
wide range of systems, such as parallel algorithms, asyn-
chronous digital circuits, networks, multitasking operat-
ing systems, communication protocols, distributed soft-
ware, industrial control systems, etc. (Girault and Valk,
2003). Several languages for the description of logi-
cal control algorithms, e.g. a standard industrial language
SFC (Lewis, 1995), are based on Petri nets or similar mod-
els. The Petri net approach has also been used for simu-
lating computation processes, neural networks and logical
reasoning.

The analysis of Petri nets is important in most of their
applications. It often turns out to be a time- and memory-
consuming task. The number of reachability states of a
Petri net depends exponentially on its size, so the brute
force approach does not allow a practical analysis of big
nets. Thus many advanced methods of a Petri net analysis
have been developed. Generally, those methods can be
divided into three classes: those based on the analysis of
the state space, reduction of nets (keeping the properties
to be analyzed) and solving systems of equations, linear
or logical. The main tasks of a Petri net analysis are the
checking of some properties of the nets, i.e. the liveness,
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boundedness, persistence, etc., and also the reachability
analysis.

The calculation of deadlocks and traps is one of
the most important analysis tasks. For some classes of
Petri nets (and their extensions) properties like liveness
and reversibility can be checked by an analysis of dead-
locks and traps (Barkaoui and Minoux, 1992; Jiaoet al.,
2002; Schmidt, 1997; Ohtaet al., 1999; Bestet al., 1990).

The detection of deadlocks and traps is also impor-
tant as an independent task. In this paper a general form of
this task is considered, i.e. detecting all the deadlocks and
traps of a given net. Deadlocks and traps of a Petri net cor-
respond to the decisions of some logical equations, which
can be represented in conjunctive normal form. Thelen’s
method (Thelen, 1988; Mathony, 1989) enables efficient
calculation of prime implicants of a Boolean function rep-
resented in such a form. In this paper applying Thelen’s
method to the above-mentioned logical equations is dis-
cussed. It makes it possible to obtain sets of deadlocks
and traps in the form of ternary vectors. Some heuristics
for Thelen’s method are suggested and computer experi-
ments are performed.

2. Definitions

2.1. Petri Nets

Formally, a Petri net (Murata, 1989) is a triplePN =
(P, T, F ), whereP is a set of places,T is a set of tran-
sitions, P ∩ T = ∅, F ⊆ (P × T )(T × P ).
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The sets of input and output transitions of placep
are defined respectively as follows:

•p = {t ∈ T : (t, p) ∈ F},

p• = {t ∈ T : (p, t) ∈ F}.

For example, for the net shown in Fig. 1 we have
•p1 = {t4, t5} and p1

• = {t1}.
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Fig. 1. Petri net (Kotov, 1984).

The sets of input and output places of transitiont are
defined respectively as follows:

•t = {p ∈ P : (p, t) ∈ F},

t• = {p ∈ P : (t, p) ∈ F}.

For example, for the net shown in Fig. 1 we have•t1 =
{p1} and t1

• = {p2, p3}.
Graphically, a Petri net is represented as a bipartite

oriented graph whose nodes correspond to places and tran-
sitions, and arcs go from transitions to their output places
and from places to their output transitions (cf. Fig. 1).

A marking of a net is defined as a functionM : P →
{0, 1, 2, . . . }. It can be considered as a number of tokens
situated in the net places. The number of tokens in a place
p for marking M is denoted byM(p). A transition t is
enabled and can fire ifM(p) > 0, ∀p ∈ •t. Transition
firing removes one token from each input place and adds
one token to each output place of it. A marking can be
changed only by transition firing. The initial markingM0

is usually specified.

2.2. Deadlocks and Traps in Petri Nets

A deadlock is a set of places such that every transition
which outputs to one of the places in the deadlock also
inputs from one of these places. This means that once all
of the places in the deadlock become unmarked, the entire
set of places will always be unmarked; no transition can
place a token in the deadlock because there is no token
in the deadlock to enable a transition which outputs to a
place in the deadlock (Peterson, 1981) (Fig. 2). Formally,
a nonempty subset of placesS of a net N is a deadlock
if •S ⊆ S•.
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Fig. 2. Example of a deadlockS = {p1, p2, p3},
•S = {t1}, S• = {t1, t2}.

