
Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 1, 33–41

CLOSED-FORM EXPRESSIONS FOR THE APPROXIMATION OF ARCLENGTH
PARAMETERIZATION FOR BÉZIER CURVES

MOHSENMADI ∗

∗ Department of Computer Science, University of Sharjah
Sharjah, P.O. Box 27272, United Arab Emirates

e-mail:mmadi@sharjah.ac.ae

In applications such as CNC machining, highway and railway design, manufacturing industry and animation, there is a need
to systematically generate sets of reference points with prescribed arclengths along parametric curves, with sufficient accu-
racy and real-time performance. Thus, mechanisms to produce a parameter set that yields the coordinates of the reference
points along the curveQ(t) = {x(t), y(t)} are sought. Arclength parameterizable expressions usually yield a parameter
set that is necessary to generate reference points. However, for typical design curves, such expressions are not often available
in closed form. It is thus desirable to find efficient ways to compensate for this lack of arclength parameterization. In this
paper, several methods for approximating arclength parameterizations are studied. These methods are examined for both
accuracy and real-time processing requirements. The application of generating reference points uniformly spaced along the
paths of several curves is chosen for the illustration and comparison between the presented methods.

Keywords: arclength parameterization, Hermite interpolation, reference points

1. Introduction

A need to generate sets of reference points (Rs) along the
paths of mechanical tools or parts is present in CAD and
CAM applications. For convenience, reference points are
referred to asRs and thei-th reference point is desig-
nated asRi. As an example, in CNC machining, com-
puters with CAD systems might be instructed to pro-
duce thousands ofRs along the path of a manufactured
part (such as the fuselage of an airplane, where uniform
spacing between adjacent reference points is desired to
minimize tension) according to prescribed specific loca-
tions (Farouki, 1992; Farouki and Shah, 1996; Sharpe and
Thorne, 1982). The manipulated part may be required to
be affixed to other complementing parts by bolts through
adjacent holes, in locations marked by reference points.

A first step towards generating a set ofN Rs with
prescribed arclengths is to abstract the physical paths
along the object of interest by aparametriccurve Q(t) in
the Bernstein-Bézierrepresentation (Farin, 1993; Su and
Liu, 1989). Next, several problems have to be solved, usu-
ally in the following order:

(a) Obtain an expression for the arclengths(t), t ∈
[0, 1].

(b) Compute the total arclengthL = s(1).

(c) Determine the set of desired arclengths{si=1,...,N},
si ∈ (0,L], at which theRs are to be generated.

(d) Re-parameterizeQ(t) with the parameter set{ti}
obtained fromt(si): the inverse function of the ar-
clength expression obtained in (a).

Arclength parameterization is desirable because the
arclength is an intrinsic quantity of the curve and arclength
parameterization is an intrinsic property of the curve.
It facilitates the design and analysis of curves and sur-
faces (Burchardet al., 1994; Guggenheimer, 1963; Young,
1993). If a closed-form solution is available for the
items (a) and (d) above, the coordinates of anR that lie
at arclengthsi along Q(t) may accurately be obtained
by first evaluatingti = t(si), and then evaluatingQ(t)
at t = ti.

In general, however, because of the non-linearity of
the integral expressions(t) (see the next section), it is im-
possible to solve it in an analytic fashion, and even when
this is possible, trying to derive an arclength parameteri-
zable expressiont(s) from it usually fails (Farouki and
Sakkalis, 1991; Sharpe and Thorne, 1982; Young, 1993).
Because of this, several approaches are taken to approx-
imate results that would be attained by arclength param-
eterization. In this paper,s(t) is exploited to derive a
cubic interpolating function to approximatet(s), and the
closeness of this function, in comparison with the exist-
ing methods of actual arclength parameterization, is dis-
cussed.

