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INFINITE EIGENVALUE ASSIGNMENT BY AN OUTPUT FEEDBACK
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The problem of an infinite eigenvalue assignment by an output feedback is considered. Necessary and sufficient conditions
for the existence of a solution are established. A procedure for the computation of the output-feedback gain matrix is given
and illustrated with a numerical example.
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1. Introduction 2. Problem Formulation

Let R**™ be the set of reah x m matrices andR” :=

It is well known (Dai, 1989; Kaliath, 1980; Wonham, R"™*1, Consider the continuous-time linear system

1979; Kaczorek, 1993; Kiera, 1981) that if the pair
(A, B) of a standard linear systemh = Az + Bu is Ei = Az + Bu, y=_Cxz, (1)
controllable then there exists a state-feedback gain ma-

trix K such thatdet[l,,s — A + BK] = p(s), where  wherei = dz/dt andz € R", u € R™ and y € R?

p(s) = s" +an_18""' 4+ +a1s +ag isagivenar-  are respectively the semistate, input and output vectors.
bitrary n-th order polynomial. By changind( we may Moreover, E, A € R"™*"n, B € R"™*™ (C € RP*", The
modify arbitrarily only the coefficientsio, a1, ..., a,—1 system (1) is called singular et E = 0 and it is called

but we are not able to change the degre®f the poly- standard whenlet E # 0.

nomial which is determined by the matrik,s. In sin- It is assumed thatank E — r < n. rank B — m
gular linear systems we are also able to change the de'rank() — p and the pair(E, A) is regulzar ie '
gree of the closed-loop characteristic polynomials by a ’ T

suitable choice of the state-feedback matd& The det[Es — A] # 0 )
problem of finding a state-feedback matri such that

det[Es —A+BK] = a # 0 (« isindependentok) was  for somes € C (the field of complex numbers). Let us
considered in (Kaczorek, 2003; Chu and Ho, 1999) The consider the system (1) with the output feedback
infinite eigenvalue assignment problem by a feedback is

very important in the design of perfect observers (Kaczo- u=uv— Fy, 3)
rek, 2000; 2002; 2003).

i o wherev € R™ is a new input andt” € R™*? is a gain
In this paper the problem of an infinite eigenvalue as- matrix. From (1) and (3) we have

signment by an output feedback is formulated and solved.
This is an extension of the method given in (Kaczo- Ei = (A— BFC)z + Bu. 4)
rek, 2003) for an output feedback case. Necessary and
sufficient conditions for the existence of a solution to
the problem will be established and a procedure for the Problem 1. Given matricesE, A, B,C of (1) and a
computation of an output-feedback gain matrix will be nonzero scalar (independent of), find an F' € R™*?
presented. such that

det[Fs — A+ BFC] = a. (5)
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In this paper necessary and sufficient conditions for the matricest;, A; and B; are of the form

the existence of a solution to Problem 1 will be established

and a procedure for the computation &f will be pro-
posed.

3. Problem Solution

From the equality

Es— A+ BFC = [Es— A, B| In
FC
Es— A

— [I,,BF 6

e | P @

and (5) it follows that Problem 1 has a solution only if

rank [Es — A, Bl =n @)
and
Es— A

o (8)

rank

for all finite s € C. The problem will be solved using the
following two-step procedure:

Step 1. (Subproblem 1). GivenE, A, B of (1) and a
scalara, find a matrix X = F'C' such that

det[Es — A+ BK| = . 9)

Step 2. (Subproblem 2). GivenC' and K depending
on some free parametets, ko, . . ., k; (found in Step 1),
find a matrix /' satisfying the equation

K=FC. (20)

The solution of Subproblem 1 is based on the following
lemma (Chu and Ho, 1999; Kaczorek, 2003):

Lemma 1. If the condition (2) is satisfied, then there exist
orthogonal matriced/ and V' such that

Eis— A
UlEs — AlV = | 7“1 ¥ :
0 E()S—AQ
B
UB = 01 , (11a)
where E1,A; € Rm*™  Ey Ay € Rroxno By €

R™>*™ the subsysteniF;, A1, B1) is completely con-
trollable, the pair (Ey, Ag) is regular, E; is upper trian-
gular and %+’ denotes an unimportant matrix. Moreover,

Eins — A Eias — An
—Ax Eoos — Ao
E18 — A1 = 0 —A32
0 0
By 15— A k-1 Eqs — Ay
Es 15— A1 Eors — Agy,
Esj_15—Azp_1 Esps — Az |
0 —Apk-1 Errs — Agg
B
0
B, = ) ) (11b)
0

where Eij,Aij e R%*", 44 = 1,...,k, Bi1 €
Rﬁixm, Z?:l n; = ny, with Blla A21, ce. 7Ak,k71 of
full row rank and Ess, . . ., B, nonsingular.

