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In this paper we address an extension of a very efficient genetic algorithm (GA) known asHy3, a physical parallelization
of the gradual distributed real-coded GA (GD-RCGA). This search model relies on a set of eight subpopulations residing
in a cube topology having two faces for promoting exploration and exploitation. The resulting technique has been shown
to yield very accurate results in continuous optimization by using crossover operators tuned to explore and exploit the
solutions inside each subpopulation. We introduce here a further extension ofHy3, calledHy4, that uses 16 islands arranged
in a hypercube of four dimensions. Thus, two new faces with different exploration/exploitation search capabilities are added
to the search performed byHy3. We analyze the importance of running a synchronous versus an asynchronous version of
the models considered. The results indicate that the proposedHy4 model overcomes theHy3 performance because of its
improved balance between exploration and exploitation that enhances the search. Finally, we also show that the asyncHy4
model scales better than the sync one.
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1. Introduction

Evolutionary algorithms (EAs) are stochastic search
methods that have been successfully applied in many
search, optimization, and machine learning problems
(Bäck et al., 1997; Goldberg, 1989; Holland, 1975;
Michalewicz, 1992). Unlike most other optimization tech-
niques, EAs maintain a population of tentative solutions
that are competitively manipulated by applying some vari-
ation operators to find a satisfactory, if not globally, opti-
mum solution. Among the well-accepted subclasses of
EAs (Bäck, 1996), genetic algorithms (GAs) (Goldberg,
1989; Holland, 1975) have been widely studied. The goal
of this paper is to extend a previous work (Albaet al.,
2003; 2004) dealing with a new model for optimization in
continuous domains with GAs.

GAs iteratively improve a population of individuals
by applying a recombination operator (merging two or
more parents to yield one or more offsprings) and a muta-
tion of their contents (random alterations of the problem
variables). However, if we stick to natural evolution, we
should not operate on a single population in which a given
individual has the potential to mate with any other partner
in the same population (panmixia). Instead, species evolve
in structured neighborhoods, and tend to reproduce within
subgroups. Among the existing types of structured GAs,
distributed GAs (dGAs) (Alba and Troya, 1999) are es-

pecially popular. Distributed evolutionary algorithms are
a subclass of decentralized evolutionary algorithms (Alba
and Tomassini, 2002) aimed at reducing the probability
of convergence to local optima, promoting diversity, and
finding alternative solutions to the same problem. Their
advantage lies in partitioning the population into several
subpopulations, each being processed by a GA, indepen-
dently of the others. Furthermore, a sparse migration
of individuals produces an exchange of genetic material
among the subpopulations that usually improves the accu-
racy and efficiency of the algorithm.

By making different decisions on the component sub-
algorithms in a dGA, we obtain the so-calledheteroge-
neousdGAs (multi-resolution methods). One way of con-
structing a heterogeneous dGA is through the applica-
tion of different search strategies in each component al-
gorithm. This means that the search occurs at multiple ex-
ploration and exploitation levels at the same time. In this
paper we extend a heterogeneous dGA calledHy3 (Alba
et al., 2003; 2004).Hy3 is, in turn, a parallel extension
of another heterogenous dGA namedgradual distributed
real-coded GA(GD-RCGA) (Herrera and Lozano, 2000).
This model of search is an example of the distributed tech-
nique that runs eight populations concurrently in a cu-
bic topology with sparse migrations of individuals among
them. The GD-RCGA model is suitable for the optimiza-
tion of continuous functions, because it includes in the ba-
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sic improvement loop of the algorithm the utilization of
crossover operators specialized for float genes (variables),
engineered with fuzzy logic technology to deal explicitly
with the traditional “fuzzy” GA concepts of exploration
and exploitation.

There exist some studies on GD-RCGA in the litera-
ture (Herrera and Lozano, 2000). However, although the
algorithm offers a straightforward parallelization, only se-
quential implementations exist. In them, a concurrent ex-
ecution of the islands is simulated at hand on a monopro-
cessor. TheHy3algorithm presented in (Albaet al., 2003;
2004) provides the first parallel implementation that actu-
ally runs in a cluster of machines. The contribution of the
present work is, first, to propose a further extension of the
Hy3 model, calledHy4 (Hypercube4). This new model
is configured as a hypercube of four dimensions with 16
subpopulations, where a more advantageous balance be-
tween exploration/exploitation could be achieved. Addi-
tionally, we are interested in investigating the advantages
that could outcome from an asynchronous design, instead
of the synchronous search that the basic GD-RCGA sug-
gests. Thus,Hy4 comes as a new parallel model in which
new numerical and efficiency challenges need to be stud-
ied.

The paper is organized as follows. We first outline
a taxonomy of heterogeneous dGAs in the next section.
Section 3 presents the background to understand theHy4
model and a discussion on our parallel implementations.
In Section 4, we briefly introduce the problems contained
in our benchmark. In Section 5, we present the parameter-
ization that we used here. In the next section, we analyze
the results from a numerical and run time point of view.
Finally, we summarize the conclusions and discuss sev-
eral lines for future research in Section 7.

2. Heterogeneous Distributed Genetic
Algorithms

One of the main difficulty in heuristics is premature con-
vergence (e.g., in GAs (Baker, 1987; de Jong, 1975)). It
arises when the search is likely to be trapped in a region
that does not contain the global optimum. An approach to
address this problem focuses on keeping the diversity of
the population high. The lack of diversity in the popula-
tion may be provoked in turn by the loss of critical alleles
due to selection, the disruption due to crossover, or a poor
parameter setting (Herrera and Lozano, 2000; Pottset al.,
1994), among other things.