Although Pythagorean-hodograph curves (Farouki
and Sakkalis, 1991) have closed form expressions for their

M. Madi34

arclengths, they still require the solution of a non-linear
equation to obtain the parameter as a function of the ar-
clength. This article is concerned with a more general
class of polynomial curves.

2. Mathematical Preliminaries

For the purposes of this paper, a curve is represented by
a parametric polynomialQ(t) that is in the Bernstein-
Bézier representation:

Q(t) =
n∑

i=0

pi

(
n

i

)
(1− t)n−iti, 0 ≤ t ≤ 1. (1)

The properties and importance of such a representation for
CAD/CAM are indicated in the literature (Farin, 1993; Su
and Liu, 1989). In the above equation,n denotes the
curve degree, andpi ∈ E2 are the Bézier points that con-
stitute the control polygon of the curve.

The arclengths(t) of Q(t) is determined by the fol-
lowing integral:

s(t) =
∫ t

0

‖Q′(τ)‖ dτ, (2)

whereQ′(t) is the derivative ofQ(t). The total arclength
of Q(t) is thereforeL = s(1).

Because of the non-linearity and the integral term
present ins(t), an arclength parameterizable expression
t(s) usually has to be approximated rather then derived
directly from (2).

3. Related Work

Several methods have been developed to approximate ar-
clength parameterization, some of which are based on
curve dependent tables of data, while others are not. The
former class of approximators have the advantage of be-
ing adaptable for a prescribed accuracy by several numer-
ical techniques. It is difficult to obtain a meaningful com-
parison for methods which are not of the same class. In
some applications such as graphical simulation and ani-
mation, where the animated object is to appear at approx-
imately evenly spaced intervals for smooth appearance, it
is the performance rather than the accuracy that is of im-
portance (Madi, 1996). In the remainder of this section,
an overview of the existing methods is presented.

3.1. Basic Parametric Flow (BPF)

The simplest method forRs generation may be called
the basic parametric flow (BPF), since a number ofN
points are produced by uniform parameter spacing (e.g.,

ti=0,...,N = i/N). Although the method is simple and
fast, it is well known that it is not suitable for gen-
erating points along the arclength of a curve (Farouki,
1997; Madi, 1996).

3.2. Sharpe and Thorne’s (ST) Method

The method described by Sharpe and Thorne can accu-
rately produceRs at prescribed arclengths (Sharpe and
Thorne, 1982). However, it has a high computational cost
associated with “extracting” the corresponding parametric
value for eachR to be generated. Consider the following
non-linear equation used to findti, the parametric value
needed to generateRi:

M(t) =
∫ t

ti−1

√
Q′(τ)Q′(τ) dτ − si = 0, i = 1, . . . , N,

(3)

where ti−1 is the parametric value corresponding to
Ri−1, the solutiont = ti is the value corresponding to
the next reference-pointRi, and si is the arclength from
Ri−1 to Ri. In order to obtainti, a few Newton-Raphson
iterations are applied:

τj = τj−1 −
M(τj−1)
M ′(τj−1)

, τ0 = ti−1, j = 1, 2, . . . , k,

(4)

where M ′(τj) is the derivative ofM(τj). The value of
ti is given by τk, where k is the number of iterations
required for convergence to an acceptable accuracy.

For applications requiring real-time processing, or
those not requiring very accurate spacing ofRs, this
method may be impractical.

3.3. Optimal Parameterization (OP)

Farouki’s OP is mathematically a rather intricate process
(Farouki, 1997). The given polynomial curveQ(t) is first
transformed into an equivalent rational form by transform-
ing the parametert in (1) (by applying a Möbius transfor-
mation) as follows:

t =
(1− α)u

α(1− u) + (1− α)u
, 0 < α < 1, 0 ≤ u ≤ 1.

(5)

Substituting (5) into (1) results in the following rational
form:

Q̃(u) =

n∑
i=0

wipi

(
n

i

)
(1− u)n−iui

n∑
i=0

wi

(
n

i

)
(1− u)n−iui

,

wi = (1− α)iαn−i.