Remark 1. The matrix C = CV has no special form.

Theorem 1. Let (2) and (7) be satisfied and let the ma-
trices E, A, B of (1) be transformed into the forms (11).
A matrix K satisfying (9) exists if and only if

(i) the subsysteniFE;, A, B;) is singular, i.e.

det By = 0, (12a)

(i) if ng > 0, then the degree of the polynomial
det[Eps — Ag] is zero, i.e.
degdet[Eyps — Ag] =0 for ng > 0. (12b)
Proof. (Necessity) From (9) and (11a) we have
det[EFs — A+ BK]|
=det U tdet V' det[E;s — A + B K]
x det[Eps — Ao] = a, (13)

where K = KV € R™*" and det[Egs — Ag] = 1 if
no = 0. From (13) it follows that the condition (9) holds
only if the conditions (12) are satisfied.

(Sufficiency) First consider the single-inputn
case. In this case we have

1)

€11 €12 €1n,
0 e -+ e
1
E1 = )
0 0 €nyng
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a1 a2 A1,n,—1 A1n,
a21 Aa22 a2 n,—1 a2n,
A = 0 a3 a3n,-1  G3n,, | »
0 O anl,nlfl anlnl
b11
0
BI = bl = . 9 (14)
0
where e;; # 0, a;,-1 # 0 for i = 2,...,n; and

b1y # 0.

The condition (12a) implies that;; = 0. Premul-
tiplying the matrix [Eys — A1,b1] by a matrix of or-
thogonal row operationg”; it is possible to make the
entries ey, €13,...,€1,, Of Ey zero sincee; # 0,

i = 2,...,n1. By this reduction only the entries of the

first row of A; will be modified,

[ o 0 --- 0
_ 0 .
By =PE=| e
i 0 0 €nyng
[ a1 a2 A1,ny—1  Oin,
B az; Qa2 - az n,—1 A2n,
A1 = PiAr = | ,
0 a3 3,011  O3ny,
L O 0 Onymi—1  Oning
51 = Pib; = b;. (15)
Let
_ 1 B B B 3
kl = 7[-&117 —A12y .-y —alml_l, 1 — alnl]. (16)
b11
Using (13), (15) and (16), we obtain
det[Els — /11 + 1_11151]
0 0
—ag21 €225 — 422
= 0 —as
0 0
0 1
€21, —18 —aA2,n;—1 €2n, S — A2n,
€3,n1—18 — A3 n;—1 €3n1,5 — A3nq,
—Qnyng—1 €nin,S Anyng
= 021031 *** Gny,n,—1 = @, a7)

wherea = adet U det V det P; det[Egs — Ag] .

&

The deliberations can be easily extended to multi-
input systemsyn > 1. In this case the matrix of orthogo-
nal row operationsP; is chosen so that all the entries of
the first row of £, = P, E, are zero. By this reduction,

only the entries ofdy;, i = 1,...,k and By, Willibe
modified. The quified matrices will be denoted Hy;,
i=1,...,k and By, respectively.
Let
K =By {[An, Avs, ..., Ay] + G} (18)
The matrix G € R™*"™ in (18) is chosen so that
0 0 -~ 0 (=D
ag1 k * ES
Els—A1+B1K: 0 aso * * s (19)
0 0 ar1—1 *

where %’ denotes unimportant entries,

a(—1)1

h=——"—"—
21032 ...011-1C

c=detU 1 det V=1 det P, " det[Egs — Ag.
Using (13), (18) and (19), it is easy to verify that

det[Es— A+ BK] = cdet[E1s— A1+ B1 K] = a. (20)

Remark 2. Note that form > 1 some entries of the
matrix G in (18) can be chosen arbitrarily. Therefore,
the matrix X = KV~ has a number of free parameters
denoted byky, ko, ..., k;. The free parameters will be
chosen so that (10) has a solutiéhfor given C' and K.

Itis well known that (10) has a solution if and only if

rank C' = rank [ ¢ ] (21a)
K

or, equivalently,

ImK?T cImC?. (21b)
The free parameterk, , ko, . . ., k; are chosen so that (21)
holds. Therefore, the following theorem has been proved:

Theorem 2. Let the conditions (2), (7), (8) and (12)
be satisfied. Problem 1 has a solution, i.e. there exists
an F satisfying (5) if and only if the free parameters
ki,ko, ...,k of K can be chosen so that (10) has a so-
lution £ for given C and K.
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From the condition (21) and (16) we have the follow-

ing result:

Corollary 1. For m = 1 Problem 1 has a solution if and

only if the row [a;1, @12, . .
tional to the matrixC.

