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In this paper we focus on the problem of using a genetic algorithm for model selection within a Bayesian framework. We
propose to reduce the model selection problem to a search problem solved using evolutionary computation to explore a
posterior distribution over the model space. As a case study, we introduce ELeaRNT (Evolutionary Learning of Rich Neural
Network Topologies), a genetic algorithm which evolves a particular class of models, namely, Rich Neural Networks (RNN),
in order to find an optimal domain-specific non-linear function approximator with a good generalization capability. In order
to evolve this kind of neural networks, ELeaRNT uses a Bayesian fitness function. The experimental results prove that
ELeaRNT using a Bayesian fitness function finds, in a completely automated way, networks well-matched to the analysed
problem, with acceptable complexity.
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1. Introduction

Suppose we analyse some dataD and we are interested
in finding a set of models which might have generated
the data: we would probably find an entire set of mod-
els M1, . . . ,MK with different complexity, all compati-
ble with D. Model comparisonrefers to the problem of
using the available data to compare different models with
respect to some quantity of interest. After having com-
pared M1, . . . ,MK , we might want to select one of the
modelsMk matching some requirements (i.e., best fitting
the data, the lowest model complexity, the best generaliza-
tion capability, etc.): this process is known asmodel selec-
tion. Model selection can be considered as a search in the
space of models for the one which satisfies best a partic-
ular requirement. Often, this space is multi-modal, non-
differentiable and large. Then, it is well suited to be ex-
plored by stochastic search algorithms or meta-heuristics
such asGenetic Algorithms(GAs).

A central issue in choosing the most suitable model
for a given problem is selecting the right structural com-
plexity. Clearly, the simpler the model, the smaller the
class of problems the model can solve: a model with too
few parameters will not be flexible enough to approximate
important features inD, and thus will result inunderfit-
ting the data. On the other hand, an overly complex model

may lose its generalization capacity, that is, the ability
to give a good prediction on samples not seen during the
training process. This loss of generalization is the result
of overfittingthe data set. In fact, instead of capturing the
hidden structure of the data, excessively complex models
may memorize the training dataset, thus having the ability
to approximate only the data samples (eventually affected
by noise). A simple example of this phenomenon is de-
scribed in Fig. 1. Part (a) depicts a linear modelM1(x)
underfitting a dataset generated by a quadratic function
M2(x) plus some noise. Part (b) depicts the overfitting of
a polynomial modelMN (x) that practically memorizes
the dataset generated by the quadratic functionM2(x)
including the noise.

In the literature, several alternative techniques have
been proposed to determine the right level of model
complexity, from regularization theory (Tikhonov, 1963),
where analytical constraints, usually involving smooth-
ness, are introduced for the model to cross-validation
(Stone, 1974), where part of the training dataset is used
to estimate the model generalization error. In this paper,
we focus on the Bayesian approach to model selection
(Denisonet al., 2002; Bernardo and Smith, 1994) since
it takes into account the uncertainty of selecting a partic-
ular model and gives a formal method to specify model
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Fig. 1. Underfitting (a) and overfitting (b) on the training data.

requirements through the use of probability distributions.
The Bayesian framework does not require to hold out any
data and automatically provides a regularization term de-
rived from prior probability distributions.

In the next section, we introduce the Bayesian frame-
work from a theoretical point of view, while in Section 3
we will apply it to artificial neural networks. The follow-
ing sections introduce ELeaRNT and present some empir-
ical results to validate it.

2. Bayesian Model Comparison and Occam’s
Factor

The Bayesian framework for model selection (Denisonet
al., 2002; Bernardo and Smith, 1994) provides a practi-
cal and powerful way to improve the generalization ca-
pabilities of models while minimizing their complexity.
The framework is centered on the use of probability dis-
tributions over the model structure and model parameters
combined according to Bayes’ rule in order to compute its
posterior distribution.

If we consider the classical notationp(A|B,M) for
conditional probabilities, the statementsB and M list

the conditional assumptions on which this measure of
plausibility is based. For example, ifA is “it will rain
today”, B is “the barometer is rising”, andM is a model
of the weather, then the quantityp(A|B,M) is a num-
ber between0 and 1 which expresses how probable we
would think “rain today” is, given that the barometer is
rising, and given the overall assumptions inM . This con-
ditional probability is related to the joint probability ofA
and B:

p(A|B,M) =
p(A,B|M)
p(B|M)

.

Having enumerated the complete list of the condi-
tional degrees of belief about the model and the data, we
can then use probability theory to evaluate how our be-
liefs and predictions should change when we gain new
information. For instance, the probabilityp(B|A,M)
measures how plausible it is that the barometer is rising,
given that today is a rainy day; this probability can be ob-
tained by the Bayes theorem where the overall model of
the weatherM is a conditioning statement on the right-
hand side of all the probabilities:

p(B|A,M) =
p(A|B,M)p(B|M)

p(A|M)
. (1)

Suppose now that a set ofL models M =
{M1, . . . ,ML} are under consideration for a training set
D, and that underMk, D has densityp(D|wk,Mk),
where wk is the vector of parameters that indexes the
members ofM. A Bayesian approach proceeds by as-
signing a prior probability distributionp(wk|Mk) to the
parameters of each model, and a prior probabilityp(Mk)
to each model. Intuitively, this complete specification can
be understood as a hypothetical three-stage hierarchical
process that generated the training setD:

1. The modelMk was generated according to the dis-
tribution p(M1), . . . , p(ML).

2. The parameter vectorwk was generated from
p(wk|Mk).

3. The dataD were generated fromp(D|wk,Mk).

Letting Df be the future observations of the
same process that generatedD, this prior formula-
tion induces a joint distributionp(Df ,D,wk,Mk) =
p(Df ,D|wk,Mk)p(wk|Mk)p(Mk). Conditioning on the
observed dataD, all remaining uncertainty is captured by
the joint posterior distributionp(Df ,wk,Mk|D). When
the goal is exclusively the prediction ofDf , we should fo-
cus on the predictive distributionp(Df |D), which is ob-
tained by marginalizing out bothwk and Mk, that is,
after averaging over all unknown models.