In this sense, diversity preservation methods based
on spatial separationhave been proposed in order to
avoid premature convergence (Manderick and Spiessens,
1989; Mühlenbeinet al., 1991; Tanese, 1989). One of the
most important examples of such a kind of algorithms are

distributed GAs (Alba and Troya, 1999). In dGAs, an at-
tempt to overcome the premature convergence problem is
made by preserving diversity due to the semi-isolation of
the subpopulations.

Distributed GAs may be classified into the following
two categories, with respect to subpopulation homogene-
ity (Lin et al., 1994):

• Homogeneous dGAs. Every subpopulation performs
the same kind of search (same genotype, operators,
etc.) on different sets of randomly generated individ-
uals. They are considered as a direct extension of the
canonical GA, and most dGAs proposed in the litera-
ture are members of this category (Mühlenbeinet al.,
1991; Tanese, 1989).

• Heterogeneous dGAs. The subpopulations are pro-
cessed using GAs with either different control pa-
rameter values, or genetic operators, or an encoding
scheme, etc. The result is a robust multi-resolution
search method that can be explicitly tuned to carry
out exploration and exploitation depending on the
problem. A taxonomy of this sort of dGAs is pre-
sented in this section.

The homo/heterogeneity could be understood as a
term referring to the execution platform, where each is-
land executes over a different hardware or operating sys-
tem (Albaet al., 2002). However, there exist different lev-
els for heterogeneity as regards the kind of search that the
islands make. At this “software” or numeric level, we can
also distinguish various sublevels according to the source
of heterogeneity:

1. Parameter level. The first approach to achieve the
numeric heterogeneity is to use the same GA in each
island with different parameters of selection, recom-
bination, mutation, and/or migration. These parame-
ters could be initially preprogrammed (Adamidis and
Petridis, 1996; 2002), randomly chosen during the
evolution (Hiroyasuet al., 1999; Miki et al., 1999),
or they could follow an adaptive strategy (Hinterding
et al., 1996; Schlierkamp-Voosen and Mühlenbein,
1994; Schnecke and Vornberger, 1996).

2. Operator level. At this level, heterogeneity is intro-
duced by using different genetic operators into the
same GAs (Herrera and Lozano, 1997; Herreraet al.,
1998).

3. Representation level. This is a more subtle kind of
heterogeneity, where each subpopulation stores lo-
cally encoded solutions represented with a different
encoding technique (representation) (Aickelin and
Bull, 2002; Linet al., 1994).
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4. Algorithm level. This is the most general class. Each
subpopulation can potentially run a somewhat dif-
ferent (evolutionary or even non-evolutionary) al-
gorithm (Pottset al., 1994; Sefrioui and Périaoux,
2000; Tsutsui and Fujimoto, 1993).

Note that the algorithm-level heterogeneity contains
all previous levels. For example, a dGA with different pa-
rameters in its subpopulations is also algorithm-level het-
erogeneous. We introduce it for hard-to-classify heteroge-
neous models. There also exist tools for the production of
evolutionary algorithms not directly matching this classi-
fication, e.g., by allowing the automatic distribution of the
computation (Arenaset al, 2002; Tierra, 2004), thus facil-
itating the creation of heterogeneous dGAs.

Another orthogonal level of heterogeneity can be de-
fined with respect to the relationship maintained among
the elementary algorithms in the dGA. Basically, if the
amount of resources (individuals) of each subpopula-
tion is not constant during the evolution, i.e., the size
of a subpopulation depends on the previous success of
its search strategy, then it can be said that subpopula-
tions are competing. Otherwise, it seems that the sub-
populations collaborate to find the optimum. Hence,
we differentiate between competition-based heterogeneity
(Hu and Goodman, 2002; Ohet al., 2002; Schlierkamp-
Voosen and Mühlenbein, 1996; Yiet al., 2000) and
collaboration-based heterogeneity (Herrera and Lozano,
2000; Venkateswaranet al., 1996).

The models we deal with in this work (GD-RCGA,
Hy3, andHy4) exhibit different levels of heterogeneity.
On the one hand, they are parameter-level heterogeneous,
since the subpopulations use different values of selec-
tion pressure. But subpopulations also utilize different
crossover operators, so they can also be considered as
operator-level heterogeneous. On the other hand, the sem-
inal GD-RCGA model shows collaboration-based hetero-
geneity, since its subpopulations cooperate, and do not
compete, in order to perform the search.

3. Hy4 Model

In this section, we describe the basic behavior of the
GD-RCGA (Herrera and Lozano, 2000), and explain how
it has been parallelized to yield the newHy3 algorithm
(Alba et al., 2004). Finally, the newHy4 algorithm is in-
troduced and described.

3.1. GD-RCGA

The present availability of crossover operators for real-
coded genetic algorithms (RCGAs) allows the possibility

of using in the same algorithm different exploration or ex-
ploitation degrees, which leads to the design of hetero-
geneous distributed RCGAs based on this kind of opera-
tors (Herrera and Lozano, 1997). This issue is especially
important for continuous optimization tasks. GD-RCGA
is included into such a class of heterogeneous algorithms
since it applies a different crossover operator in each of
its component subpopulations. Figure 1 depicts a graphic
outline of the algorithm.

E

Fig. 1. Connection topology of a GD-RCGA.

The distribution scheme of GD-RCGA is based on a
hypercube topology with three dimensions. There are two
important faces in this hypercube that have to be consid-
ered:

• The front sideis devoted to exploration. It is made
up of four subpopulationsE1, . . . , E4, in which sev-
eral exploratory crossovers are applied (see Table 2
in Section 3.1.3).

• The rear sidepromotes exploitation. It is composed
of subpopulationse1, . . . , e4, that apply exploitative
crossover operators (see Table 2 in Section 3.1.3).

One salient feature of GD-RCGA is the use of an
elitist strategy(de Jong, 1975) in the subpopulations, an
important factor that may yield excessively rapid conver-
gence. However, this is necessary in order to solve com-
plex problems, because otherwise the best individual so
far could disappear due to crossover or mutation.