(6)

Closed-form expressions for the approximation of arclength parameterization for Bézier curves 35

The objective is to find the set of weights{wi} so thatu
approximates an arclength parameter. The problem is thus
to find the “best”α for (6).

While the cost of obtaining the “right”α may be
high, this method is better suited for applications requiring
real-time processing than ST (Madi, 1996).

3.4. Cumulative Chordlength (CC)

The cumulative chordlength is a straightforward method
to approximate the arclength of a curve. This method can
be exploited to generateRs that visually seem to be uni-
formly spaced. The algorithm is as follows: while com-
puting the arclength, the set{sk | k = 0, 1, . . . , η} (η
being the number of the chords used to approximate the
curve) keeps track of the cumulative chordlength obtained
so far. Rs at distances{i∆d | i = 0, . . . , N ; ∆d =
sη/N}, where sη is the total chordlength, may then be
located by searching for their closest values in{sk}, and
then further refining those values by means of a linear in-
terpolation. That is,ti, the parametric value correspond-
ing to Ri, at distancei∆d, is approximated by the func-
tion A(i, k) as follows:

ti = A(i, k) = ∆u

(
k − 1 +

i∆d− sk−1

sk − sk−1

)
, (7)

wheresk−1 ≤ i∆d < sk, and ∆u = 1/η.

While increasing the number of the chords approxi-
matingQ(t) mayincrease accuracy, the size of the curve-
dependent data-table that has to be maintained also in-
creases (Madi, 1996).

4. A Cubic Interpolator (CI)

Hermite interpolation (Davis, 1963; Farin, 1993; Foleyet
al., 1992) is used to approximatet(s) for any parametric
curve Q(t). The cubic interpolator (CI) is defined by

F(s) = as3 + bs2 + cs + d ≈ t(s). (8)

An approximation to the inverse function ofs(t) =∫ t

0
‖Q′(τ)‖dτ may be derived as follows: First,s(t) is

differentiated to give

s′(t) =
ds

dt
= ‖Q′(t)‖. (9)

From (9), t′(s) can be written as follows:

t′(s) =
dt

ds
=

1
‖Q′(t)‖

. (10)

Integrating (10) produces

t(s) =
∫ s

0

1
‖Q′(τ)‖

dτ. (11)

The value of t(s) at two parametric values is already
known, namely, ats = 0 and s = L. Further, for a
cubic interpolator, two more items of data are needed to
determine values for the four coefficients ofF(s) in (8):
a, b, c and d. The geometry vector at the boundaries of
the curvet(s) is obtained as follows:


t(0)

t′(0)

t(L)

t′(L)

 =



0
1

‖Q′(0)‖
1
1

‖Q′(1)‖


. (12)

Further, by requiring thatF(s) = t(s) andF ′(s) =
t′(s) at the boundaries, we can solve it for the coefficients
of (8) to get the following solution vector:


a

b

c

d

 =



1
L2

(
c +

1
‖Q′(1)‖

)
− 2
L3

1
L2
− c

L
− aL

1
‖Q′(0)‖

0


. (13)

To illustrate the low cost of generatingRs using the
CI method, theCI algorithm shown next is an implemen-
tation of the method described above (Madi (1996) gives
details regarding the implementation and the cost of all
other algorithms described here). The idea is to generate a
set {Fi | i = 0, . . . , N} by the approximating interpolat-
ing function, such that the evaluation of{Q(Fi)} renders
reference points that are approximately uniformly spaced.

TheCI algorithm starts by calculating the coefficients
a, b, and c of the cubic interpolating function. The func-
tion F(s) in (8) is evaluated at{i∆L} to yield {Li}.

