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Multidimensional Symmetriey-Stable §«.S) mutations are applied to phenotypic evolutionary algorithms. Such mutations

are characterized by non-spherical symmetrydox. 2 and the fact that the most probable distance of mutated points is not

in a close neighborhood of the origin, but at a certain distance from it. It is the so-called surrounding effect (Obuchowicz,
2001b; 2003b). Forx = 2, the Sa.S mutation reduces to the Gaussian one, and in the case-ofl, the Cauchy mutation

is obtained. The exploration and exploitation abilities of evolutionary algorithms, using mutations for differenix, are
analyzed by a set of simulation experiments. The obtained results prove the important influence of the surrounding effect of
symmetric a-stable mutations on both the abilities considered.
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1. Introduction las for simulating Lévy-stable variables (Weron, 2001) as
well as computer programs to compute Lévy-stable den-

Most applications of Evolutionary Algorithms (EAS) sities, distribution functions and quantiles (Nolan, 2003).
which employ the floating point representation of popula-

tion individuals use the Gaussian mutation as a mutation N recent years, the application of the CD to muta-
operator (Back and Schwefel, 1993: Fogel, 1994; Fegel tion operators |n.evolut.|.onary algorithms has drawn re-
al., 1966; Galar, 1985; Michalewicz, 1996; Rechenberg, Séarchers’ attention (Béackt al, 1997; Kappler, 1996;
1965). A new individualz is obtained by adding a nor-  Obuchowicz, 2003b; 2003c; Rudolph, 1997; Yao and Liu,
mally distributed random value to each entry of a selected 1996; 1997; 1999). While the univariate CD has a unique
parenty: definition, there e>§|st at least two multlvarlatg ver5|ons.of
the CD: the spherical CD and the non-spherical CD with
z; =y, + N0,0), i=1,...,n. (1) independent univariate Cauchy random variables in each
dimension (Fanget al, 1990; Obuchowicz, 2001b; Shu
The choice is usually justified by the Central Limit The- and Hartley, 1987). In these cases, the normally dis-
orem. Mutations in nature are caused by a variety of tributed random valueN (0,0;) (1) is substituted by a
physical and chemical factors that are not identifiable or random variable of the one-dimensional CD. The shape
measurable. These factors are considered as indepersf the Cauchy pdf resembles that of the Gaussian one,
dent and identically distributed (i.i.d.) random perturba- but it approaches the axis very slowly, increasing the
tions. The Generalized Central Limit Theorem states that probability of the so-called macro-mutations and local
the only possible non-trivial limit of normalized sums of optimum leaving. Rudolph (1997) analyses analytically
i.i.d. terms is Lévy-stable (Lévy, 1925), also called the local convergence of simple (1+1)ES and XJBS
stable or just stable in the mathematical literature (Fangwith Gaussian, spherical and non-spherical Cauchy muta-
et al, 1990; Nolan, 2003; Samorodnitsky and Taqqu, tions. It was proved that the order of local convergence is
1994; Zolotariev, 1986). If the Lindeberg condition is identical to Gaussian and spherical Cauchy distributions,
obeyed, i.e., the first two absolute moments are finite, thenwhereas non-spherical Cauchy mutations lead to slower
the Lévy-Stable Distribution (LSD) reduces to the Gaus- local convergence. Yao and Liu (1996; 1997; 1999) suc-
sian distribution. The lack of closed form formulas for cessfully apply the non-spherical Cauchy mutation to evo-
probability density functions (pdfs) for all but three LSDs lutionary programming and evolutionary strategy algo-
(Gaussian (GD), Cauchy (CD) and Lévy (LD) distribu- rithms in the case of solving global optimization problems
tions) has been a major drawback in the use of LSDs by of multivariate and multi-modal functions. Obuchowicz
practitioners. Fortunately, there exist algorithmic formu- (2001b; 2003b; 2003c) presents comparison results of the
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saddle crossing ability of EAs with Gaussian, spherical with parametersy,3,0 and p is given by (Weron, 1996):
and non-spherical Cauchy mutations, as well as the influ-
ence of the c.hoice of the _refere_nce frame on the effective- exp | — 0a|k|a{1 — iBsign(k)
ness of EAs in global optimization tasks.

than the GD and CD can be very attractive for evolu-

tionary algorithms with the floating-point representation (k)

of individuals was first introduced by Gutowski (2001), exp | — alkl{l + ifsign(k)

but this idea has not be pursued so far. In that work the

author considered only some properties of LSDs without % 2 log |k|} I 'L'uk) if =1,
™

The suggestion that the application of LSDs other « tan ( — B)} + wk) if a#1,

implementations to any evolutionary algorithm.

The aim of this work is to compare the effective- @)
ness of EAs with mutations based on LSDs in global mul- or, in a form more convenient for numerical purposes
tidimensional optimization tasks. Implemented EAs are (Nolan, 2003),
based on two known types of evolutionary models: evo-
lutionary search with soft selection (ESSS), proposed by exp ( _ 0.0(|k|a{1 + iBsign(k)
Galar (1985; 1989), and evolutionary programming (EP),
introduced by Fogel (1994) and Fogatlal. (1966). The o
main difference between these two types of EAs is that the X tan (7) [(U|k|)1ﬂ - 1] } + iﬂo’f)
standard deviation of mutation is adapted in EP but not in )

ESSS. do(k) = if a#1,

This work is organized as follows: First, LSDs are
defined in Section 2 and their properties in the one and €xp
multivariate cases and the method of numerical generation
of Lévy-stable variables are described. The next part (Sec- log(a|k|)} + iuok‘> if =1
tion 3) describes EAs used in simulation experiments. The
main part containing the experimental studies is presented 3)
in Section 4, where hill climbing, saddle crossing as well
as a set of muItidimentionaI gnd muItimodaI optimization of Zolotariev's (M)-parameterization (Zolotariev, 1986),
problems are considered using EAs with and without the with the ch.f. and pdf jointly continuous in all four param-

s;zlf-adip_tanon rredch;nlsm of the scale parameter. Flnally'eters. The relation between location parameters in both
the work Is concludead. representations is

Lo — Bo tan (?) if a#1,
2. Lévy-Stable Distributions w= 260
MO—TIOg(O’) if a=1.

—J|k|{1 — iBsign(k)

X

NN /N

The S°%(B,0,u0) parameterization (3) is a variant

2.1. Characteristic Function Representation )
of the LSD Unfortunately, there are only three LSDs which have

analytical forms of pdfs, i.e.,
Due to the lack of closed form formulas for densities, the the GD (X' ~ 92(0,0, 1) = N(p, 0)):

LSD can be most conveniently described by its charac- 1 (z — p)?
teristic function (ch.f.) ¢(k) — the inverse Fourier trans- fa(z) = o €xXp (%2> ,  —00<x <00,
form of the pdf. The ch.f. of the LSD is parameter- 4)

ized by a quadruplga, 3,0, 1) (Weron, 2001), where

a (0 < o < 2)is a stability index (tail index, tail expo- 1€ €D & ~ 51(0,0, 1) = C(u, 0)):
nent or characteristic exponentj, (-1 < g < 1)isa 1 o
skewness parametes, (¢ > 0) is a scale parameter and fo(w) = ;m’
1 is a location parameter. There are a variety of formu-

las of the LSD ch.f. in the relevant literature. This factis @nd the LD & ~ S1/5(1,0,4) = Levy(p, 0)):
caused by a combination of historical evolution and nu- p 1 o
merous problems that have been analyzed using special- fz(z) = \/27_3/2 exp (—2_> )
ized forms of LSDs. The most popular formula of the ch.f. (@ = p) (@ = p)
of X ~ S,(B,0,p), i.e., a Lévy-stable random variable p<z<oo. (6)

—x<zr<oo, (5
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0sr and a non-degenerate random variable with

045} O
" an (X1 +Xo+...+ X)) —b, — 2

041

if and only if Z is Lévy-stable for some< o < 2.

0.351-

031

A basic property of stable laws is that sums of Lévy-
stable random variables are Lévy-stable. One of the ef-
fects connected with this fact is illustrated in Fig. 2, where
the sum of two-dimensional Lévy-stable random vectors
is presented. It is easy to see that the obtained graph
has a ‘fractal’ nature. The existence of ‘long jumps’ as
well as ‘short steps’ is independent on the graph scale. In

R the case of EAs this property makes it possible to obtain
‘ their good exploration and exploitation characteristics. In
the independent case, the exact parameters of the sum of
Fig. 1. Probability density functions of the standardized GD Levy-st.a!bles random variables can be calculated using the
(N(0,1)) — solid line, CD ('(0, 1)) — dotted line, and  Propositions below (Nolan, 2003).
LD (Levy(0,1)) — dashed line.
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Proposition 1. The S°%(3,0,uo) parameterization (3)
has the following properties:
Figure 1 presents the pdfs of the standardized GD

(N(0,1)), CD (C(0,1)), and LD (Levy(0,1)). 1. If X ~ S3(B,0,10), then
Ya #0, beR,
2.2. Selected Properties of the LSD aX + b~ 8 (sign(a)B, |alo, apo +b).