The resulting algorithm is a parallel-suited multi-
resolution method using several crossover operators
which allow GD-RCGA to achieve simultaneously a di-
versified search (reliability), and an effective local tuning
(accuracy). Furthermore, subpopulations are adequately
connected for exploiting the multi-resolution in agradual
way, since the migrations between subpopulations belong-
ing to different categories (front-rear migrations) may in-
duce the refinement/expansion of the best emerging zones.
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Fig. 2. Three types of migration in a GD-RCGA.

Let us explain the migration scheme and the selec-
tion mechanism used in GD-RCGA that help to establish
a correct coordination between refinement and expansion.

3.1.1. Migration Scheme

Distributed GAs behavior is strongly determined by the
migration mechanism (Alba and Troya, 2000; Cantú-Paz,
1995; Goldberget al., 1995). GD-RCGA uses a migration
model where copies of migrants are sent only towards im-
mediate neighbors along a dimension of the hypercube,
and each subsequent migration takes place along a dif-
ferent dimension of the hypercube. Particularly, the best
element of each subpopulation is sent towards the corre-
sponding subpopulation periodically, as shown in Fig. 2.
The sequence of applications is as follows: first, the re-
finement migrations; second, the refinement/expansion
migrations; third, the expansion migrations; and finally,
the sequence starts again. The place of an emigrant is
taken by the incoming individual.

This migration scheme keeps a global elitist strategy,
since the best element of all subpopulations is never lost,
although it could be moved from one subpopulation to an-
other.

3.1.2. Selection Mechanism

We use the same selection mechanism as in (Herrera and
Lozano, 2000): linear ranking selection(Baker, 1985).
It is used because the induced pressure can be easily ad-
justed. In the linear ranking selection, the individuals are
sorted in order of raw fitness, and then the selection prob-
ability, ps, of each individualIi is computed according
to its rank rank(Ii), with rank(Ibest) = 1, by using the
following non-increasing assignment function:

ps(Ii) =
1
N

(
ηmax − (ηmax − ηmin)

rank(Ii)− 1
N − 1

)
,

where N is the population size, andηmin ∈ [0, 1] spec-
ifies the expected number of copies for the worst individ-
ual (the best one hasηmax = 2− ηmin expected copies).
The selection pressure of linear ranking is determined

by ηmin. If ηmin is low, high pressure is achieved,
whereas if it is high, the pressure is low. Different se-
lection pressure degrees were assigned to every subpop-
ulation of GD-RCGAs, by selecting theηmin values as
shown in Table 1.

Table 1. Crossover exploration/exploitation degrees
and ηmin values for each island.

Exploitation Exploration

e4 e3 e2 e1 E1 E2 E3 E4

Crossover + ← — — → +

ηmin 0.8 0.7 0.6 0.5 0.3 0.2 0.1 0.0

Linear ranking is combined withstochastic universal
sampling(Baker, 1987). This procedure guarantees that
the number of copies of any individual is bounded by the
floor and ceiling of its expected number of copies.

3.1.3. Fuzzy Connectives-Based Crossover Operators

The GD-RCGA was implemented endowed with a
fuzzy connective-basedcrossover operator, called FCB-
crossover, which is based on three functions,F , S,
and M (Herrera et al., 1995), for combining genes.
Each function has different exploration/exploitation de-
gree properties (Table 1) and can be calculated by four
families of fuzzy connectives:Logical, Hamacher, Al-
gebraic, andEinstein. Therefore, four families of FCB-
crossover operators may be obtained by using these fam-
ilies of fuzzy connectives. As we stated before, these
crossover operators have different properties: theF - and
S-crossover operators inducing promoting exploration,
and the M -crossover operators show exploitation. The
exploration/exploitation degree of each crossover opera-
tor depends on the fuzzy connective on which it is based.
In fact, the EinsteinF - and S-crossovers show the max-
imum exploration, whereas the Logical ones present the
minimum exploration. On the other hand, the Logical
M -crossover shows the maximum level of exploitation.
They were properly configured, as shown in Table 2.
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Table 2. FCB-crossover configuration.

Rear SideM -crossover Front SideF - and S-crossover

e1 Hamacher E1 Logical

e2 Algebraic E2 Hamacher

e3 Einstein E3 Algebraic

e4 Logical E4 Einstein

3.2. GD-RCGA Parallelization: theHy3 Model

Although GD-RCGA suggests a direct parallel implemen-
tation, its synchronous behavior has not been tested on
parallel machines until (Albaet al., 2003), where an asyn-
chronous modification is also analyzed.

···
ProblemPolynomialFittingProblemSphere

Buffer

Chromosome

IndividualGA

Problem PopulationAlgorithm

Fig. 3. UML design used to implementHy3.

The Hy3 model was implemented in Java, using
sockets for inter-process communication. The UML class
diagram in Fig. 3 depicts the design followed for its paral-
lelization. TheGA class represents the island behavior of
the dGA. It manages the program execution by controlling
the termination, the computation of new algorithm steps,
and the migration scheme. The inclusion of theBuffer
class was necessary to avoid deadlocks (they are uncou-
pling buffers). EachGA object has an associatedBuffer
element located in the same node, from which it takes mi-
grated individuals. The rest of the classes are devoted to
the computation of the problem, implementing selection,
crossover, mutation, and evaluation of individuals.