A trap is a set of places such that every transition
which inputs from one of these places also outputs to one
of these places. This means that once any of the places in a
trap has a token, there will always be a token in one of the
places of the trap. Firing transitions may move the token
between places but cannot remove a token from the trap
(Peterson, 1981) (Fig. 3). Formally, a nonempty subset of
placesQ of a netN is a trap if Q• ⊆ •Q.

The union of two deadlocks (traps) is again a dead-
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Fig. 3. Example of a trapQ = {p1, p2, p3},
Q• = {t1}, •Q = {t1, t2}.
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lock (trap). A deadlock (trap) is called a basic deadlock
(basic trap) if it cannot be represented as a union of other
deadlocks (traps). So all the deadlocks (traps) in a Petri
net can be generated by the union of some basic dead-
locks (traps). A deadlock (trap) is said to be minimal if it
does not contain any other deadlock (trap). Minimal dead-
locks (traps) are basic deadlocks (traps), but not all basic
deadlocks (traps) are minimal.

The Petri net shown in Fig. 1 contains 10 deadlocks
and 10 traps (excluding the entire set of places, which is
both a deadlock and a trap). In Table 1 all those dead-
locks and traps are listed; minimal deadlocks and traps
are marked.

Table 1. Sets of deadlocks and traps of the Petri
net shown in Fig. 1.

Deadlock Minimal
deadlock

Trap Minimal
trap

{p5, p6} Y {p1, p2} Y

{p4, p5, p6} N {p1, p2, p5, p6} N

{p1, p2, p3, p6} Y {p1, p2, p4} N

{p1, p2, p5, p6} N {p1, p2, p4, p6} N

{p1, p2, p3, p5, p6} N {p1, p2, p3, p5, p6} N

{p1, p3, p4, p6} Y {p1, p2, p4, p5, p6} N

{p1, p2, p3, p4, p6} N {p1, p3, p4, p6} Y

{p1, p4, p5, p6} N {p1, p2, p3, p4, p6} N

{p1, p2, p4, p5, p6} N {p1, p3, p4, p5, p6} N

{p1, p3, p4, p5, p6} N {p1, p3, p5, p6} Y

2.3. Normal Forms and Implicants of Boolean
Expressions

A literal is either a propositional letterp (a positive lit-
eral) or the negationp of a propositional letterp (a neg-
ative literal).

A conjunctive normal form (CNF) formula is the one
which is a conjunction of disjunctions of literals, i.e. a
formula of the form

(l11 ∨ . . . ∨ l1n1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmnm), (1)

where eachlij is either of the formp, or of the form p
for some propositional letterp.

A disjunctive normal form (DNF) formula is the one
which is a disjunction of conjunctions of literals, i.e. a
formula of the form

(l11 ∧ . . . ∧ l1n1) ∨ . . . ∨ (lm1 ∧ . . . ∧ lmnm), (2)

where eachlij is either of the formp, or of the form p
for some propositional letterp.

An implicant k of a Boolean expressionF is a con-
junction of literals such thatk → F . A prime implicant
kp of a Boolean expressionF is an implicant ofF such
that removing any literal fromkp leads to a conjunction
k′ such thatk′ is not an implicant ofF .

3. Known Methods of Calculating Deadlocks
and Traps

3.1. Detecting Deadlocks and Traps by Solving
Logical Equations

Deadlocks and traps do not depend on the initial markings
and can be detected by a structural analysis of the net. A
deadlockS has to satisfy the set of conditions∀ti ∈ T :
ti
• ∩ S 6= ∅ :⇒ •ti ∩ S 6= ∅. Analogous conditions exist

for a trap. They can be represented in a natural way by
logical equations.

Consider a set of Boolean variablesX =
{x1, x2, . . . , xm}, where m = |P | and xi = 1 if and
only if pi belongs to a subset of places. Denote byXi

and X∗
i the subsets ofX corresponding to•ti and ti

•,
respectively. Denote by∨[Xi] and ∨[X∗

i ] the disjunc-
tions of the corresponding variables. Then the condi-
tion for the transitionti can be expressed by the formula
∨[X∗

i ] → ∨[Xi] = 1.