In other cases, the focus is on selecting one of the
models inM for the dataD. This might be guided by
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the interest in extracting a useful, simple model from a
large class of models. Such a model might, for example,
provide valuable scientific insights or perhaps a method
for prediction that has a computational load lower than
the model average. In terms of the three-stage hierarchi-
cal process, the model selection problem becomes that of
finding the most probable model inM, which actually
generated the data, namely, the model that was selected
using p(M1), . . . , p(ML) in the first step. The proba-
bility that Mk was in fact this model, conditionally on
having observedD, is the posterior model probability

p(Mk|D) =
p(D|Mk)p(Mk)∑
k p(D|Mk)p(Mk)

, (2)

where

p(D|Mk) =
∫

p(D|wk,Mk)p(wk|Mk)dwk (3)

is the marginal likelihood ofMk and is calledevidence.
Based on these posterior probabilities, the pairwise com-
parison of models, sayM1 and M2, is summarized by
the posterior odds

p(M1|D)
p(M2|D)

=
p(D|M1)
p(D|M2)

× p(M1)
p(M2)

. (4)

The expression in Eqn. (4) reveals how the data,
through the so-calledBayes factorp(D|M1)/p(D|M2),
update prior distribution oddsp(M1)/p(M2) to yield the
posterior odds. The ratiop(M1)/p(M2) on the right-
hand side of Eqn. (4) measures how much our initial be-
liefs favoredM1 over M2, and gives the designer the op-
portunity of inserting knowledge based on previous expe-
rience or on aesthetic grounds. The Bayes factor expresses
how well the observed data were predicted byM1, com-
pared toM2. As is clearly explained in (MacKay, 1992),
this term plays a fundamental role since it implements an
automatic Occam razor. Simple models tend to make a
small number of predictions while complex models, by
their nature, are capable of making a greater variety of
predictions. If we consider the models in Fig. 2, a com-
plex model MN has to spread its predictive probability
p(D|MN ) more thinly over the data space than the sim-
pler one M1. Thus, in cases where the dataset is com-
patible with both models, the simplerM1 will turn out to
be more probable thanMN , without having to explicitly
express any subjective dislike for complex models. Other-
wise, whenever the simple modelM1 is too simple, it will
be ruled out by the choice of a more probable modelMN .

Note that, in Bayesian statistics, parameters in the
prior probability distributions of the modelp(Mk) or
of the model parametersp(wk|Mk) are calledhyper-
parameters. These hyper-parameters are usually unknown
and, as they are fully Bayesian, it could be possible to

Evidence

p(D|M  )1 

p(D|M  )2 

DD D2 1 

Fig. 2. Example of the automatic Occam
razor in model selection.

define a prior distribution over these hyper-parameters
and perform the model comparison by considering also
these “hyper-priors” (Williams, 1995). Even without us-
ing hyper-priors, it might be unfeasible to compute the
integral of Eqn. (3) defining the evidencep(D|Mk), and
in these cases it might be preferable to use a computable
approximation for it. An effective approximation for this
purpose, when

h(wk) .= log p(D|wk,Mk)p(wk|Mk) (5)

is sufficiently well-behaved (i.e., the most of the proba-
bility is under thep(D|Mk) maximum), is obtained by
the Gaussian approximation given by the Laplace method
(Tierney and Kadane, 1986) as

p(D|Mk) ≈ (2π)(dk/2)|H(w̃k)|(1/2)

× p(D|w̃k,Mk)p(w̃k|Mk), (6)

where dk is the dimension ofwk, w̃k is the maximum
of h(wk), namely, the posterior mode ofp(w̃k|D,Mk),
andH(w̃k) is the negative of the inverse Hessian ofhwk

evaluated atw̃k. This is obtained by substituting the Tay-
lor series approximation

h(wk) ≈ h(w̃k)− 1
2
(wk−w̃k)T H(w̃k)(wk−w̃k) (7)

for h(wk) in the Gaussian approximation ofp(D|Mk) =∫
eh(wk)dwk.

In the classical Bayesian approach, model selection
is composed of two levels of inference. On the first level,
we assume that a particular model is true and we fit that
model to the data inferring which values its free parame-
ters should plausibly take, given the data. This analysis is
repeated for each model. The second level of inference is
the task of model comparison: here, we assign some sort
of preference or ranking to alternative models in the light
of the data. Let us write down Bayes’ theorem for the two
levels of inference:

1. Model fitting : we assume that a modelMk is true
and we infer its parametersw given the dataD from
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the posterior probability ofw:

p(w|D,Mk) =
p(D|w,Mk)p(w|Mk)

p(D|Mk)
, (8)

wherep(w|Mk) is the prior probability of model pa-
rameters and the normalizing constantp(D|Mk) is
the evidence forMk.

2. Model comparison: we infer which model is the
most plausible given the data. Using (2) and omit-
ting p(D), which is the same for all the models, we
obtain

p(Mk|D) ∝ p(D|Mk)p(Mk). (9)

Note that by selecting a single “best” model to make
inferences and predictions, we might ignore its uncer-
tainty. An alternative approach to model selection con-
sists in measuring some quantity under each modelMk

and then averaging these estimates according to how good
each model is (Hoetinget al., 1998). For example, we
could average the predictions on a future observation
of each model according to how plausible we consider
the model. This process is known asmodel averaging
(Wasserman, 1999). If we denote by∆ the quantity of
interest, we can express the average of the predictions on
∆ of different models as

p(∆|D) =
p(∆|Mk,D)p(Mk)

K∑
l=1

p(∆|Ml,D)p(Ml)
. (10)

Although model averaging allows taking into account un-
certainty about the model, in many applications its imple-
mentation poses several issues:

• the number of terms in (10) may be very large, so
that exhaustive summation becomes infeasible;

• the integrals implicit in (10) can be hard to com-
pute in general; Markov chain Monte Carlo methods
(Hastings, 1970) have partially overcome the prob-
lem, but challenging technical issues remain;

• specification ofp(Mk) is challenging, and, for many
classes of models, it has received little attention.