The classical Central Limit Theorem says that the nor-

malized sum of i.i.d. random variables with finite variance

converges to a nhormal distribution. The Generalized Cen-

tral Limit Theorem shows that if the finite variance as-

sumption is dropped, the only possible resulting limits are 3, If X; ~ S0(B1, 01, pto1) and Xo ~ S%(Ba, oo, f102)

stable. are independent, thenX; + X, ~ S%(83,0, uo),
where

2. The characteristic functions, densities and distribu-
tion functions are jointly continuous in all four pa-
rameters(«, 3, o, o).

Theorem 1. Generalized Central Limit Theorem
(Lévy, 1925).Let X, X5, X3,... beani.i.d. sequence of 8=
random variables. There exist constamts > 0,b,, € R

« o
ﬂlgl +ﬂ202 a o a
0a+0a 9 o =04 +027
1 2

x10"

'
—u

R = N T S K

Fig. 2. Fractal nature of the sum of two-dimensional Lévy-stable random ve(®rs- (S1,2(0,1,0),51,2(0,1,0)) | i =1,2,...).
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Ho

T
Ho1 + o2 + tan (7) [Bo — Bro1

— ,820'2] if « 7§ 1,

Mot + Moz + %[BU In(o) — o1 In(o1)
— 209 In(02)] if a=1.

The formulac® = o{'+0§ above is a generalization
of the rule for adding variances of independent random
variables. It holds for both parameterizations.

Proposition 2. The S, (8, o, 1) parameterization (2) has
the following properties:

1. If X ~S5,(8,0,u), then
Ya #0,b € R,
Sa(sign(a)B, |alo, ap +b) if a#1,
aX+b~ {51 (sign(a)B,lalo,ap+b
— ﬁazaln(a)) if a=1.
T
. The characteristic functions, densities and distribu-

tion functions are continuous away from= 1, but
discontinuous in any neighborhood af= 1.

L f X1 ~ Sa(ﬂ170-17l/l/1) and XQ ~ Sa(ﬁg,ag,ug)
are independent, thenX; + Xy ~ S.(5,0,u),

where
ﬁ:ﬁw?-i—ﬁzag
o +o% ’
o =of +o3, p=p+ps.

A consequence of heavy tails of LSDs is that not all
moments exist. In most statistical problems, the first mo-
ment £(X) and variance VAX) = E(X?) — (B(X))?
are routinely used to describe a distribution. In the case of
LSDs such a representation is not useful since we have

VO < a <2,
E(Xp):/ zP f(z) dx < +o0
—

()

Thus, the second moment exists only for= 2, the first
moment exists forl < a < 2 and is equal to the location
parametery (2).

0<p<a.

2.3. Simulation of Lévy-Stable Variables

If U,Uy,Us ~U(0,1) are uniformly distributed random
variables on the interval0, 1), then there are simple ways
to generate stable random variables:

o for the normal case, the formulas

X1 =p+ U\/WCOS(QWUQ),
Xo = p+o+/—2In(U;) sin(27U2)

give two independentV (., o) random variables,
o for the Cauchy case, the formula

X =otan(m(U —1/2)) +

is C(p,0), and
o for the Lévy case, the formula
1

is Levy(u, o), where Z ~ N(0,1).

In the general case, the complexity of the problem
of simulating sequences of Lévy-stable random variables
results from the fact that there is no analytical form for
the inverse of the cumulative distribution function (cdf)
apart from the GD, CD and LD. The first breakthrough
was made by Kanter (1975), who gave a direct method
for simulating S, (1,1,0) random variables, forx < 1.

In general cases the following result of Chambetsl.
(1976) gives a method for simulating any Lévy-stable ran-
dom variable (Nolan, 2003).

Theorem 2. Simulating Lévy-stable random variables.
Let V' and W be independentwith’ ~ U(—%, %), W
exponentially distributed with the medn 0 < o < 2.

1. The symmetric random variable

sin(aV) [cos((a _ 1)V)} (1—a)/a
(cos(V))t/« W

- if a#l,

tan(V) if a=1

has anS,(0,1,0) = Sa.S distribution.

2. In the non-symmetric case, for anyl < 3 < 1, de-
fine B, g = arctan(8tan(ra/2))/a whena # 1.
Then

sin(a(Ba,g + V)
(cos(aBa,g) cos(V)) 1/«
" [cos(aBayg + (o — 1)V)] (1=a)/e
w
7 if a#1,
2 (2 +5v) tan(v)
2
FWeos(V) .
—fBln <W> if a=1

has anS, (8, 1,0) distribution.
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Itis easyto get” and W from independent uniform

random variabled/;, U, ~ U(0,1): setV = n(U; — 3) et
and W = —In(U,). Given the formulas for the sim-

ulation of standard Lévy-stable random variables (Theo- .

rem 2), a Lévy-stable random variablé ~ S, (3, o, 11) 00 £ °
for all admissible values of the parameters 3, ¢ and e A 4

A

1 has the form ; iy
oZ +p if a#1, S
= 2 : (8)
oZ + =foln(oc) + p if a=1, @
i

where Z ~ S, (53,1,0).

2.4. Multivariate LSD

In this work only non-skewedd = 0) LSDs will be ap-
plied to mutation operators of EAs. It is easy to see that
the representations (2) and (3) are equivalent in this case.
Thus, Z ~ S,(0,0,pu) = SaS(o,u) (symmetric a-
stable) can be expressed by

Fig. 3. 2-D probability density function (a) and its
contour map (b) ofSaS for a = 2 (GD).

Z =pu+oX, (9) .
where X ~ SaS(1,0) = SaS has the standardized R e
symmetric a-stable distribution. The ch.f. ok is given (b)
by . . : _ _
o(k) = exp (—|k|*). (10) Fig. 4. 2-D probability density function (a) and its

contour map (b) ofSaS for a = 1.5.

For o = 1, itis a ch.f. of the standardized CD, and for
a = 2, it becomes the ch.f. of the standardized GD. If
X=(X;~SaS|j=12,...,n) ~ SaS is a sample

from a stable law, its ch.f. is given by 4

¢(k) = exp (—[k[l3) (11)

where [|all, = (37—, la;|*)*/* denotes the,-norm.

If the ch.f. of X is of the form (11), we say thak
possesses aisymmetric multivariate distributiofFang
etal, 1990). Fora = 2, the 2-symmetric multivariate dis-

tribution reduces to a spherical distribution. In other cases 2 Ty
(a < 2) the a-symmetric multivariate distribution is only
invariant under the group of permutations. LBtbe the Fig. 5. 2-D probability density function (a) and its

permutation group, i.e., iff € P,then H'H = I and

the elements ofif are only O or 1. If X ~ Sa8, then

HX ~ SaS. Figures 3—7 present selected 2-D and 3-D
pdfs of a-symmetric multivariate distributions. The lack

of spherical symmetry influences the relation between the
effectiveness of an EA in a multimodal optimization task

and reference frame selection. This fact, calledjm- 02
metry effectwas studied by Obuchowicz (2003b; 2003c), ""
who analysed the non-spherical Cauchy mutation applied o
to the ESSS (Galar, 1985) and Evolutionary Programming !
(EP) (Fogel, 1994; Fogett al, 1966) algorithms. In 7
(Obuchowicz, 2003b; 2003c) the 5D Rastringin and Ack- @)
ley functions were chosen as testing functions. Both func-

contour map (b) ofSaS for a =1 (CD).

a4

JoZ040608 1.1.2
b

tions considered are multimodal, but Rastringin’s function Fig. 6. 2-D probability density function (a) and its
contour map (b) ofSaS for oo = 0.5.
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rithms with Gaussian and Cauchy mutations (Obuchow-
icz, 2003b; 2003c). The surrounding effect decreases the
exploitation properties of an EA while increasing the di-
mension of the search space. This fact is also observed in
the experiments described in Section 4.