CI()
compute L, scale ‖Q′(0)‖ and ‖Q′(1)‖

{this scales Q(t)}
c← 1/‖Q′(0)‖
a← c + 1/‖Q′(1)‖ − 2
b← 1− c− a
∆L← 1/N, `0 ← 0
for i← 1 to N

`i ← `i−1 + ∆L
Fi ← ((a`i + b)`i + c)`i

{Eqn. (8) using Horner’s method}
Ri ← Q(Fi)

END

Scaling‖Q′(0)‖ and ‖Q′(1)‖ implies dividing them by
L; this scales the whole curve such thatL = 1.

M. Madi36

Note that a precise measure of the deviation from a
true uniform distribution is obtainable. Consider, e.g., the
quintic PH curve of Fig. 4, whereN = 80 reference
points are generated along its path. By calculating the
distance between every pair of reference points and ac-
cumulating the deviation from a true uniform distribution,
an exact measure of the deviation from a true uniform dis-
tribution is obtained. In this case, the deviation is5.87%.
In theCI() function above, such a deviation can be com-
puted by first initializingdeviationto 0, and by adding the
following two lines to thefor-loop:

di ←
√

(xi − xi−1)2 + (yi − yi−1)2

deviation ← deviation +|di −∆L|.

Inversely, the distribution is94.13% accurate, which
is a huge achievement over the basic parametric flow
(BPF()) parameterization yielding only69.32%, at ap-
proximately the same cost (see Table 4).

5. Experimental Results

This section is divided into two subsections. The first
subsection presents visual results on a sample of Bézier
curves of several degrees. The objective is to show how
close theRs generated by various methods are to the ex-
act Rs (note that a uniform spacing is desired), and how
the results of the method presented in the previous section
compare to those of other methods. In the last subsection,
attention is turned to the cost of using the algorithms dis-
cussed to generateRs.

5.1. Visual Results

Figures 1–5 show the result of applying the algorithms
(methods) discussed to a sample of curves (the algorithms
have been applied to a much larger sample of curves
(Madi, 1996) for a much larger sample of curves).

Each of the figures is organized as follows: The ac-
tual curve is shown first, followed by plots showing only
Rs along their translated paths. In each case, fourR
plots are given: those resulting from BPF (basic paramet-
ric flow), ST (Sharpe and Thorne), OP (Farouki’s optimal
parameterization), and from CI (cubic interpolator).

The ST reference points are considered to be exact
(6–8 digits of accuracy (Madi, 1996)) and thus they are
used to compare other results with. Because CC (cumula-
tive chordlength) plots arevisually indistinguishable from
ST plots, they are not shown (Madi (1996) discusses CC
and CC plots in greater detail).

In Fig. 1 we observe the closeness of OP and CI to
ST results, whereas the results produced by the BPF are
unsatisfactory.

For symmetric curves (e.g., Figs. 2 and 5), the value
of α in the OP algorithm is1/2, thereby producing re-
sults exact to those of BPF (Farouki, 1997; Madi, 1996).
These and other figures show the closeness of CI results
to those of ST, obtained at a considerably lower cost than
required by ST.

BPF

ST

OP

CI

Fig. 1. Quadratic Bézier curve used by Farouki (1996).

5.2. Numerical Results

In this subsection, the costs of the different RPG algo-
rithms are presented in tabular format to facilitate a com-
parison. Table 1 lists the cost expressions of all the algo-
rithms, for both the setup time and theR generation time.
Tables 2 and 3 show the setup-time cost, whereas Tables 4
and 5 consider the cost of generatingRs.

Because of the wide variation in the techniques used
by various methods, a straightforward comparison is dif-
ficult. The following conventions are introduced to obtain
meaningful comparisons (Madi, 1996):

(a) The degree of the curve,n, assumes values of 3, 5,
and 9.

(b) N , the number ofRs to be generated, is fixed at 100.

Closed-form expressions for the approximation of arclength parameterization for Bézier curves 37

BPF ST

OP CI

Fig. 2. Cubic PH curve.

BPF

ST

OP

CI

Fig. 3. Cubic Bézier exhibiting high curvature regions.