Because of these issues, in this paper we do not con-
sider model averaging and we focus on model selection by
extracting the most probable model from the model pos-
terior distribution (i.e., Maximum A-Posteriori). In order
to do that, we use evolutionary computation to explore the
posterior distribution of the adaptive models we are learn-
ing. In particular, we use genetic algorithms since they
have proved to be a powerful search tool when the search
space is large and multimodal, and when it is not possible
to write an analytical form for the error function in such
a space. In these applications, genetic algorithms are ad-
vantageous since they can simultaneously and thoroughly

explore many different parts of a large solution space,
seeking a suitable solution by implementing a population-
based sampling. This sampling approach can be seen as a
variation of the Metropolis-Hastings approach (Chib and
Greenberg, 1995), and has proven to be extremely effi-
cient.

3. Bayesian Framework for Artificial Neural
Networks

Artificial Neural Networks (ANNs) are generic non-linear
function approximators which have been extensively used
for various purposes such as regression, classification and
feature reduction (Bishop, 1995; Haykin, 1999). A neu-
ral network is a collection of basic units, calledneurons,
computing a non-linear function of their inputs. Every in-
put has an assigned weight that determines the impact this
input has on the output of the node.

In Fig. 3(a) it is possible to see a schematic represen-
tation of an artificial neuron, wherewji is the weight of
the connection from neuroni to neuronj, and sj is the
activation or output of neuronj. Unit j determines its
output by ideally following a two-step procedure:

1. It computes the total weighted inputzj , using the
formula

zj =
∑
i=1

wjisi,

where si is the activity level of thei-th unit in the
previous layer andwij is the weight of the connec-
tion between thei-th and thej-th units.

2. It calculates its activitysj using some non-linear
function gj(·) of its total weighted inputzj minus a
bias termbj

.= −wj0 · 1:

sj = gj(zj − bj) = gj

( ∑
i=0

wjisi

)
.

Functions g(·) commonly used in artificial neural
networks are squashing functions, like sigmoid or the hy-
perbolic tangent. By interconnecting a proper number of
nodes in a suitable way and by setting the weights to ap-
propriate values, a neural network can approximate any
non-linear function with an arbitrary precision (Hornik
et al., 1989). This structure of nodes and connections,
known as thenetwork topology, together with the weights
of the connections, determines the network final behav-
ior. Figure 3(b) describes a simple feed-forward topology,
i.e., no loops are present with a single hidden layer, i.e., a
layer of neurons neither connected to the input, nor to the
output.
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Fig. 3. Schema of an artificial neuron (a) and
a feed-forward network topology (b).

Given a neural network topology and a training set,
it is possible to optimize the values of the weights in or-
der to minimize an error function by means of any back-
propagation algorithm (Rumelhartet al., 1986), standard
optimization techniques (Presset al., 1992) or random-
ized algorithms (Montana and Davis, 1989). However,
the topology of a neural network plays a critical role in
whether or not the network can be trained to learn a par-
ticular data set. In fact, we cannot easily answer the ques-
tion of how many nodes, layers, or connections a neural
network should have, and no algorithm exists for finding
the optimal solution for the design of such a topology.
Clearly, the simpler the topology, the simpler the func-
tion the neural network is computing. A simple topology
will result in a network that cannot learn to approximate
a complex function, while a complex topology is likely
to result in a network losing its generalization capability.
This loss of generalization is the result ofoverfitting the
training data: instead of approximating a function present
in the data, a neural network that has an overly complex
structure may have the ability to memorize the training
set, allowing noise within the data to be learned as part
of the model, resulting in inaccurate predictions on future
samples.

In this paper, we focus on feed-forward topologies
with arbitrary non-linear, differentiable activation func-
tions for each layer and with “shortcut" connections link-
ing two non-subsequent layers. We call this kind of en-
riched topologiesRich Neural Networks(RNNs) (Mat-
teucci, 2002a). They were originally inspired by (Flake,
1993) and the main interest in this kind of topology is to
state the effectiveness of using various activation func-
tions for the network layers (Mani, 1990; Ronald and
Schoenauer, 1994; Lovell and Tsoi, 1992) with a gener-
alized feed-forward structure.

Due to the complexity of the design activity for such
networks, we propose to use an automatic tool based on
evolutionary computation and to define its fitness function
by using the Bayesian framework for the model selection
introduced in Section 2. In doing this, we use an improper
prior for the neural network topologies meaning that we
do not express any explicit belief about the model struc-
ture; this is accomplished by assuming the same probabil-
ity for all the modelsMk. Instead, we express our belief
about the weights of neural networksp(wk|Mk) by using
a conjugate Gaussian prior. In the following, we present
a detailed description of the priors used in applying the
Bayesian framework to rich neural networks and we de-
rive the Bayesian fitness that represents the posterior dis-
tribution for the models.

3.1. Prior Distribution of Network Weights

We now consider the prior probability distribution of net-
work weightsw. In the absence of any data, we have little
idea of what the weight values should be; at this stage, the
prior might express some general properties such as the
smoothness of the network function but should also leave
the weight values fairly unconstrained. Experience sug-
gests that positive and negative weights are equally fre-
quent, that smaller weights are more frequent than larger
ones and that very large weights are very unlikely. A
Gaussian prior is a formal description for this concern:

p(w) =
1

ZW (α)
exp(−αEW ). (11)

Here, ZW (α) is the normalization constant

ZW (α) =
∫

exp(−αEW )dw (12)

which ensures that
∫

p(w)dw = 1, and EW (called the
“weight error”) is defined as

EW = ‖w‖2 =
1
2

W∑
i=1

w2
i , (13)
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whereW is the total number of weights and biases in the
network. Combining (11) and (13), we have

p(w) =
1

ZW (α)
exp

(
− α

2

W∑
i=1

w2
i

)
. (14)

This formulation is a straightforward derivation from the
belief of independence of weights following a Gaussian
distribution with zero mean and variance1/α. With such
a choice, when‖w‖ is large, EW is large andp(w)
is small: the prior distribution penalizes larger values of
weights, reflecting our experience about the network pa-
rameters. The hyper-parameterα controls the distribu-
tion of model parameters (weights and biases) and for the
moment we assume that it as a fixed, known constant.
Owing to the choice of a Gaussian prior, the evaluation
of the normalization factorZW (α) in (12) is straightfor-
ward and gives