AR O R e

3. Evolutionary Algorithms Used
in Simulations

Two classes of evolutionary algorithms are used in sim-
ulation experiments. The first one is based on probably
the simplest selection-mutation model of the Darwinian
evolution, proposed and implemented (the ESSS algo-
rithm) by Galar (1985). The searching process is exe-
cuted in a multi-dimensional real space, on which some
non-negative function, called thf@ness is defined. At
the beginning, a population of points is randomly cho-

P = R,

(d) sen from the searching space, and is iteratively changed
by selection and mutation operators. As a selection oper-
Fig. 7. Surfaces of equal values of 3-D pdfg.(x) = 0.001) ator the well-known proportional selection is used. Se-

of SaS for a =2 (@), « = 1.5 (b), =1 (c),and  |ected elements are mutated by adding a normally dis-
a =05 (d). tributed random vector with a constant standard deviation
vector. The second class is the well-known evolutionary
characterizes the higher amplitude of changes and its val-programming model proposed by Fogel (1992) and Fogel
leys are deeper. Local optima of both functions are locatedet al. (1966; 1991). Apart from the different selection
in the nodes of the 5D-cubic net whose edges are paral-technique, the EP algorithm, unlike ESSS, possesses the
lel to the axes of the reference frame. Additionally, two adaptation mechanism of standard deviations of the muta-
other functions were taken into consideration. They were tion operator.
obtained from the 5D Rastringin and Ackley functions af-
ter a rotation of the reference frame in the plang, =) 3.1. Evolutionary Search with Soft Selection
through an angle equal to/4, and in the plan€zs, x3) ) . ,
through an angle equal te/4, too. The dependence of The assur_nptlons Qescrlbed above can b_e formalized by
the EP algorithm with the Cauchy mutation on the choice the following algorithm: A real, n-dimensional search

of the reference frame manifested in slower convergenceSPace (an adaptation landscagey is given. A non-
to the global optimum of the rotated testing functions in "€gative functionb to be maximized, called tfénessis
comparison with the non-rotated functions. also defined on this adaptation landscape. First, an initial

, , .. population P(0) of n elements is randomly generated,
Anqtherproblem Wh.'Ch see_zms_to be_lmperc_:eptlble n e.g., by addingn times a normally distributed random
the studies ofa-symmetric multivariate distributions ap-

. : . ) =" vector to a given initial pointc € R™. The fitness index
plied to mutation operations is related to the probability

hat the di ¢ h 4 pot d its off q) = ®(xY) is calculated for each element} of the
t a.t the |s_tance. rom the mutated pomtand its off- population. The searching process consists in generating
spring y will be in the range||z — y|| € [r,r + dr].

Fi 8 sh hist f the dist bet h a sequence ofi-element populations. A new population
igure © shows histograms of the distances between eP(t +1) is created based only on the previous population

origin and 10° points mutated with chosen distributions P(t). In order to generate a new elemenfrl a par-
SaS for some space dimensions Although the pdfs of entelement is selected and mutated. Both selection and

a-symmetric multivariate distributions have their maxima mutation are random processes. Each elemgntan be

at origins, it is easy to prove (c.f.. (Obuchowicz, 2001'a; chosen as a parent with a probability proportional to its
2001b)) that the most probable distance of the offspring fitness ¢’ (the well-knownroulette metholi A new ele-
is near zero only in the case of a one-dimensional muta- 1

; . . . ment ;" is obtained by adding a normally distributed
tion. In the_ case Of am'd'me”?'of‘a' mutation, the most random value to each entry of the selected parent:
probable distance increases within the case of a Gaus-

sian mutation it is proportional to the norm of the stan- (zt1) = (=)
dard deviation vector and te/n — 1. This fact, called ! §
the surrounding effectObuchowicz, 2001b), formed the where the standard deviation is a parameter to be se-
basis for a simulation analysis of the ESSS and EP algo-lected.

L N(0,0) i=1,...,n, (12)

7



Phenotypic evolution with a mutation based on symmetric «-stable distributions @ amcs

Fig. 8. Histograms of the distances between the origin 468 points mutated with distributionSaS for a = 2 (a), a = 1.5 (b),
a=1 (c),anda = 0.5 (d) (n = 2 —solid line,n = 4 — dashed linenp = 8 — dotted line, andh = 16 — dash-dotted line).

Numerical tests of the ESSS algorithm (Galar, 1989) Let ESSS denote the ESSS algorithm with the mu-
proved essential advantages of soft selection in compari-tation based on thesaS distribution with a givena
son withhard selectionin which only the best individuals ~ (Tab. 1). Four types of the ESSS algorithm, ESSS
are chosen, and only local optima are attained. The ESSESSS 5, ESSS, and ESS§;, are considered in this
algorithm does not constitute an optimization algorithm in work. The pdfs and cdfs oSS distributions used in
the sense of reaching extrema with desired accuracy. Thehe experiments are presented in Fig. 9.
evolution process is not asymptotically convergent to an The roulette method used as the selection operator
optimum, and the interpolation effectiveness of soft selec- possesses one main disadvantage. If disproportions be-
tion is rather weak. Evolution leads next generations to antween the element fitness values are much lower than the
elevated response surface rather than to maxima. In spitditness values in the current population, then the distribu-
of that, search advantages of the ESSS algorithm suggestion of the roulette method is similar to the uniform dis-
that this algorithm can be of real practical use in numerical tribution. Thus, an evolutionary process is almost inde-
packages for global optimization, especially when com- pendent of the fitness function and reduces to some kind
bined with local optimization algorithms. of random walk. In this work, the approach proposed in
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Table 1. Outline of the ESSSalgorithm

Input data
1 — population size;
tmax — Maximum number of iterations (epochs);

o — standard deviation of mutation;

® : R™ — R4 — non-negative fitness functiom, — number of features;
x) — initial point.

1. Initialize
(®) P(O)z(:c%ac%,...ﬂc%) : (mg)i:(:cg)i—i—SaS(O,a); i=1,2,...,n;, k=1,2,...,n;

(b) g6 = @ ().

2. Repeat
(a) Estimation
D(P(t)) = (qi,45,...,4q,), whereqy, = (1), k=1,2,...,n.
(b) Choice of the best element in the history

(:1:6, xh xb, . mtn) — 2™ suchthatgi™ = max{qt}, k=0,1,...,7.

(c) Selection
h
>al
(h1,ha,...,hy), whereh; = min{h : ljl > Ck}
oy

and {¢x}7_, are random numbers uniformly distributed [, 1).

(d) Mutation
P(t) — P(t+1);
(), = (¢},), + SaS(0,0), i=1,2,...,n; k=1,2,...,m

until ¢ > tmax.

06 1
057 i

0.4 P

(b)

Fig. 9. Pdfs (a) and cdfs (b) ofSa.S distributions witha = 2 (the Gaussian distribution) — solid line,
a = 1.5 —dotted lineq = 1 (the Cauchy distribution) — dashed lire= 0.5 — dash-dotted line.
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(Obuchowicz, 2003a) is applied. Let : R* — R be gorithm with the mutation based on ti8S distribution
a function to be minimized. Then the fitness function is with a givena (Tab. 2). As a base meta-EP algorithm the

defined as follows: description included in (Back and Schwefel, 1993; Yao
1 and Liu, 1999) is chosen. However, Yab al. (1999)
D () = frax — f () + 5, (13)  introduce into their version of meta-EP (CEP) the self-
g adaptation schema of the standard deviation of the Gaus-
where ff.. = max f(x} |k=1,...,n) is the maxi- sian mutation borrowed from another well-known phe-

mal value of f over all elements in the current popula- notype evolution algorithm: evolutionary strategies (ES)
tion. The last term in (13) is proportional to the proba- (Béck and Schwefel, 1993; Baek al, 1997; Schwefel,
bility of the worst element selection. This probability is 1981). This version of enriched meta-EP is used in this
very small but non-zero. The only limitation of this partis work. The self-adaptation scheme of the scale parameter

that it has to be significantly smaller tharn — the prob- (marked by the asterix in Table 2) is an extention of that

ability of element selection in the case of uniform random proposed for ES.

selection. The fitness functiof® is non-negative and its It is worth noticing that the application of the self-

relative values in the current population make the roulette adaptation scheme influences the distribution of muta-

method effective. tion. Figure 10 compares the pdfs ¢fa.S(0,1) and
SaS(0,1) exp(SaS(0, 1)), the latter representing a sim-

3.2. Evolutionary Programming plified self-adapted random mutation. The mass of prob-

) ) ) ability density is more concentrated around the central
Evolutionary programming was devised by L.G. Fogel  point and the tails are slightly heavier in the case of the
al. (1966) in the mid 1960s for the evolution of finite state Sa5(0,1) exp(SasS(0,1)) distribution.  This fact can
machines in order to solve prediction tasks. EP was ex-manifest itself by increased the numbers of ‘short steps’

real-valued object variables based on normally distributed

mutations. This algorithm is called the meta-EP (Fagel
al., 1991) or the Classical EP (CEP) (Yao and Liu, 1999). 4. Simulation Experiments