(c) The number of chords that are used in the CC algo-
rithm, η (only applicable to the CC algorithm), is set
to 48 (note that this may be an underestimate for the
number of chords required in practice).

(d) The number of Simpson intervals,I, required to
compute arclengths is set as follows: to computeL,
the total arclength ofQ(t), I is set to eight; to com-

BPF

ST

OP

CI

Fig. 4. Quintic PH curve.

BPF

STOP CI

Fig. 5. Quintic S-curve.

pute the arclength of a segment ofQ(t) (as required
by ST, for example),I is set to four.

(e) Algorithms with entries containing zero in every col-
umn are omitted.

(f) Entries are in the formm1 + m2 + · · · = S, where
each term corresponds to the equivalent term in the
cost expressions listed in Table 1, andS is their sum.

M. Madi38

Table 1. List of cost expressions.

C(Q(t), N)
(
N(5n− 1) + 2

{
n +

⌊n

2

⌋
− 2

}
, 0

)
C(s(t), I)

(
(5I + 7)n + 2

⌊
n− 1

2

⌋
− 2I, I + 1

)
C(Alg., 1) Setup R Gen.

BPF — C(Q(t), N)

CI C(s(t), 1) + (4, 0) C(Q(t), N) + (3N, 0)

OP C(s(t), 1) + (16n2 C(Q(t), N) + (3N, 0)

+36n + 10, 1)

ST C(s(t), 1) C(s(t), γN)+(γN, 0)
+ C(Q(t), N)

CC C(Q(t), η) + (2η, η) C(Q(t), N) + (2N, 0)

Table 2. Multiplication count during the setup.

n = 3 n = 5 n = 9

CI 4 + 127 = 131 4 + 223 = 227 4 + 415 = 419

OP 262+127=389 590+223=813 1630 + 415 = 2045

ST 127 223 415

CC 676+96=772 1162+96=1258 2134+96=2230

Table 3. Function-call count during the setup.

n = 3 n = 5 n = 9

CI 9 + 0 = 9 9 + 0 = 9 9 + 0 = 9

OP 9 + 1 = 10 9 + 1 = 10 9 + 1 = 10

ST 9 9 9

CC 0 + 48 0 + 48 0 + 48

Table 4. Multiplication count duringR generation.

n = 3 n = 5 n = 9

BPF 1404 2410 4422

CI 1404+300=1704 2410+300=2710 4422+300=4722

OP 1404+300=1704 2410+300=2710 4422+300=4722

ST 30000+400
+1404=31804

52400+400
+2410=55210

97200+400
+4422=102022

CC 1404+200=1604 2410+200=2610 4422+200=4622

Table 5. Function-call count duringR generation.

n = 3 n = 5 n = 9

ST 2000 2000 2000

(g) The cost expressions is represented as follows:

C(Ψ, β) = (# of multiplications,

of function calls),

where C(Ψ, β) reads: the cost of evaluatingβ
times the expressionΨ. The divisions required in the
evaluation ofΨ are counted as multiplications; the
number of function calls is a count of calls made to
functions such as the square-root function, logarith-
mic functions, etc. The operations of additions and
subtractions are not considered.

From the above tables, the following is concluded:

(a) The CI algorithm has a smaller setup time when com-
pared with the others. In the cases where the ar-
clength has been pre-computed, the setup time is neg-
ligible, whereas the OP and the CC have relatively
larger setup times, depending on the values ofn and
η, respectively, as indicated in Table 2.

(b) From Tables 4 and 5, it is evident that the ST al-
gorithm is the most computationally intensive algo-
rithm to be used for locating points, both for the num-
ber of multiplications, and the number of function
calls that it makes. By comparison, the other algo-
rithms have low and similar operation counts, espe-
cially as n increases.

6. Discussion on Curves of Different Orders

In this section, the justification behind the choice of cubic
degree polynomials represented as Bézier curves is pre-
sented. The approximation of the arclength parameteriza-
tion of higher order curves is also shed light on.