Then all the deadlocks of the Petri net(P, T, F ) are
specified by the roots of a logical equation.

Affirmation 1 (Aff. 4.9 from (Zakrevskij, 1999)). All
the deadlocks of a Petri netPN are defined by the roots
of the logical equation

∧n
i=1(∨[X∗

i ] → ∨[Xi]) = 1, (3)

wheren = |T |.

The situation with traps is analogous:

Affirmation 2 (Aff. 4.8 from (Zakrevskij, 1999)). All
the traps of a Petri netPN are defined by the roots of the
logical equation

∧n
i=1(∨[Xi] → ∨[X∗

i ]) = 1, (4)

wheren = |T |.

So, deadlocks and traps of a Petri net can be calcu-
lated by solving logical equations. This methodology is
described in (Zakrevskij, 1999). How to solve efficiently
equations of such kind? One of the methods is the elimi-
nation of implications and transformation of the equation
into a DNF, from which the roots can be obtained. An-
other approach allows simplifying the calculations, taking
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into account the fact that in (3) and (4) all the variables are
met without negation. In that approach the ternary matri-
ces are used to represent the equations and the roots are
obtained by combinatorial operations on those matrices.
For details, see (Zakrevskij, 1999). Another approach to
symbolic calculation of deadlocks and traps is described
in (Schmidt, 1996a; 1996b).

Let us consider some more transformations of the
equations which can simplify their solving. Letm = |ti•|
and xi∗

1 , . . . , xi∗

m be the variables corresponding to the
output places ofti.

∨[X∗
i ] → ∨[Xi] = ∨[X∗

i ] ∨ (∨[Xi])

= ∧m
i=1x

j∗

i ∨ (∨[Xi])

= ∧m
i=1

(
xj∗

i ∨ (∨[Xi])
)
. (5)

So the equation is transformed into the conjunctive
normal form. Note that changing the interpretation of the
variables so that the belonging of a place to a set means
that the corresponding variable has value0 would lead
to the inversion of all the literals in (5) and the obtained
expression turns out to be a conjunction of Horn clauses.

There is an efficient polynomial-time algorithm solv-
ing the satisfability of a Horn expression and finding a de-
cision with a minimal number of variables having value1
(Papadimitriou, 1994). So for a given subset of places it is
possible to calculate efficiently themaximal deadlock con-
tained in it. This approach is used in (Barkaoui and Mi-
noux, 1992). There are also methods of finding minimal
deadlocks or minimal deadlocks containing given places
(Tanimotoet al., 1996; Yamauchiet al., 1996; Yamauchi
and Watanabe, 1999). But in this paper the task of gener-
ating all the deadlocks is considered. Applying the above-
mentioned approach to it would require a time-consuming
combinatorial search.

Note that the approach described in this subsection
does not lead to finding basic deadlocks (traps) only, un-
like the approaches described below. But this does not
mean that all the deadlocks (traps) are calculated and rep-
resented explicitly; it would lead to non-compact repre-
sentations. The Boolean equations (3) and (4) can be
solved in such a way that the set of their roots (dead-
locks, traps) is represented by a ternary matrix, every row
of which describes several solutions (see the example be-
low). That is how we are going to solve the task.

3.2. Other Approaches to Detect Deadlocks and Traps

There are methods in which deadlocks and traps are cal-
culated by solving systems of linear equations or inequal-
ities. Those methods can be grouped into three classes
(Ezpeletaet al., 1993):

1. A particular class of Boolean equation systems can
be transformed into systems of linear inequalities, by
solving which the deadlocks or traps can be detected
(Silva, 1985).