In meta-EP, an individual is represented by the pair
a = (x,0), wherex € R" is a real-valued pheno-
type, o € R’ is a self-adapted standard deviation vec-
tor for the Gaussian mutation. For initialization, EP as-
sumes bounded subspad@s = [[;_, [u;,v;] C R" and  Before the ESSS and ER, algorithms are used, let us
Qo =[I'2,[0,¢] € R} with u; < v; and ¢ > 0. How- consider the simple modification (1+1)E®f the evolu-
ever, the search domain is extendedR® U R?_ during tionary Strategy (1+1)ES (Rechenberg’ 1965) The pop-

the algorithm processing. As a mutation operator, a Gaus-ylation at the iteratiory is reduced to only one element
sian mutation with a standard deviation vector assigned toz!, from which an offspringy’ is generated by a muta-

an individual is used. All elements in the current popu- tion operator. The mutation is defined by
lation are mutated. Individuals from both parent and off-
spring populations participate in the process of selecting y=x'+0Z, (14)
a new generation. For each individua),, ¢ individuals
are chosen at random fro?(t) U P’(t) and compared Wwhere Z ~ SaS for a givena, o is an input parameter.
with a;, with respect to their fitness values. Heug is A better element (in the sense of the fitness function) from
the number expressing how many of thendividuals are  the parentz’ and the offspringy’ is chosen as a new
worse thanay,. Then n individuals having the highest base element’*!, i.e.,
scorew;, are selected fron2n parents and offspring to )
form a new populationP (¢t + 1). o z' if o(z') > 2(y'),
An analysis of the classical EP algorithm (Fogel, yt otherwise
1992) gives a proof of the global convergence with prob-
ability 1 for the resulting algorithm, and the result is de- Replacingt < ¢ + 1, the operations (14) and (15) are
rived by defining a Markov chain over the discrete state repeated iteratively until a given stopping criterion is met.
space that is obtained from reduction of the abstract search The aim of this section is to analyze the exploitation
spaceR" to the finite set of numbers representable on a effectiveness of the above (1+1)ESlgorithm. Let us
digital computer. consider the spherical function
In order to introduce non-Gaussian mutations into
the meta-EP algorithm, let EPdenote the meta-EP al- fopn(z) = ||| (16)

4.1. Study of Hill Climbing Using (1+1)ES

4.1.1. Problem Statement

(15)
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Table 2. Outline of the EP algorithm

. Initiation

A. Random generation
P(0) = {ax(0) = (24(0),0(0)) | k= 1,2,....n}.
z,(0) = RANDOM (Qs), 0x(0) = RANDOM (Q,), Q. CR", Q, CR].

B. Estimation

P(0) — @(P(0)) = {qr(0) = ®(xx(0)) | k=1,2,...,n}.

C.t=1.

Il.Repeat:

A. Mutation
P'(t) =m. . (P(t) ={ai(t) | k=1,2,....7'}.
@i (t) = i + SaSi(0,04:), 0 = okiexp (7'SaS(0,1) + 75a5:(0,1)), () i=1,2,...,n,
SaS;(0,1) indicates that the random number is generated anew for each component

B. Estimation

P'(t) = ®(P'(t)) = {q.(t) = ®(zi(t)) | k=1,2,...,n}.

C. Selection of a new generation
P(t+1)=sg (Pt)UP(t) ={ar(t+1) | k=1,2,...,n}.
Var € P(t)U P'(t), ar— {amw = RANDOM (P(t)UP'(t)) |l=1,2,...,q},
_ )0 fora<o0
1 fora>0"
P(t+ 1) « n individuals with the best score,.

we =21, 0(B(xr) — D(zw)), 0(a)

D t=t+4+1.

until  («(P(t)) = true).

as an objective function to be minimized. The experiment and (1+1)E§s. The scale parameter for all algorithms is
consists in starting the (1+1)ESalgorithm many times  the same:c = 0.1. Each algorithm is started from each
from different starting points and calculating the percent- starting point 500 times.

age of successful mutation operatiafid.e., we are inter- Figure 11 shows the percentage of successful mu-

ested in percentages of mutations resulting in better off- tations obtained for all algorithms used and all starting

spring than their base points. points. Let(¢,,; be the percentage of successful muta-
tions of (1+1)Eg (o = 2,1.5,1,0.5) started from the

4.1.2. Experiment and Results point a; (i =1,2,3,4).

Observation 1. Itis easy to see thaf, ; ~ 50% does not

The simulations were performed for the 4D sphere depend on the starting point.

function (16). Four starting points were selected:

a; = (100,0,0,0), a; = (100/v2,100/v2,0,0), Observation 2. If o decreases, ther, ; rapidly de-
az = (100/\/3, 100/v/3, 1_0(_)/\/30)’ and as = creases and the disproportion between the results for dif-
(50,50, 50, 50). Itis worth noticing that|a,|| = 100, i = ferent starting points increases. The percentage is

1,2,3,4. Four algorithms from the (1+1)ESclass are  gmgjler for starting points located far from the axes of the
used in this experiment: (1+1)ES1+1)ES 5, (1+1)ES, reference frame.
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Fig. 10. Pdfs of Sa.S(0,1) (solid line) and.Sa.S(0,1) exp(SaS(0,1)) (dashed line)
fora =2 (a), a=1.5 (b), a =1 (c),anda = 0.5 (d).

Let t,; be the average number of iterations needed 4.1.3. Conclusions
to locate the optimum (the stopping criterigi,;, < 0.5)

taken over 500 runs of the (1+1)ESalgorithm @ = The independence @ ; from the selecting starting point
2,1.5,1,0.5) started from the poina; (i = 1,2, 3, 4) (see (see Observation 1) follows from the fact that the GD pos-
F’ig. 1’2)’ U sesses a spherical symmetry and the level curve of its pdf

(described byoc = 0.1) is much smaller than the level

. . .. . . curve of the f,,;, slope.
Observation 3. Itis surprising that, in spite of the depen-

dence of¢,; on « and a;, both t5; and ¢y5; seem to The results described in Observation 2 are caused
be almost independent of the starting point. Moreover, one by the a-symmetry of SaS used in mutation, which
can suspectthaly 5 4 < to.51 (When(os4 < (o51,5ee  prefers directions parallel to the axes of the reference
Observation 2); however, the difference between both theframe. Thus, Wheml,_ which is located on the a>.<is of
numbers is in the limit of the statistical error. The largest the reference frame, is chosen as a starting point, then
dependence of,, ; on a; is obtained foraw = 1.5. the mutation operator possesses the highest probability of
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Fig. 11. Percentage of successful mutations in (1+1)ES
started from different pointsag — stars,a» — squares,
a3 — diamonds,a4 — circles) vs.a.
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Fig. 12. Average number of iterations needed to locate the opti-
mum neighborhoodf(,, < 0.5) for (1+1)ES, started
from different points ¢, — stars,as — squaresas —
diamonds,a4 — circles) vs.a.

allocating offspring in an area of better values fif,,.
This probability rapidly decreases when the order of the

diagonal on which the starting point is allocated increases.

The disproportion of the results for given (1+1)E8&nd a
different starting point increases with a decreaserin

Observation 3 suggests that there are two competing

mechanisms influencing, ;. The first, described above,

4.2. Optimization of Unimodal Functions
4.2.1. Problem Formulation

Consider two unimodal functions: the sphere function
fspr(x) (16) and generalized Rosenbrock function

n—1
for@) =3 [100 (wigr — 22)° + (21 — 1)2} . @7
=1

wheren is the search space dimension.

The ESS§ and ER, (o = 2,1.5,1,0.5) algorithms
are considered in this section. The goal of this experiment
is to analyze exploitation effectiveness of the examined
algorithms in the sense of the best point convergence to
an optimum.

4.2.2. Experiment and Results

Four algorithms from the ESSSclass are used in this ex-
periment: ESS§ ESSS 5, ESSS, and ESS&s5. All of
them are applied in order to adapt to the 2D, 5D, 10D
and 20D landscapes defined by the functiofig, (x)
(16) and for(x) (17). The initial population is ob-
tained by, = 20 mutations of the starting point)
(30/v/n,...,30/y/n) (||| = 30). The scale parameter

for all algorithms is the samer = 0.05. Each algorithm

is started 500 times for each set of initial parameters. The
maximum number of epochs is set a5.. = 5000 for

fepr () (16) andt ., = 10000 for for(z) (17). Fig-

ures 13 and 14 present the convergence of the best element
in the current population to the optimum for different

and n in the case off;,,(x) and for(x), respectively.