6.1. Cubic Bézier Curves

Many real-world objects are inherently both complex and
smooth, and much of computer graphics involve modeling
either already existing real-world objects (such as faces,
mountains, maps) or designing objects “from scratch”
(such as fuselages, highways, etc.).

Because the classes of curves that are generated by
an n-th-degree polynomial are a superset of those gen-
erated by a lower degree polynomial, additional flexibil-
ity can be attained by using higher-degree curves. Fig-
ure 6 illustrates this flexibility concept with some cubic
Bézier curves. It should be noted that it will takeat least
two quadratic Bézier curves in order to obtain any of the
shapes in Fig. 6. Generally, parabolic third-order curves
cannot model spatial data that contain loops, cusps, or in-
flexion points inherent to them.

Closed-form expressions for the approximation of arclength parameterization for Bézier curves 39

(a) (b)

(d)

(c)

(e)

(f) (g)

Fig. 6. One-segment cubic Bézier curves.

All the curves in Fig. 6 are one-segment cubic
Bézier curves. These curves reflect the flexibility and
long-reachof the modeling capability of cubic, Bézier
curves. Figures 6(a) and (d) show different C-curves;
Figs. 6(b) and (e) exhibit a cusp and a loop, respectively;
Fig. 6(c) shows how an object like a nose may be modeled;
Figs. 6(c) and (f) show forms of S-curves and therefore
each has an inflection point; and finally, Fig. 6(g) shows a
mountain-shaped object that has two inflection points.

Figure 7 shows a cubic Bézier curve with its control
polygon shown as thin lines. By shifting the position of
any of the control polygon points, different shapes are ob-
tained as illustrated in Fig. 7.

p

p

p

p
p

Q (t)

0

1

2

3

Fig. 7. Cubic Bézier S-curve.

6.2. Approximation of High-Degree Curves

Since theCI depends largely on the tangent vectors at the
end points to perform its approximation of arclength pa-
rameterization, it is expected to produce good visual re-
sults for quadratic and cubic curves. However, it also
seems to perform reasonably well for quartic and quintic

curves (as shown in the previous figures), perhaps because
the behavior of the curve away from the end tangent vec-
tors is still sufficiently influenced by the information at the
end points. Figures 8 and 9 illustrate these observations
for yet higher degree curves. It is emphasized, however,
that typical design curves do not usually exceed a quintic
degree.

BPF ST

OP CI

Fig. 8. Ninth-degree curve.

BPF

ST

OP

CI

Fig. 9. Another ninth-degree curve exhibiting two loops.

M. Madi40

Note that for curves that exhibit one or more regions
of high curvature, interpolating with one cubic curve seg-
ment may not yield satisfactory results. Depending on the
application and its precision requirements, one of the fol-
lowing two remedies may be applied:

• Use more than one cubic interpolator to approximate
the whole curve. In this case, the curve may be di-
vided into n segments using the basic parametric
flow parametert, and then each segment is approxi-
mated by a single cubic interpolator.

• The curve is subdivided inton segments at regions
of high curvature to produce segments that are close
in shape to linear curves. Each segment is then
approximated by a single cubic interpolator. This
method should produce far more better results since
from both analytic and visual results the interpolator
works best when the curves do not possess regions
of high curvature, thereby producing reference points
that are highly uniformly distributed across a curve.
Further remarks about this method are provided in
the concluding section.

7. Conclusion and Future Research

A method for approximating the intrinsic arclength pa-
rameterization for parametric curves has been proposed.
The main property of the proposed method is that it de-
pends on analytical expressions, as opposed to methods
which depend on numerical techniques.

The accuracy and performance of the proposed
method for approximating arclength parameterization,
along with those of several other methods, were tested on
the application of reference point generation. The task
was to generate reference points that would be uniformly
spaced along the path of parametric curves. It was shown
that a cubic interpolation method produced results practi-
cal enough for most design curves, with a computational
performance that is acceptable for real-time processing re-
quirements.