Two versions of Hy3 were implemented: Syn-
chronous Hy3andAsynchronous Hy3. In the first one, in
each migration phase, every subpopulation sends its best
individual and then waits for another coming from the cor-
responding neighbor. In the async mode, this considera-
tion is not taken into account; thus, any individual stored
in its buffer by a precedent migration can be included in

hE4 he4

he1

he2

he3

hE1

hE3

hE2

E4

E1

E3

E2

e4

e1

e3

e2

S
ide 1HighExploration

S
ide 4HighExploitation

S
ide 2

Exploration

S
ide 3

Exploitation

- Exploitation +

+ Exploration -

Fig. 4. Hy4 topology.

the population at any time. Since the incoming individ-
ual always replaces the best one in the subpopulation in
the two modes, the async version could lead to the loss
of the global elitism due to its asynchronism (the best in-
dividual of a subpopulation could be replaced before it is
migrated).

Hy3 was analyzed in (Albaet al., 2003; 2004), and
showed a high accuracy and parallel advantage, especially
in asynchronous execution. However, we felt that we
could go further with a new model in terms of either ac-
curacy or efficiency. This leads us to propose theHy4
algorithm.

3.3. ExtendingHy3: the Hy4 Model

The Hy4 model we are introducing here is aimed at re-
ducing even more the frequency of convergence to local
optima achieved by its two predecessors. The main goal
of the method is to reach a new balance between explo-
ration and exploitation that allows us to effectively tackle
more complex problems. TheHy4 algorithm is a hetero-
geneous dGA based on a hypercube topology with four
dimensions (Fig. 4).

Four sides can be differentiated in the topology of the
new model.Side 2andSide 3correspond to thefront side
and therear sideof Hy3. (Although they appear rotated
with respect to Fig. 1.) Furthermore, these sides are con-
figured as anHy3 algorithm (see Section 3.1):Side 2is
devoted to exploration whileSide 3focuses on exploita-
tion. Side 1andSide 4are configured to stress theSide 2
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andSide 3search features, i.e., to achieve high exploita-
tion and high exploration degrees, respectively.

If we consider theHy4 algorithm as twoHy3 algo-
rithms adequately connected, two cubes can be differenti-
ated in Fig. 4: an inner one composed ofSide 2andSide 3,
and an outer one made ofSides 1andSide 4. These two
cubes have the same selection mechanism, crossover op-
erator configuration, and mutation as theHy3model.

The different search features that we mentioned
above are achieved by increasing the probabilities of the
crossover (high exploration) and mutation (high exploita-
tion) genetic operators in the respective subpopulations
(see Section 5). Thus, the high exploration properties of
Side 1are produced by higher crossover rates in subpop-
ulationshE1, . . . , hE4 whereas, by increasing the muta-
tion rates in subpopulationshe1, . . . , he4, Side 4reaches
the required high levels of exploitation. Additionally,
these crossover and mutation rates are uniformly chosen
so that the migrations between subpopulations provoke
the refinement or expansion of the best zones.

The refinement is induced when migrations are pro-
duced:

• from an exploratory subpopulation toward an ex-
ploitative one, i.e., fromhEi to hei,
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Fig. 5. Migration phases ofHy4.

• between two exploratory subpopulations from a
higher degree to a lower one, i.e., fromhEi+1 to
hEi, or

• between two exploitative subpopulations from a
lower degree to a higher one, i.e., fromhei to hei+1.

On the other side, the migrations in the opposite di-
rections produce the expansion effect, since the individ-
uals included may act as reference points for generating
diversity in zones showing promising properties located
in the exploitation planes.

Topology is an important factor in the performance
of dGAs because it determines the speed at which a good
solution spreads to other subpopulations. If the topology
has a dense connectivity, a short diameter, or both, good
solutions will spread quickly to all of the subpopulations
(Cantú-Paz, 1995). Note that this kind of topology (along
with frequent migrations) could lead dGAs to panmixia.
In Hy4, this is avoided by performing migrations infre-
quently. Therefore, the short diameter of theHy4 model
is suitable for favoring refinement and expansion, since
genetic material will be quickly exchanged between sub-
populations.

Figure 5 depicts the proposed migration model for
the Hy4 algorithm. Its goal is to maintain the gradual
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effects of refinement and expansion of theHy3 migration
presented in Section 3.1.1. Here, copies of the best indi-
viduals of each subpopulation are also sent towards the
corresponding subpopulation, being their position filled
by the incoming ones. Since we have an additional di-
mension with respect to theHy3 algorithm, four migra-
tion phases are needed. They are cyclicly applied in the
following order: first, the refinement migrations; second,
a first refinement/expansion phase (calledREF/EXP Inter-
Plane Migrationin Fig. 5) takes place; third, the expan-
sion migrations. (Note that these three phases correspond
to the migration mechanism of theHy3algorithm but they
occur both in the inner and the outer cubes that form the
Hy4model.) In the fourth place, the refinement/expansion
Inter-Cubephase produces a genetic material exchange
between subpopulations of the two cubes.

To finish the presentation ofHy4, we also want to
point out that two versions of the model were imple-
mented: a synchronousHy4 and an asynchronousHy4.
The basic aim is as forHy3 (cf. Section 3.2).

4. Problems

In this section, we present the benchmark used to test our
algorithms. We have analyzed the results of minimiza-
tion experiments on six test functions and three real-world
problems in order to sustain our claims on a wide and di-
versified benchmark. It is usual to utilize these problems
as a kind of standard benchmarking tasks for new algo-
rithms, especially in continuous optimization. We have
therefore selected the same benchmark as (Herrera and
Lozano, 2000), because it is very complete, and also for
comparison purposes. The problems are described in the
next subsections.

4.1. Test Functions

We considered six classical and well-known test func-
tions: spheremodel (fSph ) (de Jong, 1975; Schwefel,
1981),generalized Rosenbrock’sfunction (fRos ) (de Jong,
1975), Schwefel’s problem 1.2(fSch ) (Schwefel, 1981),
generalized Rastrigin’sfunction (fRas ) (Bäck, 1992;
Töorn and Antanas, 1989),Griewangk’sfunction (fGri )
(Griewangk, 1981), andexpansion of f10(ef10) (Whit-
ley et al., 1995). Figures 6 and 7 show their formulation
and display their fitness landscape. The dimension of the
search space is 10 foref10 and 25 for the remaining test
functions. Each has its particular features and difficulties:

• fSph is a continuous, strictly convex, and unimodal
function.