2. The so-called p-invariants can be obtained by solving
a linear equationAx = 0, whereA is the incidence
matrix of a net (Murata, 1989). The set of states
corresponding to a p-invariant is an st-component (a
deadlock and a trap at the same time). But not every
deadlock and trap has a corresponding p-invariant.
In the second approach (Lautenbach, 1987) the net
is transformed in such a way that for every deadlock
(or trap) of the initial net there is a correspondingp-
invariant of the transformed net. So, the detection
of the deadlocks (traps) of the initial net can be per-
formed by solving linear equations generated accord-
ing to the transformed net.

3. The support of a vector being a solution of the linear
inequality Ax > 0 is a trap in the corresponding net,
but not every trap corresponds to such a solution. In
the third approach (Sifakis, 1979) the incidence ma-
trix is transformed in such a way that it describes the
same underlying graph of the net, but with weighted
arcs. Solving the obtained inequality allows us to de-
tect the traps of the net. As far as the tasks of detect-
ing deadlocks and traps are equivalent (a deadlock
of a net N is a trap in the net obtained fromN by
reversing all arcs), the approach can be used for de-
tecting deadlocks, too.

The paper is dedicated to detecting deadlocks and
traps by solving logical equations, so the methods using
linear algebra are not considered here in detail.

4. Thelen’s Prime Implicant Algorithm

Thelen (1988) proposed an efficient algorithm finding all
the prime implicants of a Boolean expression in the con-
junctive normal form. It is based on building a search tree,
such that every level of it corresponds to a clause of the
CNF, and the outgoing arcs from a node correspond to the
literals of the disjunction. The conjunction of all the liter-
als corresponding to the arcs down the path from the root
of the tree to a node is associated with a node. The tree is
searched in the DFS order, and several pruning rules are
used to minimize it (Fig. 4). The rules are listed below:

R1: An arc is pruned if its predecessor node-conjunction
contains the complement of the arc-literal.

R2: A disjunction is discarded if it contains a lit-
eral which appears also in the predecessor node-
conjunction.



Detection of deadlocks and traps in Petri nets by means of Thelen’s prime implicant method 117

�

���

� �

� � �

� �

�
�

�

� �

�
�

��

� �

�
�

��

� �

��

�
	

� �

�
�

�
	

�

�� ��

� �

�
�

� �

�
�

��

�

��

� �

��

� �

���

�
�

���

Fig. 4. Tree examplef = (a∨b∨c)∧(a∨b)∧(b∨c)∧(a∨d).

R3: An arc is pruned if another non-expanded arc on a
higher level still exists which has the same arc-literal.

Leaf nodes of the tree are the elementary conjunc-
tions being the prime implicants of the expression or the
implicants absorbed by the prime implicants,calculated
before. So there is no need of calculatingall products and
keeping them in memory before one can decide whether
the given product is a prime implicant. Thelen even claims
that his method has a linear space-complexity. This claim
is based on the fact that for searching the tree it is enough
to keep in memory only the current path from the root, and
its length depends linearly on the number of clauses. But
for every leaf of the tree it is necessary to check whether
the corresponding conjunction is absorbed by any of the
previously calculated, so the algorithm has to keep in
memory all the prime implicants calculated before. And
it is easy to show that in the worst case the number of
prime implicants exponentially depends on the expression
size (for example, when the literals never repeat in the ex-
pression), hence Thelen’s method requires an exponential
space in the worst case. But due to the reduction of the
search tree, it requires less space than the straightforward
multiplication of the clauses. Concerning time complex-
ity, Thelen did not show any theoretical evaluation of it,
but he showed that his method is faster than other known
methods, e.g. (Reusch, 1975; Das and Khabra, 1972). It
is evident, however, that the worst-case time-complexity
of this algorithm is exponential: it cannot be greater, be-
cause even without any pruning the size of the search tree

exponentially depends on the expression size, and cannot
be less, because the number of prime implicants may be
exponential.

Mathony (1989) proposed the additional fourth re-
duction rule, which reduces the search tree up to 25%.
But using this rule complicates the algorithm remarkably,
and in such a variant of the algorithm linear memory is
not enough even for the tree searching. Another way of
improving Thelen’s method is reordering clauses in the
expression and literals into clauses. The next section is
dedicated to such heuristics.