ZW (α) =
(

2π

α

)W
2

. (15)

3.2. Artificial Neural Network Learning as Inference

We now consider the problem of training a regression net-
work with a given architecture (i.e., the number of lay-
ers, the number of hidden units, etc.): such a network
maps an inputx to an outputy(x|w) which is a con-
tinuous function1 of the parametersw. The network is
trained using a data setD, consisting ofN patterns of
the form (x, t), by iteratively adjustingw so as to min-
imize an objective function, e.g., the sum of the squared
errors:

ED(w) =
1
2

N∑
i=1

(
t(i) − y(x(i)|w)

)2

. (16)

This minimization is usually based on repeated evaluation
of the gradient ofED using the back-propagation algo-
rithm. We can give a maximum likelihood probabilistic
interpretation to this learning process. In fact, let us sup-
pose that the patterns in the training set are independently
drawn from a distributionp(x, t); we modelt as a deter-
ministic non-linear functiony(x) plus some zero-mean
Gaussian noise. Under this assumption, the probability
of observing a single datumt for a given input vectorx
would be

p(t|x,w) ∝ exp
(
−β

2
(t− y(x|w))2

)
, (17)

where β = 1/σ2
ν controls the variance of the noise, and,

for the moment, we shall assume this hyper-parameterβ

1 Discontinuous functions are not practical for gradient-based opti-
mization.

is known and constant. Since the data points are drawn
independently of this distribution, the probability of the
training dataD, called thelikelihood, is

p(D|w) =
N∏

n=1

p(tn|xn,w)

=
1

ZD(β)
exp

(
− β

2

N∑
n=1

(
tn−y(xn|w)

)2
)

=
1

ZD(β)
exp(−βED), (18)

whereZD(β) is the normalization factor given by

ZD(β) =
(

2π

β

)N
2

. (19)

It is straightforward to derive that the maximum likelihood
estimation of the neural network weights is equivalent to
the minimization of the error (16) by the back-propagation
algorithm.

3.3. Posterior Weight Distribution

Once we have chosen a prior distribution and an expres-
sion for the likelihood function, we can use Bayes’ theo-
rem to find the posterior distribution of network weights.
Using (11) and (18), we get the posterior distribution in
the form

p(w|D) =
1

ZS
exp(−βED − αEW )

=
1

ZS
exp

(
− S(w)

)
, (20)

where
S(w) = βED + αEW (21)

and

ZS(α, β) =
∫

exp(−βED − αEW )dw. (22)

In order to find the weight vectorwMP corresponding to
the maximum of the posterior distribution, we can min-
imize the negative logarithm of (20) with respect to the
weights. Since the normalizing termZS does not depend
on the weights, we only need to minimizeS(w) given
by (21) obtaining

S(w) =
β

2

N∑
n=1

(tn − y(xn|w))2 +
α

2

W∑
i=1

w2
i . (23)

Apart from an overall multiplicative factor, this is pre-
cisely the usual sum-of-squares error function with a
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weight-decay regularization term. If we are only inter-
ested in finding the weight vectorwMP which minimizes
this error function, the overall multiplicative factor is irrel-
evant and the effective value of the regularization param-
eter depends only on the ratioα/β. Note that as the num-
ber of patternsN in the training set increases, the first
term in (23) grows withN , while the second term does
not. Thus, ifα and β are fixed, then asN increases, the
first term becomes more and more dominant, until even-
tually the second term becomes insignificant. On the con-
trary, for a small number of patterns, the second term plays
an important role in determining the most probable solu-
tion.

3.4. Evidence Framework for α and β

So far, we have assumed that the values of the hyper-
parametersα and β are fixed and known. Unfortunately,
in many applications, we have no idea of suitable values
for α and β. Recalling (MacKay, 1995; 1999), we need
to apply Bayesian techniques also to infer the most prob-
able valuesαMP and βMP for the hyper-parameters. To
infer α and β given the data, we apply again the rules of
probability theory:

p(α, β|D,M) =
p(D|α, β, M)p(α, β|M)

p(D|M)
. (24)

Assuming that we have only a rough idea of suitable
values forα and β, since the denominator in (24) is in-
dependent ofα and β, the maximuma-posteriorivalues
for these hyper-parameters are found by maximizing the
term p(D|α, β, M). If we can approximate the posterior
probability distribution (20) by a single Gaussian func-
tion, according to the Laplace approximation of (6), we
obtain

p(w|D,M) ' 1
Z∗

S

exp(−S(w)

− 1
2

(
w−wMP)T A(w−wMP)

)
, (25)

where A = ∇∇ ln p(w|D, α, β,M)|wMP
, and the evi-

dence forα and β can be written as

ln p(D|α, β, M) = ln
Z∗

S

ZD(β)ZW (α)

= −S(wMP )− 1
2

ln det
(

A

2π

)
− lnZW (α)− lnZD(β). (26)

Using (11) and (19), we can write the log of the evidence
as

ln p(D|α, β) = −αEMP
W − βEMP

D − 1
2

ln |A|

+
W

2
lnα +

N

2
lnβ − N

2
ln(2π). (27)

As shown in (Gull, 1989), givenλi as the eigenval-
ues of the HessianH = β∇∇ED, the maximum of evi-
dence forα and β satisfies the following implicit equa-
tions:

2αEMP
W = W −

W∑
i=1

α

(λi + α)
= γ, (28)

with γ =
∑W

i=1 λi/(λi + α),

2βEMP
D = N −

W∑
i=1

λi

λi + α
= N − γ. (29)

In a practical implementation of evidence approxi-
mation, we have to find the optimumα and β, as well as
wMP. A simple solution to this problem is to use a stan-
dard iterative training algorithm to findwMP. We train the
network using some initial values assigned to the hyper-
parameters to findwMP. This is done by periodically re-
estimating newα and β using

αnew = γ/2EW , (30)