• fRos is a continuous, nonseparable (nonlinear in-
teractions among variables), and unimodal function,

with the optimum located in a steep parabolic val-
ley with a flat bottom (i.e., hard progress to the opti-
mum).

• fSch is a continuous and unimodal function. Its dif-
ficulty concerns the fact that searching along the co-
ordinate axes only gives a poor rate of convergence
because the gradient offSch is not oriented along
the axes. It presents similar difficulties tofRos , but
its valley is much narrower.

• fRas is a scalable, continuous, and multimodal func-
tion, which is made fromfSph by modulating it with
a cos(ωxi).

• fGri is a continuous and multimodal function. This
function is difficult to optimize because it is nonsep-
arable.

• f10 is a function that has nonlinear interactions be-
tween two variables. Its expanded versionef10 is
built in such a way that it induces nonlinear interac-
tions across multiple variables. It is nonseparable as
well.

4.2. Real-World Problems

In order to better assess our conclusions, we chose three
additional real-world problems:systems of linear equa-
tions(Eshelmanet al., 1997),frequency modulation sound
parameter identification problem(Tsutsui and Fujimoto,
1993), and apolynomial fitting problem(Storn and Price,
1995). They all are described in the next subsections.

4.2.1. Systems of Linear Equations

This problem may be stated as solving for the elements
of a vector ~x, given the matrixA and the vector~b in
the expressionA~x = ~b. The evaluation function used for
these experiments is

fsle(~x) =
∣∣∣ n∑

i=1

n∑
j=1

(aijxj)− bi

∣∣∣.
Clearly, if the system of equations is solvable, the

best value for this objective function isfsle(~x∗) = 0. Fur-
thermore, the range of parameters is[−9.0,+11.0]. Inter-
parameter linkage (i.e., nonlinearity) is easily controlled
in systems of linear equations like this one, since their
nonlinearity does not deteriorate as the number of param-
eters used is increased, and they proved to be quite diffi-
cult. We considered a ten-parameter problem instance. Its
matrices are included in Fig. 8.
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Fig. 7. Test functions (II).
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Fig. 8. Matrices of the analysed system of linear equations.

4.2.2. Frequency Modulation Sound Parameter
Identification Problem

The problem is to specify six parameters,a1, ω1, a2, ω2,
a3, ω3, of the frequency modulation sound model repre-
sented by

y(t) = a1 sin
(
ω1tθ + a2 sin

(
ω2tθ + a3 sin(ω3tθ)

))
with θ = 2π/100. If ~x = [a1, ω1, a2, ω2, a3, ω3], the
fitness function is defined as the sum of the squared errors
between the evolved data and the model data as follows:

ffms(~x) =
100∑
t=0

(
y(t)− y0(t)

)2
,

where the model data are given by the following equation:

y0(t) = 1.0 sin
(
5.0tθ−1.5 sin

(
4.8tθ+2.0 sin(4.9tθ)

))
.

Each parameter is in the range[−6.4,+6.35]. This is
a highly complex multimodal problem having strong epis-
tasis, with minimum valueffms(~x∗) = 0.

4.2.3. Polynomial Fitting Problem

This problem lies in finding the coefficients of the follow-
ing polynomial inz:

P (z) =
2k∑

j=0

cjz
j , k ∈ Z+

such that,∀z ∈ [−1,+1],

P (z) ∈ [−1,+1], P (+1.2) ≥ T2k(+1.2),

P (−1.2) ≥ T2k(−1.2),

whereT2k(z) is a Chebyshev polynomial of degree2k.

The solution to the polynomial fitting problem con-
sists of the coefficients ofT2k(z). This polynomial os-
cillates between−1 and +1 when its argumentz is
between−1 and +1. Outside this region, the polyno-
mial rises steeply in the direction of high positive ordi-
nate values. This problem has its roots in electronic fil-
ter design, and it challenges an optimization procedure by
forcing it to find parameter values with grossly different
magnitudes, something that is very common in industrial
systems. The Chebyshev polynomial employed here is

T8(z) = 1− 32z2 + 160z4 − 256z6 + 128z8.

It is a nine-parameter problem (~x = [x1, . . . , x9]). A
small correction is needed in order to transform the con-
straints of this problem into an objective function to be
minimized, calledfCheb (see (Herrera and Lozano, 2000)
for all the details). Each parameter (coefficient) is in the
range[−5.12,+5.12]. The objective function value of the
optimum isfCheb(~x∗) = 0.

5. Parameterization

In order to perform subsequent comparisons, the whole
population of all the evaluated models is composed of 160
individuals. Thus, theHy3variant uses 20 individuals per
subpopulation, whereas the islands of theHy4 algorithms
contain 10 individuals. All the models also perform a mi-
gration every 160 generations. The mutation operator ap-
plied is nonuniformmutation (Michalewicz, 1992). This
operator needs two parameters:b (set to value 5), which
determines the degree of dependency on the number of
iterations, andMG, which is the maximum number of
generations (see its different values in Table 4).

Table 3. Selective pressure (ηmin), crossover rate,
and mutation rate forHy4 islands.

