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Nonlinear dynamic processes with time-varying time delays can often be encountered in industry. Time-delay estimation
for nonlinear dynamic systems with time-varying time delays is an important issue for system identification. In order to
estimate the dynamics of a process, a dynamic neural network with an external recurrent structure is applied in the modeling
procedure. In the case where a delay is time varying, a useful way is to develop on-line time-delay estimation mechanisms
to track the time-delay variation. In this paper, two schemes called direct and indirect time-delay estimators are proposed.
The indirect time-delay estimator considers the procedure of time-delay estimation as a nonlinear programming problem.
On the other hand, the direct time-delay estimation scheme applies a neural network to construct a time-delay estimator to
track the time-varying time-delay. Finally, a numerical example is considered for testing the proposed methods.
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1. Introduction

Many industrial systems involve time delays. Therefore,
the identification of time delays is one of the most impor-
tant issues in system modelling and identification. Some
literature can be found on time-delay estimation. Reedet
al. (1981) applied the LMS algorithm to locate the cross-
correlation function in order to estimate time delay be-
tween input/output signals. Teng and Sirisena (1988) pro-
posed an approach to extend the order of the numerator
polynomial function for time-delay estimation. Lim and
Macleod (1995) proposed an adaptive time-delay tracking
method for the IIR filter. Shor and Messer (1997) devel-
oped a statistical method for time-delay estimation in a
non-Gaussian process. Balestrinoet al. (1998) proposed
a strategy for steady-state time-delay estimation. Ching
et al. (1999) applied wavelets to time-delay estimation.
However, almost all of these approaches are only avail-
able for linear systems. It is well known that most indus-
trial systems contain not only time delays but also non-
linearities. Hence, if the non-linearity of a process is sig-
nificant, it will be necessary to develop approaches for the
modelling of nonlinear processes with time delays.

During the recent decade, neural networks have been
proved to be useful for system modelling and function
approximation. In this paper, a dynamic neural network
where the input layer has an external recurrent connec-
tion with the output of the network is used to model the

dynamic nonlinear process. Time delays in some indus-
trial processes may be varying in time. For example, the
inlet flow rate being the manipulated variable of a contin-
uous stirred tank reactor may change in time. Thus this
causes variations in the manipulated time delay. In this
case, on-line time-delay estimation is necessary if the ef-
fect of those variations cannot be ignored.

In this paper, two neural network based methods for
the modelling of a class of nonlinear processes with time
delays are proposed. The first one is called the indirect
time-delay estimation method. In this method, the crite-
rion is minimized with respect to the estimated time de-
lay that is contained in the neural network based model
used for the identification of the non-linearity and the dy-
namic behaviour of the process. The indirect method can
be considered as solving a nonlinear programming prob-
lem. On the other hand, the second scheme is called the
direct time-delay estimator formed by a neural network.
In order to model a time delay, a neural network is applied.
To evaluate the proposed time-delay estimation schemes,
a numerical example is given for comparison.

2. Indirect Estimation Method

Suppose that the process under consideration is described
by a mappingf : Rn+m → R, i.e.

yk = f(Yk−1, Uk−τk
), (1)
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wheref(·) ∈ C2, Yk−1 = [yk−1, . . . , yk−n]T ∈ Rn and
Uk−τk

= [uk−τk−1, uk−τk−2, . . . , uk−τk−m]T ∈ Rm are
respectively the output and input vectors, andτk is a time
delay. A neural network based model used to describe the
process is of the form

ŷk = W 2T

S(x), (2)

where ŷk denotes the output of the neural model with
time delay,W 2 = [w2

1, w
2
2, . . . , w

2
h]T ∈ Rh is the weight

vector connecting the outputs of the hidden layer and the
output of the network,S(x) = [s(x1), . . . , s(xh)]T ∈ Rh

is the output vector of the hidden layer,

s(xi) =
1− e−xi

1 + e−xi

is the sigmoid function, and the inputs of the sigmoid
function in the hidden layer are expressed as

xi =
na∑
j=1

w1
ij ŷk−j+

nb∑
j=1

w1
i,na+juk−τ̂k−j , i = 1, . . . , h,

(3)

where τ̂k is the estimate of the time delay,na and nb

are respectively the lags of the output and input of the
neural model, andw1

ij represents the weights connecting
inputs with hidden nodes. The introduction of the auto-
regression of the model output into the network can be
useful to simulate the process dynamics.

Consider the case where the delay is time varying. It
is supposed that the time delay can be split into integer
and fractional parts, i.e.