βnew = (N − γ)/2ED. (31)

3.5. Bayesian Fitness Function

Once the most probable values for the weight vectorw
and hyper-parametersα and β of a given neural net-
work have been determined, we can compare different net-
works. In order to evaluate a given neural network in our
genetic algorithm, we introduce the following expression,
which is derived from (27):

ln p(D|Mk) = −αMPEMP
W − βMPEMP

D − 1
2

ln |A|

+
W

2
lnαMP +

N

2
lnβMP

+
1
2

ln
(

2
γ

)
+

1
2

ln
(

2
N − γ

)
. (32)

We use this expression as the fitness for the genetic
algorithm, while searching for the right topology to per-
form model comparison. We call it theBayesian fitness
function. Using this finess function to search fitting mod-
els for our dataset, we expect, due to Occam’s razor em-
bodied in the Bayesian framework, that complex networks
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will be automatically penalized while small ones will be
favored, thus obtaining a twofold result: reduce overfit-
ting (thus increasing the generalization capability of the
model) and reduce the “bloating phenomenon”. Angeline
describes such a phenomenon in his applications (Ange-
line, 1994); he observes that many of the evolved solutions
found by genetic programming contain a code that, when
removed, does not alter the produced result. In our case,
we would like to obtain small rich neural network models
with good generalization capabilities without having to re-
move the nodes that are not useful using ana-posteriori
analysis of the weights in the network like in (Weigendet
al., 1991; Hassibi and Stork, 1992; Hashem, 1997).

4. ELeaRNT Genetic Algorithm

ELeaRNT (Evolutionary Learning of Rich Neural net-
work Topology) (Matteucci, 2002a; Matteucci, 2002b)
is a genetic algorithm which evolves RNN topologies
in order to find an optimal domain-specific non-linear
function approximator with a good generalization perfor-
mance. ELeaRNT follows the scheme of Goldberg’sSim-
ple Genetic Algorithm(Goldberg, 1989). It uses non-
overlapping populations and at each generation creates an
entirely new population of individuals by selecting from
the previous one, and then mating them to produce off-
spring for the new population. In all our experiments we
useelitism, meaning that the best individual from each
generation is carried over to the next generation; however,
this is not mandatory.

4.1. Rich Neural Network Representation

ELeaRNT uses a direct coding scheme to represent a net-
work, i.e., each detail of the architecture (i.e., the number
of neurons, activation functions, connections, the learn-
ing algorithm, etc.) is specified in the genotype: this al-
lows a more focused design of the genetic operators that
are closed with respect to the chosen phenotype.2 Direct
encoding has proved to be less effective with larger geno-
types because the effects of crossover and mutation are
often unfavorable for retaining any kind of high level net-
work structure that may have been evolved (Liu and Yao,
1996). For this reason, the coding we propose in Sec-
tion 4.1.2 is suitable for keeping the network representa-
tion compact, avoiding the “competing convention” issue
that arises from the fact that the order of the nodes in the
hidden layers of neural networks is irrelevant (Hancock,
1992).

2 We define a genetic operator to be closed with respect to the pheno-
type if applying it to a valid genotype that codes a rich neural net-
work topology always produces another valid genotype that codes
another rich neural network topology.

4.1.1. Network Model: Phenotype

In RNNs each layer has at least one neuron, and, po-
tentially, a different activation function. The numbers of
neurons in the first and last layers are fixed, since these
are the numbers of input and output variables of the spe-
cific problem. The transfer function for the input layer
is usually theidentity functionand for the other layers
it can be any of the following choices:identity, logistic,
tanh, linear, Gaussian, sin, cos. All the neurons in the
same layer have the same activation functions and there
are no intra-layer connections. This phenotype subsumes
a classical fully connected feed-forward architecture and
exploits more flexibility due to the use of various activa-
tion functions and to the capability of describing non-fully
connected topologies with shortcut connections. Figure 4
shows an example of the RNN topology evolved by our
algorithm.

4.1.2. Genetic Coding: Genotype

Each phenotype is coded by a two-part genotype. The
first part encodes the layer information (i.e., the number
of neurons and the activation function), and the second
part encodes the connectivity between the layers using a
matrix. To specify a proper feed-forward neural network,
only the elements above the diagonal in the connectivity
matrix may differ from 0. Since we chose the identity
function for the first layer, the activation function for that
part of the genotype cannot be changed during the evolu-
tion. It is possible that during the genetic evolution a geno-
type codes an “invalid” phenotype. That happens when
either a column (i.e., the fan-in of a neuron layer) or a row
(i.e., the fan-out of a neuron layer) is filled with0 s; this
implies that a layer of neurons is not reachable from the
input or it does not participate in the final output. To avoid
this issue, we designed the genetic operators to be closed
with respect to the phenotype family. This is not manda-
tory, as it was introduced only to increase the efficiency of
the search algorithm by drastically reducing the number
of unfeasible solutions to be rejected.

4.2. Genetic Operators

In our implementation, we define two crossover operators
and six different mutation operators. Crossover and mu-
tation occurrences have different probabilities, and each
crossover or mutation operator has uniform probability
once the application of a specific genetic operation has
been chosen. We will shortly introduce these operators
in the next paragraphs. For a more detailed description,
see (Matteucci, 2002a; Matteucci, 2002b). Notice that, to
keep a valid offspring after crossover, we might have to
increase the number of connections with respect to par-
ents; this increased number of connections produced by
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Fig. 4. Example of a phenotype evolved by our
genetic algorithm and its coding.

the crossover operators is not a major issue in the algo-
rithm, and we could easily solve this increased complex-
ity by introducing a post pruning operator to be used after
training (Bebiset al., 1997; Castellanoet al., 1997).

4.2.1. Single-Point Crossover

The single-point crossover operator combines two net-
works by cutting their topologies in two pieces with a sur-
face that entirely separates the input and the output of the
network and then switching the input parts of the two net-
works. In order to guarantee this operator to be closed
with respect to the valid genotype family, we have to re-

store all the connections between the two pieces of the net-
works. Connections coming from the input part of the first
network have to be joined with connections going into the
output part of the second network, and vice versa. In this
way, the final number of connections in the newly gener-
ated individuals might be greater than the original one, but
the validity of the genotype is preserved.