Exploitative side Explorative side

he4 he3 he2 he1 hE1 hE2 hE3 hE4

ηmin 0.8 0.7 0.6 0.5 0.3 0.2 0.1 0.0

Crossover 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0

Mutation 0.5 0.4 0.3 0.2 0.125 0.125 0.125 0.125

The Hy3 model and the subpopulationse1, . . . , e4

and E1, . . . , E4 of the Hy4 algorithms present the same
selective pressure, crossover, and mutation configuration.
All of them use a crossover probability of 0.6 and a
mutation probability of 0.125. Concerning the selective
pressure of linear ranking selection, they use theηmin

values shown in Table 1. The rest of theHy4 islands,
i.e., he1, . . . , he4 andhE1, . . . , hE4 follows the specific
configuration shown in Table 3. This configuration allows
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Table 4. Maximum number of generations (MG)
and target fitness (TF).

Problem MG TF Problem MG TF

fSph 15000 2e-13 fRas 30000 4e-11

fRos 60000 9e0 fGri 5000 2e-2

fSch 5000 4e0 ef10 15000 2e-3

Problem MG TF

fsle 5000 4e1

ffms 5000 1e1

fCheb 100000 2e2

us to emphasize the explorative and exploitative features
of the new faces introduced by theHy4 model. In the
appendix, we give a detailed description of theHy4 con-
figuration.

The original GD-RCGA work imposed a predefined
number of iterations (5000), but we cannot do the same
because we want to measure the time to find equivalent
solutions withHy3/Hy4models (sync/async versions) and
also to compute with respect to the original work. Thus,
we calculated a maximum number of iterations for every
problem (see Table 4), and we defined our goal as reaching
the fitness values appearing in this table (that correspond
to the average of the best fitness function found in the ba-
sic reference work (Herrera and Lozano, 2000)). The pre-
sented results are the averages over 30 independent runs,
all of them reaching the target fitness in Table 4.

Our computing system is a cluster of Sun Ultra 1
workstations running Solaris 2.8. Each of them has
a 400 MHz Ultra-SPARC II processor with 256 MB of
memory. The machines are interconnected by a Fast-
Ethernet network at 100 Mbps. We used JDK 1.4.0-b92
and compiled the programs with the-O optimization flag.

6. Results

Let us now proceed with the presentation of the results.
We first analyze the sync/async behavior with respect to
the execution time and numerical effort of the models. In
a later subsection, a comparison betweenHy3 andHy4 is
performed.

6.1. Run Time Results

In Table 5 we show the execution time of synchronous
and asynchronous versions of theHy3 model. We con-
sider first the monoprocessor case. It can be observed that
the synchronous algorithms produced a faster execution
than the asynchronous ones. In fact, we can notice that
there exists statistical confidence for this claim (see the

Table 5. Execution times (in ms) of the synchronous
and asynchronousHy3.

Time (ms) 1 CPU 8 CPUs

Sync Async t-test Sync Async t-test

fSph 51826 60221 + 9115 7890 +

fRos 28173 111638 + 4797 8150 –

fSch 9670 12952 + 1729 1956 –

fRas 111367 121567 + 16867 16073 –

fGri 10344 17533 + 1879 2339 +

ef10 54215 62840 + 8982 8710 +

fsle 1123 1104 – 563 566 –

ffms 8894 10353 – 1714 1612 –

fCheb 8863 8935 – 1430 11436 –

“+” symbols meaning the significance of thet-test at the
95% level) for the six test functions. When using a sin-
gle processor, the original idea of synchronous execution
of the underlying model seems to perform well. Similar
times were reported for the three complex instances for
the two versions ofHy3. Although this is somewhat sur-
prising, we can check in the right part of Table 5 that the
sync and async differences vanish when running the eight
subalgorithms in eight CPUs. These results can be ex-
plained because of the very fast optimization achieved for
the test functions, in which fitness evaluation is extremely
fast and therefore residual times (setting up processes, de-
lays in communications, etc.) dominate the whole execu-
tion time.

Therefore, we conclude that the run times provided
by theHy3 model are relatively independent of the syn-
chronization mechanism, because of its multi-migration
scheme. However, we do report a great improvement
in the parallel efficiency (η) of the asynchronous models
with respect to the synchronous ones ifN is the number
of processors andsN is the speedup (sN = t̄1/t̄N ), with
η = sN/N being the efficiency. In Fig. 9 we include the
∆η value as the difference between the parallel efficiency
of async and sync executions, i.e.,∆η = ηasync−ηsync. A
positive value of∆η means an improved result of async
Hy3 versus the sync one, while a negative value of this
measure points out a higher efficiency of the sync ver-
sion. One can notice that all but one value are positive
and of a large magnitude, meaning that the efficiency (and
thus scalability and quality of the parallelization) is really
higher in the asynchronous case. Forfsle the efficiency
remains almost the same, andfCheb is an exception, since
there exists a huge variance in the time and evaluations to
find a solution for this problem.

Table 6 presents the execution times of theHy4
model. In the monoprocessor case, the behavior of this



E. Alba et al.328

Dh

-80

-60

-40

-20

0

20

40

60

80

100

120

Sph Ros Sch Ras Gri ef10 sle fms Cheb

P
a
ra

ll
e
l

E
ff

ic
ie

n
c
y

Fig. 9. Parallel efficiency of theHy3model.

Table 6. Execution times (in ms) of the synchronous
and asynchronousHy4models.

Time (ms) 1 CPU 16 CPUs

Sync Async t-test Sync Asynct-test

fSph 91223 82433 + 10995 6991 +

fRos 52975 87766 – 2832 4686 –

fSch 11632 18060 + 1956 1583 –

fRas 183071 172358 – 21032 14188 +

fGri 16390 20275 + 2507 1864 +

ef10 88054 94188 – 8701 7466 +

fsle 2364 2465 – 1195 1195 –

ffms 16189 20929 + 1984 1592 +

fCheb 19630 11411 – 1709 1434 –

algorithm is similar to theHy3 one, i.e., sync versions
are faster than async ones. Nevertheless, there is an ex-
ception for fSph (with statistical confidence) in which
the asynchronousHy4 is faster than the synchronous one.
The results reported for the parallel execution (right half
of Table 6) over 16 CPUs exhibit the same behavior as
the commented exception. The reason is that the synchro-
nization constraints among 16 islands imposed by the sync
Hy4 penalize the execution time. It is important to note
that the natural execution mode ofHy3 and Hy4 uses 8
and 16 CPUs, respectively. The∆η value for the paral-
lel executions is also displayed in Fig. 10. It shows, as it
happened with theHy3model, that the asynchronousHy4
parallelization scales better than the sync one, too.