Observation 4. In both cases offs,,(x) and for(x),
ESSS algorithms with low values ofe more quickly con-
verge to the optimum, but they localize the optimum with
worse accuracy, i.e., the population becomes stabilized on
higher values of the objective function. The accuracy de-
creases while the search space dimension increases. In
the limit of the lowesta and high dimension, the sta-
bilized population places their elements further from the
optimum point thane) (it is clearly seen for ES$S).

Before the cause of the observed facts is explained,
let us introduce the following helpful experiment: Con-

is the relation between the selection of the starting point sider the sphere functiotfs,,(x) (16). All parameters

and ¢,,;. The second is connected with heavy tails of are the same as in the previous experiment except for the
SasS. For low values ofa, however, most of the muta-  starting point which is now located at the optimum point
tions result in worse offspring, but an average “jump” of zJ = (0,...,0). Figures 15 and 16 illustrate how far from

a successful mutation is much longer than in the case ofthe optimum point the population fluctuates in its stable
higher «. state.
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(d)

Fig. 13. Spherical functionfs,,(x) (16) optimized by the ESSSalgorithm. The best value of,,. (x) in the population
vs. iterations (results averaged over 500 algorithm runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) search spaces.
(o = 2 —solid line, o = 1.5 — dashed lineq = 1 — dash-dotted line, and = 0.5 — dotted line).

Observation 5. It is easy to see that the population in is ¢ = 5. The maximum number of epochs is set as
the stable state fluctuates around the optimum further andt,,.. = 1000. Each algorithm is started 50 times for each
further with an increase in the space dimension. Theseset of initial parameters. Figure 17 presents the conver-
distances rapidly grow with a decrease in the index of sta- gence of the best element in the current population to the
bility «. optimum for differentac and n (the results are averaged
over 50 algorithm runs). The relations between the aver-
age scale parameter in the current population vs. iterations
for a chosen algorithm run are shown in Figs. 18 and 19.

In order to analyse whether the same effect as those
described in Observations 4 and 5 will be obtained in
the case of EAs with the self-adaptation mechanism of
the scale parameter, let us consider the following experi- Observation 6. The convergence of the EPalgorithm
ment: Four algorithms from the EPclass are used: EP to the local optimum (Fig. 17) is quite different than in the
EP, 5, EP;, and ER 5. All of them are applied in orderto  case of ESSS (Fig. 13). The ER algorithm with high
adapt to the 2D and 20D landscapes defined by the func-values ofa converges to the optimum more quickly. Un-
tions fs,n(x) (16). The initial population ofp = 20 like ESSS, where some stable state is detected, the pop-
individuals is selected fronf2, = []!_,[—10,10] and ulation in ER, (slower and slower with time) continually
Q, = []’,[0,0.05]. The number of sparring partners converges to the local optimum.
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Fig. 14. Generalized Rosenbrock functiof:z(x) (17) optimized by the ESSSalgorithm. The best value ofgr(x) in
the population vs. iterations (results averaged over 500 algorithm runs) in the 2D (a), 5D (b), 10D (c), and 20D (d)
search spacesa(= 2 — solid line, « = 1.5 — dashed linex = 1 — dash-dotted line, and = 0.5 — dotted line).

Observation 7. Two facts can be observed in rounding effect described in Section 2.4. This effect of
Figs. 18 and 19. The average scale parameter (taken multivariate LSDs does not allow us to locate offspring in
over all elements in the actual population) rapidly the close vicinity of the the base point. Some kindiead
decreases to very small values in the case of tovand surrounding where the allocation of offspring is almost
high dimensions, and shows more chaotic behavior in impossible, is created. The radius of tthead surround-

comparison with highx. ing increases with the search space dimensiomand a
decrease in the index of stability.
4.2.3. Conclusions The effect ofdead surroundings reduced by the self-

adaptation mechanism of a scale parameter of mutation
The results presented in Observations 4 and 5 are cause@bservations 6 and 7). But the necessity of dead sur-
by two mechanisms. The first one is connected with the rounding reduction results in a rapid decrease in a scale
existence of heavy tails of th&a.S pdfs; they improve  parameter to very small values, especially in the case of
the convergence to the optimum neighborhood with a de-low « and high dimensions. This fact, among other
crease ina. But the optimum approximation error be- things, causes a low convergence to the optimum of the
comes worse with a decrease in because of the sur- EP, algorithm with low values ofx.
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Fig. 15. ESSS process forfs,,(x) started at the optimum point. The best value of the objective function in the current pop-
ulation (a), and the distance between the best point in the population and the optimum point (b) vs. iterations (results
averaged over 100 algorithms runs= 2, 5, 10, 20, 40, 60, 80, 100 from the bottom to top curves, respectively).

0 160 260 360 ADID 560 660 760 860 960 1DIDD -D 1DID 260 360 460 560 BDID ?60 BDID 960 1DbD
@) (b)
Fig. 16. ESSS$.5 process forf.,,(z) started at the optimum point. The best value of the objective function in the current pop-

ulation (a), and the distance between the best point in the population and the optimum point (b) vs. iterations (results
averaged over 100 algorithms runs= 2, 5, 10, 20, 40, 60, 80, 100 from the bottom to top curves, respectively).

. . wheren is the landscape dimension. The lowest peak has
4.3. Saddle-Crossing Ability its optimum at the point(1,0,...,0). The global opti-
4.3.1. Problem Statement mum is located at the poin(®0, 0, ..., 0).

The aim of this experiment is a simulation analy-

The saddle-crossing ability prolplem was c_;lefined by Galarsis of the saddle-crossiﬁg ability, which is measured yby
(1989) and was then extensively stud|ed_f0r E§_SS the number of iterations needed to cross a saddle be-
ESSS, ER, and ER (ESSS and EP algorithms with aen the Jower and higher peaks. The starting population
Gaussian an Cauchy mutations, respectively) by Obu-is g i5cated in the neighborhood of the lower optimum
chowicz (2003b; 2003c). As the fitness function the sum 20 = (1,0,...,0). The searching process is stopped

of two Gaussian peaks (Fig. 20(a)) is adapted: when at most half of the elements of the current popula-
n, tion are located on the global peak higher than the lowest
Oyo(@) =exp | =5 > 2] local optimum (it is called theuccessful rup i.e.,
=1

n (I)sc(wk) > (blim > (I)sc(wg)

+ 1exp —5((1 —z1)? + Zm2> (18) formost k of k=1,2 n, (19)
2 : 1 ? ) AR | )

) or the maximum number of iteratiorts, .. iS exceeded.
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Fig. 17. Spherical functionf,,,(x) (16) optimized by the EP algorithm. The best value of,,, (x) in the popula-
tion vs. iterations (results averaged over 50 algorithm runs) in the 2D (a) and 20D (b) search spacexs. (
—solid line, « = 1.5 — dashed liner = 1 — dash-dotted line, and = 0.5 — dotted line).

‘ for all algorithms) are used: the population size= 20,
10 - 8 the scale parameter = 0.05, the maximum number of
‘ iterationst,,., = 10°, the limit fitnessa;;,, = 0.6. Each

rameters. The results are presented in Fig. 20(b).

of a = 0.5 and decreases when the index of stability
increases.

Observation 9. The high efficiency of ES$Swith low

dimensions, the ordering of ESS&lgorithms with re-

Fig. 18. Spherical functionf,,.. () (16) optimized by the BP0 4 thair saddle-crossing ability is reversed.

algorithm. The average scale parametein the cur-
rent population vs. iterations in the 2D search space.
(o = 2 —solid line, « = 1.5 — dashed lineq = 1 —

dash-dotted line, and = 0.5 — dotted line). saddle-crossing ability and the search space dimension

and ESS&5. The following input parameters (the same

algorithm is started 500 times for each set of initial pa-

Observation 8. In the case of very low dimensions, the
effectiveness of saddle crossing is best for the lowest value

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ values ofa and low dimensions rapidly decreases when
0 10 0300 400 S0 600 700 800S00 1000 the search space dimension increases. In the limit of high

Observation 10. The dependence between the ESSS

described in Observation 9 changes in the case of ESSS

Here ¢ for the ESSS algorithm is very high forn = 1

Each algorithm is started a given number of samples. 5n4 decreases with the space dimension to some level

Two parameters are chosen as measures of algorithm efy -hieved forn ~ 6. Such an “equilibrium” is kept until
fectiveness in this experiment. The firstone is the percent-, . 14 For n > 14. the dependence betweérand the

age(¢ of runs in which the process is stopped befogg. search space dimension is the same as that described
iterations, i.e., the condition (19) is fulfilled. The second ;, opservation 9.

one is the average numbeérof iterations which is needed

to cross the saddle by a given algorithm. In the second part of this experiment, four algorithms

from the ER, class are applied: EPEP, 5, EP;, and
4.3.2. Experiment and Results ERy 5. The initial population of = 20 individuals is
selected fromQ, = [0.8,1.2] x [];",[—0.2,0.2] and
In the first part of this experiment, four algorithms from Q, = []_,[0,0.01]. The number of sparring partners

the ESSS class are applied: ES$SESSS 5, ESSS, is ¢ = 5. The maximum number of epochs is set as
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Fig. 19. Spherical functionf,,(x) (16) optimized by the ER algorithm. The average scale parametein the current
population vs. iterations in the 20D search spacedcet 2 (), « = 1.5 (b), « =1 (¢), anda = 0.5 (d).

tmax = 1000, the limit fithess ¢, = 0.6. Each algo-
rithm is started 100 times for each set of initial parameters.
The results are summared in Fig. 21.