Figure 5(a) describes the effect of the single-point
crossover operator. Two random points in the first part
of the two genotypes are chosen. Note that cell(i, j) in
the top right sub-matrix of the genotype has a connection
iff at least one of the cells in thei-th row of the parent
providing the input part has a connection and at least one
of the cells in thej-th column of the parent providing the
output part has a connection.

4.2.2. Two-Point Crossover

The two-point crossover operator combines two networks
by extracting a subgraph from each of them, and exchang-
ing these two sub-graphs. In order to guarantee this oper-
ator to be closed with respect to the valid genotype family,
we have to restore all the connections between the remain-
ing network and the new block. Connections coming off
or going into the new block have to be joined to connec-
tions going into or coming out of the old block. Also,
with this crossover operator the final number of connec-
tions between the newly generated individuals might be
greater than the original one.

Figure 5(b) illustrates an example of the application
of this operator. Note that, to join the new block into the
“hosting” network, the top middle and right middle sub-
matrices have to be filled in a specific way. A cell(i, j)
in the top middle sub-matrix has a connectioniff any of
the cells in thei-th row of the original top middle sub-
matrix of the parent network hosting the new block has a
connection and any of the cells in thej-th column of the
parent providing the block has a connection. A cell(i, j)
in the right middle sub-matrix has a connectioniff any of
the cells in thej-th column of the original right middle
sub-matrix of the parent network hosting the new block
has a connection and any of the cells in thei-th row of the
parent providing the block has a connection.

4.2.3. Mutation

In order to guarantee the eventual exploration of the en-
tire model search space, we implemented six different
mutation operators. Here they are briefly described (for
a more detailed description, see (Matteucci, 2002a; Mat-
teucci, 2002b)):

• Drop layer: this mutation operator randomly selects a
layer and removes it from the network structure. Be-
fore removing the layer from the network structure,
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Fig. 5. Single-point crossover (a) and two-point crossover (b) genetic operators.

its input connections are directly connected to all the
destinations of its output connections.3

• Add layer: this mutation operator adds a layer to the
network topology. An existing layer is randomly se-
lected and its connectivity is duplicated. After that,
a random activation function and a different number
of neurons are initialized. Since a valid copy of an

3 This is equivalent to setting the activation function of the layer to
identity, but reduces the number of weights of the network to be
trained and thus the number of free parameters.

existing neuron connectivity sub-matrix is used, this
operator is guaranteed to be closed with respect to
the valid genotype family.

• Number of neurons: this mutation operator changes
the number of neurons in a specific layer of the net-
work. A random mutation point is chosen and the
number of neurons in the specific layer is changed
according to a uniform distribution.

• Drop connection: this mutation operator removes a
connection from the connectivity matrix of the net-
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work. Once the connection is removed, the opera-
tor checks for layers that are neither reachable from
the input nor participate in the output of the network.
These layers have to be removed and this may lead
to a complete destruction of the network. This op-
erator is not guaranteed to be closed with respect to
the valid genotype family, and thus a modified geno-
type has to be checked. In case a non-valid genotype
is generated, a new one is randomly initialized and
substituted for the original one.

• Add connection: this mutation operator adds a new
connection in the connectivity matrix of the network.
If the network is completely connected, the genotype
is left unchanged.

• Activation function: this mutation operator changes
the activation function in a network layer. A random
mutation point is chosen and the activation function
in that specific layer is changed according to a uni-
form distribution over the available activation func-
tions.

Notice that two out of six mutation operators intro-
duce pruning into the genetic algorithm. Conversely, two
out of six mutation operators increase the size of the net-
works by adding connections and nodes.

4.3. ELeaRNT and the Bayesian Fitness Function

We now describe the complete ELeaRNT algorithm which
allows us to create, train and evolve rich neural networks
within the Bayesian framework discussed in Section 2.
The ELeaRNT algorithm evolves network topologies in
order to maximize the Bayesian fitness function defined
in Section 3. In fact, each individual is evaluated us-
ing the Evaluate procedure presented in Algorithm 1: at
first, the weight vectorw is initialized according to a
Gaussian prior distribution and its hyper-parametersα
and β are set by the user to an initial value. After
initialization, each individual is trained using a standard
non-linear optimization technique based on the conjugate

Algorithm 1. Evaluate Procedure
Begin Evaluate (Individual i)
repeat

Initialize weights according to a Gaussian distribu-
tion
Choose initial values for the hyper-parameters
Train i to minimize the error function (23)
Every M epochs re-estimateα, β using (30)
and (31)

until Desired number of restarts reached
Return the average fitness over the restarts
End Evaluate

gradient descent in order to minimize the regularized error
function (23). After a given number of training epochs,
hyper-parametersα and β are re-estimated by using the
formula (30) and (31) withγ given by (28).

Network training is performed using batch learning
with the Polak-Ribière deterministic conjugate gradient
algorithm and golden line search (Fletcher, 1987). Note
that this algorithm does not require an explicit evalua-
tion of the Hessian matrix. Instead, the re-estimation of
α and β requires the computation of the Hessian ma-
trix and its eigenvalues. To reduce the computational load
of re-estimating hyper-parameters, this operation is per-
formed only everyM epochs, computing the Hessian ma-
trix with the efficient Pearlmutter algorithm (Pearlmutter,
1994) and its eigenvalues by LU decomposition (Presset
al., 1992). Finally, to reduce the dependence ofln |A| on
small eigenvalues, it is possible to set a (positive) cut-off
value ε for the eigenvaluesλi: all the eigenvalues smaller
than this cut-off will be set toε.

Each individual is then evaluated using the Bayesian
fitness function. Initialization, training and evaluation are
performed several times to avoid local minima, and the av-
erage performance over the different restarts is used. Tak-
ing the average over the restarts is just one of the possible
choices. In fact, we could use the best result as the fitness
value for the individual we are evaluating. We decided
to use the average to give more emphasis to the network
model and not to the particular local minimum found by
the optimization algorithm.