5. Improvements of Thelen’s Method

As far as the algorithm requires exponential time, the min-
imization of the search tree is important. Some heuristics
(Mathony, 1989) are known for doing this. One of them is
sorting the disjunctions by their size in ascending order.

Heuristic 1. (Sort by Length)Choose a disjunctionDj

with the smallest number of literals.

Consider a complete search tree (without arc prun-
ing). Its size (the number of nodes) can be calculated ac-
cording to the formula

|V | = 1 +
n∑

i=1

i∏
j=1

Lj , (6)

where Lj is the number of literals in thej-th clause. It
is easy to see that the size of the tree depends on the order
of clauses in the formula. So sorting clauses can reduce
the tree. Let a Horn formula consist of 5 clauses, each
having a distinct number of literals, from 2 to 6. If they
are sorted from the maximal to the minimal length, the
complete search tree will contain 1237 nodes. If the same
is performed from the minimal to the maximal lenghts, the
tree will contain only 873 nodes. In the second case the
cost is by 30% smaller. So sorting clauses influences the
tree size remarkably. Of course, for reduced search trees
this relation may differ. In Table 1 the results of computer
experiments are shown.

Now let us turn to the pruning rules. Note that ev-
ery rule can be implemented only if the disjunction under
consideration contains the same variables as the disjunc-
tions corresponding to the predecessor nodes. So we may
suppose that sorting the clauses according to the variables
may also lead to tree reduction. Consider the next sorting:
at each position in the Horn formula insert the conjunc-
tion which has a minimal number of variables that do not
belong to any previous clause.

Heuristic 2. (Sort by Variables)Choose a disjunctionDj

with the smallest number of literals that do not appear in
the disjunctions chosen before.
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Fig. 5. Order of literals in disjunctions, formulaf = (a∨ b∨ c∨ d)∧ (a∨ e): (a) worst case,
rule R2 blocks all rulesR3, (b) best case, all rulesR3 occur before ruleR2.

Table 2. Results of computer experiments

Net PI No Sort Sort by Length Sort by Variables Reordering Literals SV + RL

Param. TS NPI TS NPI % TS NPI % TS NPI % TS NPI %

20x15 144 42194 6336 7680 1296 18.2 7522 1296 17.8 2536 0 6.0 702 0 1.7

20x18 145 7755 420 9504 420 122.6 6391 420 82.4 2596 0 33.5 2191 0 28.3

20x18 12 1422 150 645 24 45.4 599 24 42.1 247 0 17.4 283 0 19.9

20x18 105 2486 319 3166 319 127.4 3166 319 127.4 702 0 28.2 1067 0 42.9

20x18 70 3024 317 1543 125 51.0 1435 125 47.5 816 0 27.0 738 0 24.4

20x18 28 1346 168 671 84 49.9 635 84 47.2 333 0 24.7 247 0 18.4

20x20 36 4356 377 1638 48 37.6 1575 48 36.2 705 0 16.2 654 0 15.0

20x20 16 2650 92 660 56 24.9 826 56 31.2 881 0 33.2 391 0 14.8

20x20 117 3418 406 4181 406 122.3 4181 406 122.3 773 0 22.6 1139 0 33.3

25x20 946 51275 6111 26030 6111 50.8 26075 4895 0.9 6365 0 12.4 2910 0 5.7

25x20 144 55608 9026 4222 540 7.6 1770 540 3.2 2283 0 4.1 438 0 0.8

25x20 560 63234 5622 22826 6226 36.1 18831 6226 29.8 4170 0 6.6 2125 0 3.4

25x20 91 6838 288 4603 288 67.3 4109 288 60.1 1917 0 28.0 970 0 14.2

Average: 58.5 53.7 20.0 17.1

To the best of our knowledge, this is an original
heuristic. It also allows a remarkable reduction of the
search tree. The results of computer experiments are pre-
sented in Table 2.

Sorting clauses in an expression can be used together
with reordering literals in disjunctions. Let us consider the
next heuristic which reorders literals to optimize the usage
of pruning rulesR2 and R3. These rules depend on each
other on every level. As is shown in Fig. 5, ruleR2 blocks
the usage of ruleR3 when R2 occurs beforeR3. This
causes an unnecessary growth of the tree and a possibility
to produce non-prime implicants. In most cases the effect
of blocking rulesR3 by rule R2 can be avoided.