Observation 11. The ER algorithm has some problems
with saddle crossing it (Fig. 21(a)). The percentage
is 80% < p. < 100% for aw = 1.5 and a = 1. However,
the efficiency of EfPs is much lower than that of EP

Observation 12. When only the successful runs of the all
algorithms are taken into consideration, is low for al-
gorithms of low( —the ER and ER) 5 (Fig. 21(b)).

4.3.3. Conclusions

of low dimensions (Observation 8). Both optimum points
in (18) are located on the same axis of the reference frame
and the probability ofSaS mutations in this direction
increases with a decreasedn

The range of mutations increases withaccording
to thesurrounding effect This fact allows ESSSto be-
come more effective with an increase infor relatively
low dimensions (Observation 10). This effect can be also
visible for other algorithms from the ES$lass when
smaller values of the scale parametewill be used.

The observed rapid decrease in saddle-crossing ef-
fectiveness for a higher dimension (Observation 9) is
caused by two mechanisms. The proportion between the
n-dimensional solid angle containing all directions of suc-

Itis not surprising that the effectiveness of saddle crossing cessful mutations (i.e., those which can produce offspring

is better for algorithms with a low value af in the case

located in the global peak) and the full-dimensional
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Fig. 20. Two-dimensional version of the sum of two Gaussian peaks (18) (a). The average number of itérdtaien over 500
algorithm runs) needed to cross the saddle vs. the dimension of the search space (b)H{Ei&$&s and solid line, ESS$
— crosses and dashed line, ESSSquares and dotted line, ESSS- stars and dash-dotted line.)
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Fig. 21. Percentageg of the successful runs (a) and the mean numbef iterations needed to cross the saddle taken over all
successful runs (b) vs. the dimension of the search space (Eircles and solid line, EPs — crosses and dashed line,.EP
— squares and dotted line, EP— stars and dash-dotted line.)

solid angle rapidly decreases whenincreases. Thenthe  yg|atively small initial values of scale parameters (they are
probability of a successful mutation decreases, too. Thergndomly selected fronf, = [17,[0,0.01)). Inthe case
second mechanism is connected with sierounding ef- of the ER and ER 5 algorithms,_either they cross a sad-
fect For relatively small dimensions this effect improves (e in a relatively short time or they do not cross a saddle
the saddle-crossing ability (Observation 10), but for gt 5| (Observations 11 and 12). If there are no success-
high enough the global optimum can be covered by the f| mutations in the beginning of the algorithm run, then
dead surroundingsee Section 4.2.3). the self-adaptation and selection lead to decreasing val-
In the case of algorithms from the EPclass, the  ues of o, and the population is trapped around the local
problem ofdead surroundings overcome by the self- optimum. In the case of the ERalgorithm, the low num-
adaptation mechanism of the scale parameter. Anotherber of successful mutations is caused by a low probability
property becomes clear. Algorithms were started with of macro-mutations. However, the mutation pdf ingiP
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possesses the heaviest tails in comparison with other ex-maximum number of epochs is set &g.. = 100000.
amined algorithms, the ER processing is characterized Figures 22—-24 present the convergence of the best ele-
by the most rapid decrease of the scale parametén ment in the current population to the optimum for different
time (Observation 7), and this is the cause of the untimely o and n.

convergence to the local optimum. Observation 13. In the case of all objective functions, the

effectiveness of ES@Sis quite good for 2D. This algo-

4.4. Optimization of Selected Multimodal Functions rithm crosses saddles faster than others; however, it does
not localize the global optimum as precisely as ESSS
4.4.1. Problem Statement and ESSS The effectiveness of E$SSrapidly de-

creases when the landscape dimensioincreases. The
population stibilizes on a worse level of quality than the
initial point xy.

The aim of this section is to analyze the convergence of the
ESSS, and ER, algorithms to the global optimum of se-
lected global optimization tasks. Three well-known multi-

modal global optimization benchmarks are chosen for this Observation 14. The behavior of the population in

experiment: ESSS$ is quite different than in ES$$. This population
(a) Ackley’s function: has serious problems while leaving the initial valley of the
objective function. The saddle-crossing ability of ESSS
Fa(@) = 20+ ¢ — 20 exp <|w) increases with an increase in. However, it converges to
’ 5n the global optimum slower than ESSSand ESSS but

1o localizes this point much better than others in the case of
— exp (n Z cos (2m:i)> , (20) Ackley’s and Rastringin’s 5D, 10D and 20D functions.

Observation 15. The ESSS; and ESSSalgorithms rec-
(b) generalized Rastringin function: oncile the properties described in Observations 13 and 14,
N and keep good efficiency in all cases. However, the
fr(z) = Z (1’72 ~ 10cos (2mz;) + 10) IY downward tandency of their effectiveness appears for 20D

p landscapes.

In the second step of this experiment, sixteen

(c) generalized Griewank function: algorithms from the EP class are used o =
9 2.0,1.9,1.8,...,0.6,0.5). The initial population ofn =

folz _ =] H cos(2:) ) (22) 20 individuals is selected fronf), = JT;_,[29,31] x

= 4000 TT/,[~0.05,0.05] and Q, = []"_,[0,0.05]. The num-

ber of sparring partners ig = 5. The maximum number
Each of the above functions has its global optimum of epochs is set ag,,.x = 100000. Each algorithm is

at xopr = (0,...,0) and fa(xopr) = fr(®opt) = started 50 times for each set of initial parameters. How-

fa(xopt) = 0. ever, all algorithms are applied in order to adapt to the
The stopping condition of all the algorithms consid- 2D, 5D, 10D and 20D landscapes defined by the func-

ered in this experiment is tions fa(x) (20), fr(z) (21), and fe(x) (22). Only

the results for Rastringin’s functioriz(x) (21) are pre-
min {||=}|| | i =1,2,...,n} <0.001, (23) sented in Figs. 25—-28, because the results obtained for all

the functions considered demonstrate similar properties.

or the maximum number of iteratio is exceeded. .
o Observation 16. The percentage of successful rupsle-

. creases when the dimension of the search space increases.
4.4.2. Experiment and Results This fact is independent af and the choice of the objec-

In the first step of this experiment, four algorithms from tive function.

the ESSS class are used: ES$ESSS 5, ESSS, and Observation 17. The effectiveness of the classical evo-

ESSS.5. All of them are applied in order to adapt to the | ionary programming algorithm (EF) locates it among
2D, 5D, 10D and 20D landscapes defined by the functions,q \qrst algorithms out of all considered. The best re-

fa(®) (20), fr(z) (21), and fo(z) (22). Theinitial g5 are obtained forl < o < 1.5 for each analysed
population is obtained by) = 20 mutations of the start-  yiension of the search space. For< 1, the percentage

i i 0 _
Ing point Ty = (Z_)’O’ 30,0,...,0). The scale parameter of successful runs decreases. The application qf b
for all algorithms is the samer = 0.05. Each algorithm a < 0.5 does not lead to any successful run

is started 50 times for each set of initial parameters. The
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Fig. 22. Ackley’s function f4(x) (20) optimized by the ESSSalgorithm. The best value of 4 (x) in the population vs. iterations
(results averaged over 50 algorithms runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) search spaee8.—(solid line,
«a = 1.5 —dashed linep = 1 — dash-dotted line, and = 0.5 — dotted line).