ELeaRNT, described in Algorithm 2, starts by gen-
erating an initial random population of neural networks:
individuals can have an arbitrary number of layers, neu-
rons and different types of activation functions. Once this
first population has been evaluated, selection takes place.
In order to prevent the loss of the best found solution, we
use elitism and therefore the best individual in the current
generation is carried over to the next generation. After se-
lection, the crossover and mutation operators described in
the previous sections are applied to the selected individu-
als and a new generation is created. This new population
will be trained and evaluated as the previous one. The al-
gorithm will cycle for a given number of generations or
until a given stopping criterion is met.

5. ELeaRNT Experimental Validation

In this section we validate the ELeaRNT algorithm by ap-
plying it to three regression tasks. In these experiments,
we use an improper prior over the network space and the
Gaussian prior over model parameters as described in Sec-
tion 3. We are mainly interested in:

• Proving that ELeaRNT with the Bayesian fitness
function is able to select small neural network
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Algorithm 2. ELeaRNT Algorithm
BeginELeaRNT
Create a PopulationP with N Random Individuals
for all i ∈ P do

Evaluate(i)
end for
repeat

repeat
Selecti1 and i2 according to their Fitness
with probability pcross

Select Crossover OperatorCross
i′1, i

′
2 ← Cross(i1, i2)

otherwise{with probability 1− pcross}
i′1 ← i1 and i′2 ← i2

end
with probability pmut

Select Mutation OperatorMut
i′′1 ←Mut(i′1)

otherwise{with probability 1− pmut}
i′′1 ← i′1

end
with probability pmut

Select Mutation OperatorMut
i′′2 ←Mut(i′2)

otherwise{with probability 1− pmut}
i′′2 ← i′2

end
Add Individuals i′′1 and i′′2 to New Population

until (Created a new PopulationP ′)
for all i ∈ P ′ do

Evaluate(i)
end for

until (Desired number of generation reached)
End ELeaRNT

topologies that are still well-matched to the data and
thus possess a good generalization capability.

• Verifying the effectiveness of Occam’s razor embod-
ied in the evidence-based Bayesian fitness function,
that is, verifying if simple models are favored over
complex ones without having to specify any explicit
initial preference over the models.

All the experiments are repeated 10 times, and, un-
less explicitly reported, the results are averaged over these
runs. The number of individuals in the population is
critical for the success of the genetic algorithm. How-
ever, the right number of individuals is problem depen-
dent and there is no definitive answer to this issue. Before
starting the experiments, we have tried a different num-
ber of individuals per population, up to 50–100. In all
the experiments we use a population with20 individu-
als, with crossover and mutation probability, respectively,

pcross = 0.75 and pmut = 0.25. With the benchmark we
used, there was no real improvement in using larger pop-
ulations. The choice of the remaining parameters was not
optimized; however, the algorithm converged in all the ex-
periments. Usually, a very good individual is found very
quickly (i.e., after less than 10 generations) and the rest
of the evolution process is spent on exploring alternative
solutions. With optimized probabilities for the genetic op-
erators, a larger population, and longer evolutions, the ob-
tained results might outperform our solutions. However,
finding better solutions does not add much to the valida-
tion of the Bayesian fitness with respect to the results we
present here.

Network weights were initialized according to a
Gaussian distribution. Since the choice of the initial
weights determines to which minimum of the weight
space the training algorithm will converge, we trained
each individual a few times with different initial values
for the weights. The choice of the initial values for hyper-
parameterα and β is quite critical since if they are com-
pletely wrong, the genetic algorithm will not be able to
find acceptable solutions. In general,α determines the
impact of the prior over the network weights, and thus
determines the extent to which complex networks are pe-
nalized with respect to simple ones. Conversely,β deter-
mines the impact of the network error on fitting the train-
ing data, and hence small values ofβ will result in net-
works that poorly approximate the training set. In order
to find good solutions, we initializedβ to a value larger
than expected while we assignedα a small value. In
this way, network overfitting is initially favored to avoid
poor solutions. Then, as the network is trained and hyper-
parameters are re-estimated, complex networks will be pe-
nalized.

5.1. Benchmark 1

In this experiment, we use a small number of samples (32)
in the training set, sampling regularly on the[−5, 15] in-
terval the non-linear function

y(x) =

√
0.1 sin(2x)2 +

2 arctan(x− 3)2

(x + 7)(cos(x) + 2)
. (33)

In this test case, we evolved 20 individuals for 25
generations and re-estimated the hyper-parameters every
20 epochs of training. In this benchmark the performance
of the approximation is affected by several examples in the
training set and by the fact that they are not fully represen-
tative of the real function to be approximated. However,
the algorithm finds a reasonable non-linear approximator
for the training set, as shown by the individual in Fig. 6(a).

To give an idea of convergence rates for the
ELeaRNT algorithm, we report the fitness value during
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Table 1. Complexity of best, worst and average individuals in the three benchmarks.

Best individual Average Worst individual

Complexity 2 80.94 255.9
Benchmark 3

Standard deviation 0 7.06 12.48

Complexity 21.53 34.10 51.15
Benchmark 1

Standard deviation 4.68 6.99 8.58

Complexity 33.36 98.46 157
Benchmark 2

Standard deviation 3.67 12.92 13.11
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Fig. 6. Best model fitting (a) and model complexity (b) in the final population.
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learning in Fig. 7(a), where the best, mean, and average
fitness values in the population are plotted. In Fig. 7(b)
we report the complexity of models during the evolution.
Notice that it is not strictly increasing since the complex-
ity of the model is only partially related to the Bayesian
fitness function.

The average complexity of the final population of the
genetic evolution is reported in Table 1, and in Fig. 6(b)
this complexity is reported for each individual of the last
generation in descending order with respect to the fitness.
As we can see, the average complexity of each individual
is quite small, and not considering the worst two cases,
each network has less than30 weights (corresponding to
an average of9 hidden neurons). In this case, ELeaRNT
proved to be able to find minimal rich neural networks
with both good accuracy and small topologies (even when
only few patterns of the function to be approximated are
available), also preventing the “bloat phenomenon.”