τ̂k = d̂k + δτ̂k, (4)

where d̂k is the integer part of the delay whilstδτ̂k de-
notes the fractional part of the delay, which is constrained
to lie within the range of one sample period, i.e.(2, 3)
(Lim and Macleod, 1995). Suppose that the change in the
time delay is much slower than the sampling rate so the
time delay can be considered constant during one sample
period. In order to identify the time delay, the fractional
part of the time delay is considered as one of the param-
eters to be estimated. Then, the integer part of the time
delay can be deduced from the estimated result of the frac-
tional part. For the estimation of the fractional part of time
delay, the gradient of the output of the neural model with
respect toδτ̂ should be calculated. From (2) and (3), it
follows that

∂ŷk

∂τ̂
=
∂ŷk

∂δτ̂
=

h∑
i=1

w2
i s
′(xi)

( na∑
j=1

w1
ij

∂ŷk−j

∂δτ̂

+
nb∑

j=1

w1
i,na+j

∂uk−τ̂k−j

∂δτ̂

)
, (5)

where

s′(x) =
ds(x)
dx

= 0.5(1− s(x)2).

In (5), the effect of the recurrent connection to the gradi-
ent was considered. Using a first-order interpolation, we
can estimate∂uk−τ̂k−j/∂δτ̂ . The Taylor series expansion
leads to

uk−τ̂k
≈ uk−d̂k−1 + δτ̂

uk−d̂k
− uk−d̂k−1

k − d̂k − (k − d̂k − 1)

= uk−d̂k−1 + δτ̂(uk−d̂k
− uk−d̂k−1). (6)

Hence the gradient ofuk−τ̂k−j with respect toδτ̂ can be
expressed as

∂uk−τ̂k−j

∂δτ̂
= uk−d̂k−j − uk−d̂k−j−1. (7)

Moreover, the gradient of the output of the neural
model with respect to the weights is given by

∂ŷk

∂w2
i

= s(xi), i = 1, . . . , h (8)

and

∂ŷk

∂w1
ij

=
h∑

i=1

w2
i s
′(xi)

( na∑
j=1

w1
ij

∂ŷk−j

∂w1
ij

+ ŷk−j

)
,

j = 1, . . . , na, (9)

as well as

∂ŷk

∂w1
ij

=
h∑

i=1

w2
i s
′(xi)

( na∑
j=1

w1
ij

∂ŷk−j

∂w1
ij

+ uk−τ̂k−j

)
,

j = na + 1, . . . , nb. (10)

Define the index

Q = 0.5e2k = 0.5(yk − ŷk)2, (11)

and the parameter matrices, i.e.

θ = [w2
1, . . . , w

2
h, δτ̂ ]

T ,

ω = [w1
ij ]

T
(h)×(na+nb+q).

(12)

Then the estimates of these matrices will respectively be

θk = θk−1 − λ1
∂Q

∂θk−1
,

ωk = ωk−1 − λ2
∂Q

∂ωk−1
,

(13)

where λi > 0, i = 1, 2 are the optimizing step-sizes.
If a second-order optimization algorithm, e.g. a modified
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Levenberg-Marquardt method, is applied, the update of
matricesθ and ω becomes

ψ(k) = ψ(k − 1)− λ[He + αI]−1 ∂Q

∂ψ

+ β
(
ψ(k − 1)− ψ(k − 2)

)
, (14)

where Ψ is a generalized parameter of the neural net-
work, He is the Hessian matrix, i.e.

He =
(∂ŷk

∂ψ

)(∂ŷk

∂ψ

)T

Ψ=θ
=

(∂ŷk

∂θ

)(∂ŷk

∂θ

)T

,

or

He =
(∂ŷk

∂ψ

)(∂ŷk

∂ψ

)T

Ψ=ω
=

(∂ŷk

∂ω

)(∂ŷk

∂ω

)T

,

α > 0 is the adjustable factor within(0,∞). At the
beginning,α is set as a rather large value to ensure the
positive definiteness of the approximation to the Hessian.
In this case, the algorithm becomes the steepest descent
method. Thenα should be decreased towards zero at
each successful iteration. Ifα becomes zero, the Gauss-
Newton algorithm is obtained. Moreover,α has the sta-
bilization capability provided that the algorithm converges
to a saddle point. In this situation the Hessian matrix ap-
proaches zero, andα > 0 will improve the numerical sta-
bility. In order to increase the possibility to escape from
local minima, a momentum term is embedded into this al-
gorithm andβ > 0 is the momentum factor.