., G1ny—101pn, — 1] iS propor-

Remark 3. If the system order is not high, say< 5, el-

ementary row and column operations can be used instead

of the orthogonal operations.

4. Example

For the singular system (1) with

02 1 0
E:01—12’

00 1 —1
00 0 1)

(1 -1 0 1]
A:o120’

0 -1 1 -1

0 02 1)

1 0
B 01’0_ 05 1 3 -2 22)
0 0 25 3 4 —1
[0 0

we wish to find a gain matrixt’ € R?*2 such that the
condition (5) is satisfied forx = 1.

In this case the paifE, A) is regular since

-1 2s+1 S -1
0 s—1 —s—2 2s
det[Es — A] = 0 ) e 1 1-s
0 0 —2 s—1

=@B-s)(s—1)2—(s+2)(s—1)+4s.

The matrices (22) have already the desired forms (11) with

AOZO, B():O, EliE,AliA, B1:B, ny =
n=4,n1 =2, ngo=n3=1, m=2 and

[0 2 1] [0 ]
Fi1 = Fio = Fia =
1 011 12 R 13 5 |
Ey = (1], Ez3=[-1], E33=1[1]
1 -1 0] 1
A = Ao = Aqq =
11 0 1 ) 12 2 ) 13 0 )
Ay = [0 —1], Agp=[1], A=[-1], Ap=][2],

1 0
Azz = [1], B11—[O 1]~

Using elementary row operations (Kaczorek, 1993; Ka-
czorek, 2003), we obtain

1 -2 -3 1
1 1 -1
P = 0
0 0 1 0
0 0 0 1

and

[E1s — Ay, Bi] = PA[Es — A, B

-1 0 5 =5 1 =2
l0os -1 2 0 1
] 01 s—1 1-s 0 0

00 -2 s—10 0

Taking into account that in this case

- 1 0 -5 5
[A117A123A13] = [ ] )

00 1 -2

_ 1 -2
B _ |0 0 00
0 1 05 ki ko ks

and using (18), we obtain
K = K = By " {[A11,A12, A13] + G}

2ky — 3
ko +1

14 2k;3
ks —2

b

2 2k
105 Kk

where k1, ko, k3 are free parameters.
The free parameters are chosen so that the condition

05 1 3 -2
rank l 1

25 3 4 -1
05 1 3 -2
2. 4 -1
= rank 5 3 (23)
2 2ky 2ko—3 1+ 2k3
0.5 k& ko +1 ks — 2

is satisfied, which implies; = 1, ko = 2, k3 = 0. The
equation

F0.513—2_ 2 2 1 1
25 3 4 -1 |05 1 3 -2
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has the solution Kaczorek T. (2002)Polynomial approach to pole shifting to in-
finity in singular systems by feedbacks Bull. Pol. Acad.
F_ -1 1 ] Sci. Techn. Sci., Vol. 50, No. 2, pp. 134-144.
10 Kaczorek T. (2000):Reduced-order perfect and standard ob-

servers for singular continuous-time linear systems

Itis easy to check that Mach. Intell. Robot. Contr., Vol. 2, No. 3, pp. 93-98.

det[Fs — A+ BK]| Kaczorek T. (2002):Perfect functional observers of singular
1 _ _ continuous-time linear systems- Mach. Intell. Robot.
=det P; " det[Es — A+ BK] Contr., Vol. 4, No. 1, pp. 77-82.
0 0 0 1 Kaczorek T. (1993)Linear Control Systems, Vols. 1 and-2
05 s+1 9 0 _, New York: Wiley.
0 1 s—1 1—s ' Kaczorek T. (2003):The relationship between infinite eigen-
0 0 —9 s—-1 value assignment for singular systems and solvability of

polynomial matrix equations— Int. J. Appl. Math. Comp.
Sci., Vol. 13, No. 2, pp. 161-167.

Kaliath T. (1980):Linear Systems— Englewood Cliffs: Pren-

5. Concluding Remarks tice Hall.

The problem of an infinite eigenvalue assignment by out- ;zera v, (1981)Analysis and Design of Discrete Linear Con-
put feedbacks has been formulated and solved. Necessary g Systems— Prague: Academia.

and sufficient conditions for the existence of a solution to

the pr0b|em were established. A tWO-Step procedure forWOﬂham W.M. (1979):Linear Multivariable Control: A Geo-
the computation of the output-feedback gain matrix was metric Approach— New York: Springer.

derived and illustrated with a numerical example. With

s!ight mod_ification_s the_deliberations can be extent_jed to Received: 25 May 2003
singular discrete-time linear systems. An extension to Revised: 8 July 2003
two-dimensional linear systems (Kaczorek, 1993) is also

possible, but it is not trivial.
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