5.2. Benchmark 2

In this second example, we test ELeaRNT on a real data
set. The training patterns of this case were used in bi-
ological studies in order to find a reliable method for
determining the age of the European rabbits (Oryctola-
gus cuniculus) from the weight of their eye lens. In this
study, the dry weight of the eye lens was measured for 71
free-living wild rabbits of the known age (Dudzinski and
Mykytowycz, 1961).

We are interested in proving the ability of ELeaRNT
to select rich neural networks well-matched to real data
extracted from an unknown phenomenon and with an un-
known noise model. We evolved 20 individuals for 25
generations and re-estimated the hyper-parameters every
20 epochs of training. Before running ELeaRNT, we pre-
processed the training set by normalizing all its samples
which are shown in Fig. 8(a). Figure 8(a) also shows the
model learned by the most probable individual in the pop-
ulation: this model is very well matched to the observa-
tions and it does not overfit them.

The fitness value during learning is reported in
Fig. 9(a), where the best, mean, and average fitness val-
ues in the population are plotted. In Fig. 9(b) we report
the complexity of models during the evolution. Notice
again that it is not strictly increasing since the complex-
ity of the model is only partially related to the Bayesian
fitness function.

Figure 8(b) and Table 1 report the average complex-
ity of the population after the genetic evolution. As we can
see, the average number of the weights of the best individ-
uals (34 weights corresponding to8 neurons) is sensibly
smaller than the average complexity of less probable indi-
viduals. We can therefore say that also for this test case

ELeaRNT selected networks with a relatively small com-
plexity but still well matched to the data.

5.3. Benchmark 3

In this experiment, the algorithm has to fit a noisy sinu-
soidal training set given by

y = sin(2πx) + ε, ε ∼ N(0, 0.04), x ∈ [0, 1].

We are interested in this example since the process
generating the data belongs to the family of models that
can be represented by using an RNN in its most sim-
ple topology: a single neuron with a sinusoidal activation
function. Our goal is to check if ELeaRNT is able to ap-
proximate this data set by selecting a single neuron net-
work with a sinusoidal activation function (i.e., the correct
model of the data). The training set is composed of300
samples drawn uniformly from the[0, 1] interval and the
added noiseε is Gaussian with zero mean and variance
σ2 = 0.04.

This time we evolved 20 individuals for 50 gen-
erations and re-estimated the hyper-parameters every 20
epochs of training. Figure 10(a) shows the model learned
by the most probable individual in the population and its
complexity is reported in Table 1. Figure 10(b) shows
the average complexity of the population after the genetic
evolution. Here, models are ordered in descending order
with respect to their fitness. If we look at the best model
found by the algorithm, i.e., Individual 1, we can see that
in all the different executions ELeaRNT selected a single
neuron model with a sinusoidal activation function. More-
over, the complexity of less probable individuals increases
and the worst individuals turn out to be the most complex.

The fitness value during learning is reported in
Fig. 11(a), where the best, mean, and average fitness val-
ues in the population are plotted. We see that the best
individual converges to the maximum fitness in less than
5 generations, while the fitness for the worst individual
increases over generations even if it has large oscillations.
Finally, the average fitness increases quite smoothly over
generations approaching the fitness of the best individual.
In Fig. 11(b) we report the complexity of the models dur-
ing the evolution.

6. Discussion and Conclusions

In this paper we presented a probabilistic approach to
the problem of model selection using genetic algorithms
within a Bayesian framework. We detailed theBayesian
Fitness Functionto evaluate the posterior probability of
neural networks within the Bayesian framework. Such
a fitness was used by a genetic algorithm, ELeaRNT, to
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Fig. 8. Best model fitting (a) and the average number of parameters (b) in the population.
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Fig. 10. Best model fitting (a) and the average number of parameters (b) in the population.
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Fig. 11. Fitness value (a) and model complexity (b) during evolution.
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Fig. 12. Sum-of-squares error (a) and the approximated Bayesian fitness (b).

Table 2. Number of weights in the models (10 runs average).

Final population average Final best individual

Sum-of-squares error 488.92 433.6

Approximate Bayes 5.075 2
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explore the space of neural networks and select the most
probable RNN in the light of the prior probability and ob-
served data. This algorithm was tested on different cases,
both natural and artificial, and it proved to select relatively
simple models which are well matched to the data and
have good generalization capabilities. Moreover, exper-
iments proved that ELeaRNT is not affected by the “bloat
phenomenon”, which is a structural problem of genetic al-
gorithms.

In the past (Matteucci, 2002b), we used an ELeaRNT
version making use of the classical sum-of-squares error
function instead of the Bayesian fitness. On the bench-
mark of Section 5.3 we compared that version of the algo-
rithm with a version of ELeaRNT using an approximation
of the Bayesian fitness presented in this paper, and the re-
sults of Fig. 12 present the best two models learned by the
two algorithms. Also, the difference in their complexity is
astonishing as reported in Table 2. These were only pre-
liminary results obtained with an approximated Bayesian
fitness, but we consider them quite promising. In future
works, we plan an extensive comparison with “adversar-
ial” genetic algorithms or fitness functions. Notice that
the approximated Bayes fitness used in preliminary exper-
iments of Table 2 was practically equivalent to the Bayes
Information Criterion and did not require the determina-
tion of the Hessian matrix. Thus with a computational cost
comparable with the classical sum-of-squares error fitness
function, a simple approximation Bayesian fitness is able
to obtain good results with respect to model selection.

From a more general point of view, the present work
was focused on the establishment of a probabilistic ap-
proach to apply evolutionary computation techniques in a
Bayesian framework for the model selection. The work
presented in this paper could be easily extended to the
Bayesian model averaging since we could use the final
population, or part of it, for averaging models predictions.
Moreover, since the most difficult step in the Bayesian de-
sign of an adaptive model is the prior definition, it might
be possible to use a stratified procedure in order to adapt
during learning an empirical prior using the information
about the individuals in previous populations. Finally, a
logical step forward should extend such a framework to
other families of models like decision trees, Bayesian net-
works, and learning classifier systems.
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