When the estimatedδτ̂k is obtained, both the frac-
tional and integer parts will be updated in accordance with
(Lim and Macleod, 1995): d̂k+1 = d̂k − 1,

δτ̂k+1 = δτ̂k + 1
(15a)

for δτ̂k ∈ (−∞, k + η], or d̂k+1 = d̂k + 1,

δτ̂k+1 = δτ̂k − 1
(15b)

for δτ̂k ∈ [k + 1 + η,∞), and d̂k+1 = d̂k,

δτ̂k+1 = δτ̂k
(16)

for δτ̂k ∈ (k + η, k + 1 + η), where0 < η < 1 is a very
small number. Since the indirect time-delay estimation
is a procedure of on-line nonlinear programming, a high
computational load as involved.

3. Direct Estimation Method

The procedure of indirect time-delay estimation illustrated
in the foregoing section is considered as a problem of
nonlinear programming. In this section, the so-called di-
rect time-delay estimation approach will be proposed. A
dynamic neural network will be constructed directly for
time-delay estimation. The performance of the estimator
depends on the specification of the weightsV , the orders
of the inputs and the number of the hidden nodes of the
network. In this section, time-delay estimation is formu-
lated as a procedure of system identification. Assume that
the time delay can be separated as integer and fractional
parts as well, i.e.

τ̂k = d̂k + δτ̂k, (17)

where d̂k is the integer part of the time delay whilstδτ̂k
denotes the fractional part of the time delay.

In order to estimate the time delay, the estimator of
the fractional part of the time-delay is proposed as fol-
lows:

δτ̂k = g(V, Ik), (18)

where g(·) ∈ C2 implements the mappingg: Rq → R,
whereq = q1 + q2, q1 and q2 are respectively the orders
of the sequence of the fractional part of the time delay
{δτ̂k} and the sequence of the differences between the
system and model outputs{ek}; V is the weight matrix,
and Ik is the input vector of the time-delay neural esti-
mator of the following form:

Ik =
[
δτ̂k−1, . . . , δτ̂k−q1 , ek−1, . . . , ek−q2

]T
,

where ek = yk − ŷk. Formula (18) can be realized using
a neural network, i.e.

δτ̂k =
H∑

i=1

v2
i s(zi) =

H∑
i=1

v2
i s

( q∑
j=1

v1
ijIk−j

)
, (19)

whereH is the number of the hidden neurons of the neu-
ral estimator,v2

i represents the weight connecting the out-
put of the i-th hidden neuron with the output of the neural
network, whilst v1

ij denotes the weight assigned to the
connection between thej-th input of the network and the
input of the i-th hidden neuron.

To determine the weights of the neural network
which is used for the modelling of the fractional time de-
lay, the derivatives ofδτ̂ with respect tov2

i and v1
ij are

respectively calculated by

∂δτ̂k
∂v2

i

= s(zi), i = 1, . . . ,H, (20)

and

∂δτ̂k
∂v1

ij

=
H∑

i=1

v2
i s

′(zi)
(
Ik−j +

q1∑
j=1

v1
ij

∂δτ̂k−j

∂vij

)
,

j = 1, . . . , q. (21)
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The gradient of ŷk with respect to the weights
of the neural network is determined based on (8)–(10).
The weights are adjusted using the modified Levenberg-
Marquadt method expressed in (14). The corresponding
parameter matrices of the neural network are

θ = [v2
1 , . . . , v

2
H , δτ̂ ]

T , ω = [v1
ij ]

T
H×q.

Then, based on the estimated result of the fractional
part of the time delay, both the integer and fractional
parts of the time-delay are adjusted separately using (15a),
(15b) and (16).

Usually, the orders of the input variables are specified
based on empirical knowledge, and then the number of
the hidden nodes of the neural network depends on the
criterion minimized with respect to the weight matrixVH

which denotes the weight matrix related to the number of
the hidden neurons of the neural estimator, i.e.

J(H,VH) =
N∑

t=1

[
y(t)− ŷ(t, d̂+ δτ̂)

]2
. (22)

Define

J(H) = min
VH

N∑
t=1

[
y(t)− ŷ(t, d̂+ g(VH , I))

]2
, (23)

whereN is the number of epochs for optimization. Based
on the approximation theory of multilayer feedforward
neural networks (Cybenko, 1989), it is known that there
will be

J(H) ≥ J(H + 1). (24)

Theoretically, while increasingH, there exists an optimal
number of the hidden neurons of the time-delay neural es-
timator, i.e.H = H∗, which may lead to

J(H − 1) ≥ J(H∗) ≈ J(H∗ + 1). (25)

In the following, the comparison of the on-line compu-
tational costs between the indirect and direct time-delay
estimation schemes will be given. In order to simplify the
comparison, it is assumed that only the steepest descent
algorithm is applied to the training procedure of neural
networks, as well as the time-delay estimation procedure.
Tables 1 and 2 demonstrate the computational operations
required for both the approaches.