6.2. Numerical Effort

Now, we turn to the analysis of the number of evaluations,
i.e., the numerical effort to solve the problems. The results
of theHy3 andHy4 models are shown in Tables 7 and 8,
respectively. Overall, it seems that the two versions of
the two algorithms need a similar effort to solve all the
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Fig. 10. Parallel efficiency of theHy4model.

optimization tasks, which is an expected result since all
the machines have a similar computational power.

The numerical behavior is the same in 8 out of 9
problems, whereHy3 andHy4 are similar (the “–” sym-
bol), or we find one of them more efficient than the other
depending on the number of CPUs. Hence, we can con-
clude nothing about the superiority of any version of the
two models: they seem equally well suited and efficient
for the problems considered. There is one exception in
each model. In theHy3 algorithm, the sync version is al-
ways more efficient numerically for the functionfGri . On
the other hand, in theHy4model, the async version needs
a lower number of evaluations to solve thefSph function.

6.3. Comparison between theHy3 and Hy4 Models

Let us now address an explicit comparison between the
Hy3andHy4models. Tables 9 and 10 summarize the exe-
cution times of the models when running over 1 CPU and
8/16 CPUs, respectively. The two tables include an addi-
tional new column, calledratio, containing the relation-

Table 7. Number of evaluations of synchronous
and asynchronousHy3.

Evals 1 CPU 8 CPUs

Sync Async t-test Sync Async t-test

fSph 215505.1 219571.5 – 233929.1 212543.7 +

fRos 110389.5 389569.4 + 114053.1 211710.7 –

fSch 33933.5 41857.7 + 33965.8 41046.1 –

fRas 444465.8 423820.1 + 432104.0 429567.4 –

fGri 36526.1 55806.3 + 38614.1 53480.6 +

ef10 226262.1 229478.1 – 238077.1 233348.5 +

fsle 176.2 176.3 – 176.0 176.9 –

ffms 12759.5 14391.7 – 15728.9 15444.2 –

fCheb 6227.8 6059.3 – 5551.1 65007.7 –
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Table 8. Number of evaluations of synchronous
and asynchronousHy4.

Evals 1 CPU 16 CPUs

Sync Async t-test Sync Async t-test

fSph 437272.6 385450.7 + 443785.7 392144.1 +

fRos 235759.1 384701.5 – 106783.8 240906.5 +

fSch 42180.7 69277.6 + 49662.9 47212.4 –

fRas 828287.0 764227.0 + 835929.7 798764.4 –

fGri 61970.1 79646.8 + 86087.4 69430.7 +

ef10 424349.1 428604.6 – 460939.9 413389.7 –

fsle 198.6 196.7 – 198.1 198.4 –

ffms 24153.3 30142.9 + 29322.5 24392.7 –

fCheb 13906.2 6826.6 – 12450.1 9763.3 –

Table 9. Time (in ms) of theHy3andHy4
models running over 1 CPU.

Time (ms) Sync Async

Hy3 Hy4 Ratio t-test Hy3 Hy4 Ratio t-test

fSph 51826 91223 1.76 + 60221 82433 1.36 +

fRos 28173 52975 1.88 + 111638 87766 0.79 –

fSch 9670 11632 1.20 – 12952 18060 1.39 –

fRas 111367 183071 1.64 – 121567 172358 1.42 –

fGri 10344 16390 1.58 – 17533 20275 1.16 +

ef10 54215 88054 1.62 + 62840 94188 1.50 +

fsle 1123 2364 2.11 – 1104 2465 2.23 –

ffms 8894 16189 1.82 – 10353 20929 2.02 –

fCheb 8863 19630 2.21 – 8935 11411 1.28 +

ship between theHy4 andHy3 execution times. A ratio
larger than 1 means that theHy4 model is slower than the
Hy3 one. Analogously, if this ratio is smaller than 1, then
theHy4model is faster than theHy3one.

The results presented in Table 9 show that, for almost
all the problems,Hy3 is faster thanHy4 when they are
executed over 1 CPU (i.e., concurrently). This can be ex-
plained by the larger number of subpopulations of theHy4
algorithm: this produces a higher overload (e.g., context
switches), even though the whole population size of the
two models is the same. The asynchronous execution of
the fRos function constitutes the unique exception. How-
ever, an additional significance test reveals that the times
are statistically similar.

If we compare the synchronous parallel executions of
the two models (the left part of Table 10), we can notice
that theHy3 algorithm is faster than theHy4 one, which
is somewhat surprising since the latter runs over twice the
number of processors. This can be justified by two facts.

Table 10. Time (in ms) of theHy3andHy4models run-
ning over 8 and 16 CPU, respectively.