Heuristic 3. (Reordering Literals)Split the set of liter-
als of every disjunctionDi into two parts. One part (C)
is formed from literals that appear in any of the clauses
Di+1, . . . , Dk (where k is the number of clauses) and
the second part (NC) contains the remaining literals. The
optimized disjunction contains literals in order

Di = {P1 ∨ . . . ∨ Pn︸ ︷︷ ︸
NC

∨Pn+1 ∨ . . . ∨ Pm︸ ︷︷ ︸
C

}.

The literals in (C) are sorted in the order of the grow-
ing frequencies inDi+1, . . . , Dk.
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An additional positive feature of reordering literals in
clauses is that almost all implicants produced by the algo-
rithm are prime (see Table 2). This effect is similar to the
effect of the fourth pruning rule mentioned in Section 4
(Mathony, 1989), but can be obtained without any com-
plication of the algorithm of building the tree itself. Note
that there are still expressions for which the non-prime im-
plicants are generated, e.g.(a∨ b∨ c)∧ (d∨ b∨ c)∧ (a∨
x ∨ y) ∧ (d ∨ u ∨ z).

The results of computer experiments are summarized
in Tab. 2. For the tests the expressions corresponding
to deadlocks and traps of Petri nets (5) were used. The
Petri nets were randomly generated by the tool Paral, us-
ing the algorithm described in (Pottosin, 1995) (the EFC
nets were generated). In the first column, the number of
places and the number of transitions of a net are given (e.g.
20 × 18). TS means the tree size (the number of nodes),
PI stands for the number of prime implicants, NPI denotes
the number of non-prime implicants being the leaves of
the search tree. For every heuristic the column ‘%’ shows
the percentage of the tree size versus the size in the case
when no heuristic is used. The experiments show that the
best way is sorting disjunctions according to Heuristic 2,
and literals in the disjunctions according to Heuristic 3.

6. Algorithm of Calculating Deadlocks
and Traps

As is shown in Subsection 3.1, a Boolean formula de-
scribing deadlocks or traps of a Petri net can be easily
transformed into CNF (5). So Thelen’s method can be ef-
ficiently applied to calculating deadlocks and traps. The
corresponding algorithm is presented below.

Input: A Petri net
Output: The ternary matrix of (deadlocks) traps

BEGIN

1. Generate a Boolean formula for deadlocks (traps)
from the Petri net according to (3) and (4).

2. Transform the formula into CNF applying (5).

3. Sort disjunctions and literals in disjunctions to mini-
mize the search tree.

(a) Sort disjunctions by variables (Heuristic 2).
(b) Sort literals in disjunctions (Heuristic 3).

4. Find all prime implicants of the Boolean formula us-
ing Thelen’s method.

5. Represent the set of prime implicants as a ternary ma-
trix. Each row corresponds to one prime implicant
and represents one or more deadlocks (traps).

END

If necessary, the compactness of the representation
of the sets of traps (deadlocks) can be increased by using
minimization methods of Boolean functions (De Micheli,
1994).

7. Example

7.1. Proposed Approach

Let us find all deadlocks for the Petri net from Fig. 6. First,
a Boolean formula is generated according to (3):

(x1 → x6)(x2 ∨ x3 → x1)(x1 → x2 ∨ x4),

(x6 → x3 ∨ x5)(x4 ∨ x5 → x6) = 1. (7)
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Fig. 6. Petri net (Zakrevskij, 1999).

Next the formula is transformed into CNF using (5):

(x1 ∨ x6)(x2 ∨ x1)(x3 ∨ x1)(x1 ∨ x2 ∨ x4),

(x6 ∨ x3 ∨ x5)(x4 ∨ x6)(x5 ∨ x6) = 1. (8)

All prime implicants are found and the tree size for
different heuristics is shown below:

No heuristic – order like in (8) 37 nodes,

Sort by Length 27 nodes,

Sort by Variables 25 nodes,

Reordering Literals 37 nodes,

SV + RL 25 nodes.