Table 1. On-line computational load of
the indirect approach.

Multiplications 6(na + nb) + 5h+ 4

Additions 5(na + nb) + 5h+ 3

Nonlinear computations 2h+ 1

Table 2. On-line computational load of the direct approach.

Multiplications 6(na + nb) + 6h+ 9
+(h+ 6)(q1 + q2 +H)

Additions 5(na + nb) + 6h+ 3
+(h+ 2)(q1 + q2 +H)

Nonlinear computations 2h+ 2H + 1

It can be seen that the on-line computational load of
the direct time-delay estimation will certainly be heavier
than that of the indirect method. However, the direct neu-
ral time-delay estimator can be trained either on-line or
off-line. Then the training procedure can be stopped if
the neural network has been trained well. In this case, the
estimator can be implemented with much fewer on-line
computational efforts and can be used for fast processes
as well.

4. Numerical Example

A numerical example will be used to show the per-
formances of the proposed time-delay estimation ap-
proaches. Suppose that the nonlinear process with time
delay is

yk =
yk−1 + 0.01

1 + y2
k−1 + y2

k−2

+ 0.5uk−τ ,

where the time delay constitutes a continuous time-
varying function of the form

τ =


0.005t+ 2,

17,
17− 0.005(t− 400),

t < 300,
300 ≤ t < 400,
t ≥ 400.

Suppose that the sampling period is 0.1 s and a neu-
ral network with the SISO architecture and five hidden
nodes is used for system modelling. The input signal of
the form

uk = sin(k/20) + 2 sin(k/10)

+ cos(k/5) + cos(k/2) + 2 sin(k)

is used to stimulate the process. Both the direct and in-
direct algorithms for time-delay estimation are applied to
the modelling procedure. Figure 1 illustrates the relation
between the number of the hidden nodes of the neural net-
work based time-delay estimator and the accuracy of the
modelling approximation. It is shown that an increase
in the number of hidden nodes will decrease the mean
squared error of the modelling approximation. However,
when the number of hidden nodes is greater than a certain
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Fig. 1. Relation between the MSE and
the number of hidden nodes.

value (here this value is 7), the mean squared error will not
be reduced obviously. In this case, we chose seven hidden
nodes to construct the neural time-delay estimator. In this
network, the input vector is of the form

I =
[
δτ̂k−1, δτ̂k−2, δτ̂k−3, ek−1, ek−2, ek−3, 1

]T
.

Figure 2 shows the result of time-delay estimation using
the direct method. For the indirect time-delay estimation
method, the parameters for the Levenberg-Marquadt al-
gorithm are chosen asλ = 0.025 and β = 0.75. The
initial value of the adjustable factor isα = 0.15. The
corresponding time-delay estimation result is illustrated in
Fig. 3. The estimation errors are shown in Tables 3 and 4.

Table 3. Estimation errors of the indirect method.

Mean squared error 0.9715

Maximum error 4.4950

Table 4. Estimation errors of the direct method.

Mean squared error 0.1077

Maximum error 3.8622

From the presented results, it follows that the direct
approach for time-delay estimation is better than the in-
direct method. Obviously, the direct method results in a
much smaller residual for the estimate. The on-line com-
putational cost for the direct method is, however, much
more expensive than that of the indirect approach. If the
neural time-delay estimator is trained well, then the train-
ing mechanism can be terminated. In this case, the well-
trained neural estimator can be implemented with high
speed and substantially reduced computational cost.

Fig. 2. Time-delay estimation using the direct method.

Fig. 3. Time-delay estimation using the indirect method.

5. Conclusions

In this paper, the neural network based direct and indi-
rect time-delay estimation methods for nonlinear dynamic
systems with time-varying time delays are proposed. The
proposed indirect approach, based upon a neural model
with time delay to simulate a given nonlinear dynamic
system with time delay, can be considered as an on-line
nonlinear programming procedure. On the other hand,
the direct method for time-delay estimation employs a
neural network based time-delay estimator to identify the
time delay directly. For the computational cost, the direct
method is obviously less efficient than the indirect method
if on-line training is implemented. However, if the train-
ing procedure is finished, the well-trained estimator will
have a much lighter computational load than the indirect
method since it does not require any on-line optimizing
computation in this case. In order to simplify the proce-
dure of time-delay estimation, the technique of splitting
the time delay into the integer and fractional parts was ap-
plied. The presented numerical example shows that both
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of the proposed methods can be used to estimate time de-
lays for nonlinear systems. The direct method produced,
however, better estimation results.
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