Observation 18. This observation is similar to Observa- Parameters, and the index of stabilityv. Thus, the input
tion 12, i.e.7 has low values for low. paramgter_ aIIocapon process requires add|t|onal studies.
Like in previously considered experiments, the self-
adaptation mechanism of EPalgorithms allows us to
4.4.3. Conclusions eliminate dead surrounding. But the surrounding effect
indirectly influences the effectiveness of algorithms of the
Observations 13-15 show that the surounding effect is ONegp, class, especially in the case of low valueso{Ob-
of the most important mechanisms influencing the effi- gervation 17). In these cases, the necessity of reducing
ciency of EAs in multimodal global optimization. The gead surrounding results in a rapid decreaseriro a
existence of the wide dead surrounding of EgS®&akes  very Jow values and the EPprocess is trapped around
this algorithm unsuccessful. The same effect accelerates |ocal optimum. Thus, EP algorithms with low o ei-

the saddle-crossing ability of ES§Swith an increase  ther find the global optimum very quickly or cannot find
in n (Observation 14). All of the observations suggest it at all (Observation 18). In the case of high the effec-

that the range of the surrounding effect is very sensi- tiveness of EP is low because of the low probability of
tive to changes in the landscape dimensianthe scale  macro-mutations.
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Fig. 23. Generalized Rastringin functiofiz () (21) optimized by the ESSSalgorithm. The best value ofz(x) in the population
vs. iterations (results averaged over 50 algorithms runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) searchspaces. (
solid line, & = 1.5 — dashed linex = 1 — dash-dotted line, and. = 0.5 — dotted line).

4.5. Symmetry Problem are global optimum locations. The lower local optimum is
. . . _ . located in the center of the reference frame. The distances
Let us COI’]SIder the fO||0WIng series Of three-dlmenSK)nal between both the |Oca| and g|0ba| Optima are the same in

fitness functions: all ®, and equal to unity.
1 The goal is the same as in Section 4.3: to cross the
Py(x) = 5 &P (—5ll?) saddle between both peaks when the initial population is
chosen around the local optimum) = (0,0,0). The
+exp (—5|z—myl®), 1=1,2,3,4,(24)  searching process is stopped when the first element of the

current population is located on the global peak higher

where than the lowest local optimum, i.e3k, ®,.(xx) >

my = (1,0,0,0), Blim > Poe(x0).

my = (1/V2,1/2,0,0), Two algorithms from the ESSSclass are applied
ms = (1/v3,1/v3,1/V/3,0), in this experiment: ESSSand ESS§s. The following

my = (1/2,1/2,1/2,1/2) input parameters (the same for all algorithms) are used:

the population size) = 20, the scale parameter = 0.02,
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Fig. 24. Generalized Griewank functioific () (22) optimized by the ESSSalgorithm. The best value of s (x) in the population
vs. iterations (results averaged over 50 algorithms runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) searchspaces. (
solid line, a = 1.5 — dashed lineo = 1 — dash-dotted line, and = 0.5 — dotted line).

the maximum number of iterations,.. = 10°, the limit Observation 19. It is easy to see that the efficiency of all
fitnessg,;,,, = 0.6. Each algorithm is started 300 times for  algorithms considered strongly depends on the direction
each set of initial parameters. The results are presented irof locating the global peak.

Fig. 29.
In the second step of this experiment, sixteen 4.5.1. Conclusions
algorithms from the ER class ¢ = 2.0,1.9,1.8,

) The last experiment reveals the influence of the selection
.-+, 0.6,0.5) are used in order to allocate the global peak f he reference frame on the global optimization effec-

of ®;, [ = 1,2,3,4. The initial popul;?tion ofy = 20 tiveness of evolutionary algorithms which use tBeS
individuals is selected fronf2, = [[:_,[—0.05,0.05] mutation with o < 2.

and Q, = [],[0,0.05], the number of sparring part-
ners beingg = 5. The maximum number of epochs is 5. Summary
tmax = 10000, and the limit fitness ispy;,, = 0.6. Each

algorithm is started 100 times for each objective function. 1ne Multi-dimensional Gaussian mutation is the most
The results are presented in Figs. 30-33. popular mutation technique in evolutionary algorithms
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g. 25. Percentageg of the ER, successful runs (a) and the mean numbeaf iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indefor the 2D Rastringin function.
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Fig. 26. Percentagesg of the ER, successful runs (a) and the mean numbeof iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indexor the 5D Rastringin function.

based on the floating point representation of individuals. density function to zero is different for different directions
In the case of am-dimensional mutation, the most prob- in the n-dimensional real space.

able distance is equal to the norm of the standard devi- Both of the distributions mentioned above belong
ation vector, which increases with the landscape dimen-to the class of multivariate symmetrie-stable distribu-
sion whenever the standard deviation of each entry is fit- tions. The success of the Cauchy mutation approach sug-
ted (thesurrounding effedt In recent years, the multi- gests that the application of other multivariate distribu-
dimensional Cauchy mutation has attracted a lot of atten-tions from theSaS class can be very attractive for evo-
tion. Evolutionary algorithms which use the Cauchy mu- lutionary algorithms with the floating-point representation
tation seem to be more effective in comparison with al- of individuals.

gorithms with the Gaussian mutation in the case of most In this paper both of the properties under considera-
global optimization problems. But the multi-dimensional tion, thesurrounding effecand thesymmetry effechave
Cauchy density function obtained as a product.oinde- been analysed using a set of simulating experiments. As
pendent one-dimensional Cauchy density functions is notexamples of evolutionary algorithms, (1+1)EESSS,
isotropic (thesymmetry effegt The convergence of the and ER, were used.
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Fig. 27. Percentages of the ER, successful runs (a) and the mean numbeof iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indefor the 10D Rastringin function.
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Fig. 28. Percentagesg of the ER, successful runs (a) and the mean numbenf iterations needed to allocate the global optimum

taken over all successful runs (b) vs. the stability indexor the 20D Rastringin function.

Convergence to the optimum of the sphere function selected ESSS algorithms on both the stablity index
was analysed in the first experiment, where four algo- and the search space dimension As functions to be
rithms of the (1+1)ES class were tested. All algorithms  minimized, the sphere and Rosenbrock functions were
were started from a set of initial points located in different chosen. However, the existence of the heavy tails of the
directions from the optimum. The performed simulations SaS pdfs of low values ofa allows the ESS$S algo-
prove the influence of the symmetry effect on the conver- rithm to converge quickly to the optimum neighborhood.

gence rate of EAs based @wS mutations witha < 2. The main mechanism influencing the algorithms’ effec-
The strength of this influence is inversely proportional to tiveness was the surrounding effect. The probability of
the stability indexa. offspring allocation near the origin by the multivariate

The search for the optima of unimodal functions SaS mutation is low. Thus, the fluctuating population
was the goal of the second experiment, too. The em-stabilizes at some distance from the optimum. This dis-
phasis was put on the dependence of the convergence ofance rapidly increases with the search space dimension.
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mutations, and the small number of successes gfsER
caused by the rapid decrease in the scale parametar
time, and this algorithm untimely converges to the local
optimum.

In the next experiment, all algorithms considered
are applied to the global optimization problem of three
well-known multivariate and multimodal optimization
tasks: Ackley’s, the generalized Rastringin and general-
ized Griewank functions. The analysis of the obtained
results proves that the surrounding effect is one of the
most important mechanisms influencing the effectiveness
of evolutionary algorithms, just like the symmetry effect,
which is analysed in the last experiment. These simula-

tions suggest that the most attractive algorithms for global
o, 5 c optimization problem are EPfor 1 < a < 1.5.

This work proves thalSaS mutations are strongly
influenced by two mechanisms: the surrounding effect
and the heavy tails of their distributions. In the case of
ESSS, algorithms (without the self-adaptation ef) the
surrounding effect is a dominant mechanism affecting on
So, in the limit of the lowestw and high dimension the  the algorithm efficiency in a global optimization task, es-
stabilized population locates its elements far from the op- pecially in the case of low values af.
timum point. The surrounding effect is not directly ob-
served when algorithms of the ERclass are applied. It
is reduced by thes self-adaptation mechanism, which
is implemented in these algorithms. The dead surround-
ing radius is proportional tar. Thus, the self-adaptation
mechanism controls both and the dead surrounding ra-
dius. This fact, among other things, causes slow conver-
gence to the optimum of the EPalgorithm with low val-
ues of «, for which wide dead surroundings have to be
reduced by very low values of scale parameters

Fig. 29. Mean number of epochs needed to cross the saddle vs
the global optimum location (ES$SS circles, ESS&s
— stars).

There is a strong dependence between the stability
index o and the scale parameter in order to improve
the effectiveness of EAs usingaS mutations. This rela-
tion, as well as the possibility of using the self-adaptation
mechanism ofx, need detailed studies, which are the goal
for our futher research.