Although the objective was to use a single entity in
approximating when approximating the arclength param-
eterizable expressiont(s), a spline function (composed of
several segments of the same definition of CI) can be used
if both high accuracy, and real-time processing are re-
quired. Madi (1996) shows how an approximating spline
function is constructed, and how accurate results are ob-
tained with no more than eight segments.

Work in progress includes the following topics:

• Determine the number of Simpson intervals needed
to achieve an acceptable accuracy in obtaining the
arclength of a curve segment.

• Determine analytically how close the resultingR
spacing is to the spacing that would result from an
exact arclength parameterization. For example, in
approximating t(s) of the curve shown in Fig. 4,
Fig. 10 shows a visual expression for the deviation
of the approximating functionF(s) from the true
function t(s), but this is just particular to that figure.

• Develop cost effective methods to recursively subdi-
vide a curve at the center of a region of high curvature
before having uniformly distributed reference points
generated for it. This requires the analysis of the
parametric flow behavior before and after the point
along the curve at the center of the curvature region
of interest.

• Investigate the performance of an interpolating func-
tion of a higher degree. For this, a quintic interpola-
tor will be developed and analyzed against the cubic
interpolator to determine whether there is a pay off
by using more information at the end points.

()

()

t s

F s

s

Fig. 10. Error in the approximation oft(s) by F(s).

References

Burchard H.G., Ayers J.A., Frey W.H. and Sapidis N.S. (1994):
Approximating with aesthetic constraints, In: Designing
Fair Curves and Surfaces: Shape Quality in Geometric
Modeling and Computer-Aided Design (N.S. Sapidis, Ed.).
— Philadelphia: SIAM, pp. 3–28.

Davis P.J. (1963):Interpolation and Approximation. — New
York: Blaisdell Publishing Company.

Closed-form expressions for the approximation of arclength parameterization for Bézier curves 41

Farin G. (1993):Curves and Surfaces for Computer-Aided Ge-
ometric Design: A Practical Guide. — Boston: Academic
Press.

Farouki R.T. (1992):Pythagorean-hodograph curves in practi-
cal Use, In: Geometry Processing for Design and Man-
ufacturing, (R.E. Barnhill, Ed.). — Philadelphia: SIAM,
pp. 3–33.

Farouki R.T. (1997):Optimal Parameterizations. — Computer
Aided Geometric Design, Vol. 14, No. 2, pp. 153–168.

Farouki R.T. and Sakkalis T. (1991):Pythagorean hodographs.
— IBM J. Res. Development, Vol. 34, No. 5, pp. 736–752.

Farouki R.T. and Shah S. (1996):Real-time CNC interpolators
for Pythagorean-hodograph curves. — Computer Aided
Geometric Design, Vol. 13, No. 7, pp. 583–600.

Foley J.D., Van Dam A., Feiner S.K. and Hughes J.F. (1992):
Computer Graphics: Principles and Practice. — Reading:
Addison Wesley.

Guggenheimer H.W. (1963):Differential Geometry. — New
York: McGraw-Hill, pp. 15–17.

Madi M.M. (1996): Arclength Approximation for Reference-
Point Generation. — M.Sc. Thesis, Dept. of Computer Sci-
ence, University of Manitoba.

Sharpe R.J. and Thorne R.W. (1982):Numerical method for
extracting an arclength parameterization from parametric
curves. — Computer-Aided Design, Vol. 14, No. 2, pp. 79–
81.

Su B-Q. and Liu D-Y. (1989):Computational Geometry: Curve
and Surface Modeling. — Boston: Academic Press.

Young E.C. (1993):Vector and Tensor Analysis. — New York:
Marcel Dekker.

Received: 21 January 2003
Revised: 7 December 2003
Re-revised: 17 February 2004