The prime implicants are represented as a ternary
matrix. For the analyzed Petri net, there are 11 dead-
locks, e.g. the first row defines 2 deadlocks{p5, p6} and
{p4, p5, p6},

p1 p2 p3 p4 p5 p6

0 0 0 − 1 1
− 0 0 1 1 1
1 1 1 − − 1
1 1 − − 1 1
1 − 1 1 − 1
1 − − 1 1 1


. (9)
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7.2. Some Other Symbolic Approaches

Using the method described in (Zakrevskij, 1999), the task
would be solved as follows: The expression in the left part
of (7) is transformed into a conjunction of DNFs and then
into DNF by removing parentheses:

(x1x4x5 ∨ x6)(x2x3 ∨ x1)(x1 ∨ x2 ∨ x4)(x6 ∨ x3 ∨ x5)

= x1x2x3x4x5x6 ∨ x1x2x3x5x6 ∨ x2x3x4x5x6

∨x1x2x3x6 ∨ x1x2x5x6 ∨ x1x3x4x6

∨x1x4x5x6 = 1. (10)

The DNF represents the set of deadlocks similarly
as (9) does. The transformation in (10) is performed by
multiplying directly the DNFs in the parentheses. The-
len’s method cannot be used here because the disjunctions
to be multiplied are not elementary. For this example such
a transformation requires 31 multiplications of the ele-
mentary conjunctions (compare with 24 multiplications of
an elementary conjunction and a literal in the best variant
of our method).

In another approach, also described in (Zakrevskij,
1999), a ternary matrixNr is constructed corresponding
to (3). For this example it looks as follows:

p1 p2 p3 p4 p5 p6

Nr =


0 − − − − 1
1 0 0 − − −
0 1 − 1 − −
− − 1 − 1 0
− − − 0 0 1

 . (11)

In this matrix the column minors not containing the
so-called negative rows (rows with 0-elements, but with-
out 1-elements) correspond to deadlocks. To find them, a
combinatorial search is necessary. For example, the last
two columns satisfy the above-mentioned property and
correspond to the deadlock{p5, p6}.

7.3. Linear Algebraic Approach

The linear algebraic approach (Ezpeletaet al., 1993) leads
to solving the system of linear inequalitiesyT WΘ > 0,
where y is a vector indexed by places of a net, andWΘ

is a transformed incidence matrix which, for our example,

may look as follows:

t1 t2 t3 t4 t5

p1

p2

p3

p4

p5

p6



−1 2 −1 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 1 0 −1
0 0 0 1 −1
1 0 0 −1 2


. (12)

The support of any integer non-negative solution of
the above-mentioned system corresponds to a deadlock.
For example,(0, 0, 0, 0, 1, 1) is a solution, and it corre-
sponds to the deadlock{p5, p6}.

Note that the last two approaches lead to obtaining
the sets of deadlocks (traps) in an explicit representation,
and the first two approaches represent those sets in a com-
pact form of ternary matrices.

8. Conclusions and Further Work

A symbolic method of calculating all deadlocks and traps
of a Petri net has been discussed. It is close to the
known methods solving this or similar tasks (Sifakis,
1979; Barkaoui and Minoux, 1992; Zakrevskij, 1999), but
differs in the fact that it uses Thelen’s prime implicant al-
gorithm which, being applied to the corresponding for-
mula describing a Petri net structure, allows the time-
and memory-efficient obtaining of all the solutions with-
out complex symbolic transformations or a combinatorial
search on the matrices. In (Węgrzyn, 2003) it was sug-
gested to apply Thelen’s method to the Petri net analysis.
Our paper contributes by suggesting new efficient heuris-
tics for finding prime implicants. Those heuristics can be
applicable not only for a Petri net analysis, but also for
solving other tasks where Thelen’s method is used. Fur-
ther work will concentrate on a deeper investigation of the
heuristics, their comparative analysis (experimental and
theoretical) and methods of estimating the search tree size
for a more precise use of the heuristics. Also, we are go-
ing to study the applicability of binary decision diagrams
(BDD) for the representation of deadlocks and traps.
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