References

The thir.d expgriment presents the inflggnce of the Back T. and Schwefel H.-P. (1993)n overview of evolutionary
landscape dimension on the exploration efficiency of the computation— Evol. Comput., Vol. 1, No. 1, pp. 1-23.

e e T, Fogl D5 and Mt . (E0) (199Fand-
'g . . . book of Evolutionary Computation— Oxford: Oxford
two Gal_JSS|an_ peaks. Itis not_surpr|3|_ng that, in the case University Press, NY.
of low dimensions, ESSSalgorithms with a low value of Chambers J.M.. Mall C.L. and Stuck B.W. (1978 hod
o (with heavy tails of distributions used in mutations) are ©hampers J.M., Mallows C.L. and Stuck B.W. (197&)metho
more effective than algorithms with a higher value of the for simulating stable random variables- J. Amer. Statist.
Assoc., Vol. 71, No. 354, pp. 340-344.

stability index. The surrounding effect is the cause of two, , o
Fang K.-T., Kotz S. and Ng S. (19908ymmetric Multivariate

seemingly contradictory, properties of ESS&8lgorithms. 4 Related Distribut London: Ch d Hall
For low dimensions it accelerates the algorithms’ saddle- and Related Distributions— London: Chapman and Hall

crossing capability. But the efficiency of ESS$apidly Fogel L.J., Owens A.J. and Walsh A.J. (196Aajtificial Intelli-
decreases when the landscape dimension increases. The 9ence through Simulated Evolutioa- New York: Wiley.
Gaussian peaks of the fithess function become too narogel D.B., Fogel L.J. and Atmar J.W. (1991)Meta-
row for these algorithms and offspring are located far from evolutionary programming— Proc. 25th Asilomar Conf.
them. Because the surrounding effect appears strongly for ~ Signals, Systems & Computers, San Jose, pp. 540-545.
low values of o, ESSS with the standard Gaussian mu- Fogel D.B. (1992):An analysis of evolutionary programming
tation becomes the most effective algorithm in the case of — Proc. 1st Annual ConfEvolutionary Programming, LA
high search space dimensions. In the case of algorithms Jolla, CA: Evolutionary Programming Society, pp. 43-51.
of the ER, class, the worst results are obtained for the Fogel D.B. (1994):An introduction to simulated evolutionary
EP, and ER 5 algorithms. However, the low efficiency computation— IEEE Trans. Neural Netw., Vol. 5, No. 1,
of ER, algorithm is caused by a low probability of macro- pp. 3-14.



A. Obuchowicz and P. Pretki

2500

2000

1500

1000

500

0
2 19 18 17 16 15 14 13 12 11 1 09 08 07 06 05 2 19 18 17 16 15 14 13 12 11 1 09 08 07 06 05
@ (b)

Fig. 30. Percentages of the ER, successful runs (a) and the mean numbesf iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indefor ®,(x) (24).
30

3500

3000

2500

2000

1500

1000

500

2 19 18 17 16 15 14 13 12 11 1 09 08 07 06 05 2 19 18 17 16 15 14 13 12 11 1 09 08 07 06 05
@ (b)

Fig. 31. Percentages of the ER, successful runs (a) and the mean numbesf iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indefor ®2(x) (24).

Galar R. (1985):Handicapped individua in evolutionary pro- IV (H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-
cesses— Biol. Cybern., Vol. 51, pp. 1-9. P. Schwefel, Eds.). — Berlin: Springer, pp. 388-397.

Galar R. (1989): Evolutionary search with soft selectior— Lévy C. (1925):Calcul des Probabilités— Paris: Gauthier Vil-
Biol. Cybern., Vol. 60, pp. 357-364. lars.

Gutowski M. (2001):Leévy flights as an underlying mechanism Michalewicz Z. (1996):Genetic Algorithms + Data Structures
for a global optimization algorithm— Proc. 5th Conf. = Evolution Programs— Berlin: Springer.
Evolutionary Algorithms and Global Optimization, Jas-

trzebia Gora, Poland, pp. 79-86. Nolan J.P. (2003)Stable Distributions. Models for Heavy Tailed

Data. — Berlin: Springer.
Kanter M. (1975):Stable densities with change of scale and to-

tal variation inqualities — Ann. Probab., Vol. 3, No. 4, Obuchowicz A. (2001a): On the true nature of the multi-

pp. 687-707 dimensional Gaussian mutatioa— In: Artificial Neural
' ’ Networks and Genetic Algorithms (V. Kurkova, N.C. Steel,
Kappler C. (1996):Are evolutionary algorithms improved by R. Neruda and M. Karny, Eds.). — Vienna: Springer,

large mutation In: Problem Solving from Nature (PPSN) pp.248-251.



Phenotypic evolution with a mutation based on symmetric «-stable distributions

100

10000

90 T
9000 -

8or 1 eooo

7000 -

60" 1 000l

sor 7 s000-
40+ 7 4000
301 7 30001
20 7 2000 -
10( 4 1000F

N N | P .

0
2 19 18 17 16 15 14 13 12 11 1 09 08 07 06 05 2 19 18 17 16 15 14 13 12 11 1

(@) (b)

g. 32. Percentageg of the ER, successful runs (a) and the mean numbeaf iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indefor ®3(x) (24).

09 08 07 06 05

F

100 2000

90 1 18001 b
80 1 16001 B
7or 1 1400 B
60 7 12001 B
50 7 1000} g
40r- 1 800 -
30 7 600 B
20+ <4 400 B
10+ -4 200F B
ob—e 11 ) e—— ) B s——ee—— 0 L

1 1 1 1
2 19 18 17 16 15 14 13 12 1.1 1 19 18 17 16 15 14 13 12 11 1

@) (b)

Fig. 33. Percentages of the ER, successful runs (a) and the mean numbeof iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indefor ®4(x) (24).

09 08 07 06 05 2 09 08 07 06 05

Obuchowicz A. (2001b): Mutli-dimensional Gaussian and
Cauchy mutationdn: Intelligent Information Systems (M.
Ktopotek, M. Michalewicz, and S.T. WierzchpEds.). —
Heidelberg: Physica—Verlag, pp. 133-142.

Obuchowicz A. (2003a):Population in an ecological niche:
Simulation of natural exploratian— Bull. Polish Acad.
Sci., Tech. Sci., Vol. 51, No. 1, pp. 59-104.

Obuchowicz A. (2003b)Multidimensional mutations in evolu-
tionary algorithms based on real-valued representatien
Int. J. Syst. Sci., Vol. 34, No. 7, pp. 469-483.

Obuchowicz A. (2003c):Evolutionary Algorithms in Global
Optimization and Dynamic System Diagnosis Zielona
Gora: Lubuskie Scientific Society.

Rechenberg I. (1965)Cybernetic solution path of an experi-
mental problem— Roy. Aircr. Establ., Libr. Transl. 1122,
Farnborough, Hants., UK.

Rudolph G. (1997):Local convergence rates of simple evolu-
tionary algorithms with Cauchy mutations- IEEE Trans.
Evolut. Comput., Vol. 1, No. 4, pp. 249-258.

Schwefel H.-P. (1981):Numerical Optimization of Computer
Models — Chichester: Wiley.

Samorodnitsky G. and Taqqu M.S. (1998}able Non-Gaussian
Random Processes- New York: Chapman & Hall.

Shu A. and Hartley R. (1987)Fast simulated annaeling—
Phys. Lett. A, Vol. 122, Nos. 3/4, pp. 605-614.



ames @ A. Obuchowicz and P. Pretki

Weron R. (1996):Correction to: On the Chambers-Mallows-  Yao X. and Liu Y. (1997)Fast evolutionary strategies— Contr.
Stuck method for simulating skewed stable random vari- Cybern., Vol. 26, No. 3, pp. 467—496.

ables — Res. Rep., Wroctaw University of Technology, Yao X. and Liu Y. (1999): Evolutionary programming made

Poland. faster — IEEE Trans. Evolut. Comput., Vol. 3, No. 2,
Weron R. (2001):Lévy-stable distributions revisited: tail in- pp. 82-102.
dex > 2 does not exclude the Lévy-stable regimelnt. Zolotariev A. (1986):One-Dimensional Stable Distributions-

J. Modern Phys. C, Vol. 12, No. 2, pp. 209-223.

Yao X. and Liu Y. (1996):Fast evolutionary programmingdn:
Evolutionary Programming V: Proc. 5th Annual Confer-
ence on Evolutionary Programming (L.J. Fogel, P.J. Ange-
line, and T. Back, Eds.). — Cambridge, MA: MIT Press,
pp. 419-429.

Providence: American Mathematical Society.