Time (ms) Sync Async

Hy3 Hy4 Ratio t-test Hy3 Hy4 Ratio t-test

fSph 9115 10995 1.21 + 7890 6991 0.89 +

fRos 4797 2832 0.59 + 8150 4686 0.57 +

fSch 1729 1956 1.13 – 1956 1583 0.81 –

fRas 16867 21032 1.25 + 16073 14188 0.88 –

fGri 1879 2507 1.33 + 2339 1864 0.80 +

ef10 8982 8701 0.97 + 8710 7466 0.86 +

fsle 563 1195 2.12 – 566 1195 2.11 –

ffms 1714 1984 1.16 – 1612 1592 0.99 –

fCheb 1430 1709 1.19 – 11436 1434 0.13 +

First, the number of individuals in 16 islands ofHy4 is 10,
in order to maintain a total population size of 160 individ-
uals. Second, each subpopulation inHy4 has to synchro-
nize with four other ones (its four neighbors in the four-
dimensional hypercube) while inHy3each population has
only three neighbors. These two facts make the ratio
“computation/communication” decrease and therefore the
synchronization constraints induce larger execution times.
Only the sync execution of thefRos and ef10 functions
takes advantage of the higher computational power used
by theHy4algorithm.

In the right half of Table 10 we include a compari-
son of the asynchronous executions of theHy3 andHy4
models. This time,Hy4 performs as expected, since it is
faster thanHy3 (see the ratio values lower than 1 in the ta-
ble). This indicates that the asynchronousHy4 model en-
hances the scalability and the quality of the parallelization
by avoiding the synchronization requirements imposed by
the sync model. Special attention must be paid to the
fCheb function, where the ratio is 0.13. This shows the
capability ofHy4 to improve the search process overHy3
with complex instances. For the rest of the test problems,
the ideal ratio of0.5 = 8/16 (8 parallel subpopulations
against 16 ones) is only approximated by the computation
of the fRos function. Twice the number of islands plus
half a population size of theHy4 model can explain this
result (i.e., residual times control the total execution time).

To complete the section, we must discuss the actual
benefits of theHy4 model of search: its ability to man-
age premature convergence due to an enhanced model of
search based on a new balance between exploration and
exploitation. Up to now, we have presented the average
results over 30 independent runs. This time, we show
the hit rate of theHy3 andHy4. The hit rate is the per-
centage of executions that reached the target fitness. If
we focus on the numerical aspect (i.e., the effort and hit
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Fig. 11. Hit rate of theHy3andHy4models (1 CPU).

rate), we can analyze the results when the two models run
over 1 CPU, which is presented in Fig. 11. Several impor-
tant facts can be remarked from this figure. First, for all
the solved instances, anyHy4 version (sync/async) of the
algorithm always obtains a higher hit rate than theHy3
one. This can be explained by theHy4 enhanced search
model. Second, the synchronousHy4, as a direct exten-
sion of the GD-RCGA model, shows the highest hit rates,
justifying the contribution of this work. Third, a major
improvement of the hit rate is emphasized if we consider
the asynchronous versions of the two models (the bottom
part of Fig. 11). As an example, we can point out the
fCheb function, where the hit rate of asyncHy3 is around
20%, while the asyncHy4 one is over 80%. A subtle rea-
son that explains this result is the implementation of the
asynchronism. Subpopulations in the asynchronous ver-
sions of the models have to perform a polling operation
to check its buffer for incoming individuals. This polling
operation is accomplished every 30 iterations, so if it finds
an empty buffer due to the asynchronism of the algorithm,
the subpopulation does not incorporate any individual at
least in 60 iterations, and therefore the new individual
may be grossly incompatible with the target subpopula-
tion (the “mule” effect) (Herrera and Lozano, 2000; Linet
al., 1994). This leads the async models to evolve subpopu-
lations during a larger number of isolated iterations (more
exploitation) but, sinceHy4 has twice the number of is-
lands ofHy3, this exploitation is carried out over more

separated regions of the search space (i.e., more explo-
ration). Thus, the new balance exploration/exploitation
achieved increases the probability of finding a solution.
Finally, we want to notice the suitability of theHy4 algo-
rithm to the complex problem instancesfRos , ffms , and
fCheb , for which this new model of search fairly improves
the hit rate of theHy3one.
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Fig. 12. Hit rate ofHy3 (8 CPUs) andHy4 (16 CPUs).

If we analyze the hit rate when the two models run
over 8/16 CPUs (Fig. 12), we can observe that the parallel
Hy4 execution also outperforms theHy3 one, which is an
expected result since we have a homogeneous computing
platform. Several conclusions may be drawn from this
discussion about the hit rate of the algorithms:

• For our benchmark, the newHy4 model proposed
outperforms theHy3one.

• The improvement is more significant when compar-
ing the asynchronous versions of the two models.

• TheHy4algorithm achieves higher hit rates for more
complex functions.

7. Conclusions and Future Work

This paper presents theHy4model of search, being an ex-
tension of theHy3 algorithm, which is in turn a physical
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parallelization of the gradual distributed real-coded GA.
The basic underlying search model naturally provides a
set of eight subpopulations residing in a cube topology
having two faces for promoting exploration and exploita-
tion. Furthermore,Hy4uses instead 16 islands arranged in
a hypercube of four dimensions, where two new faces with
different exploration/exploitation search capabilities are
added to theHy3 algorithm. The exploration or exploita-
tion degrees of the subpopulations belonging to the same
side are also gradually configured inHy4, thus obtaining
a general and powerful parallel multi-resolution method
for continuous optimization. With this model we also in-
vestigate the advantages provided by an asynchronous de-
sign versus a synchronous one. The motivation for this ex-
tended model is the larger accuracy of the original works
for optimization problems coming from continuous do-
mains in optimization.

We performed our analysis under the assumption that
our algorithms must reach the same average solution as
the one reported by the basic reference work. With this
goal in mind, we solved nine problems. The results show
that the asynchronous parallelization (Hy3 andHy4) can
provide a larger efficiency for all the problems, which con-
firms other existing results like (Alba and Troya, 2001).
This is justified because the synchronization constraints
among a larger number of islands imposed by the sync
version of the model penalize the execution time. How-
ever, this is in contrast with what generally happens in spe-
cialized distributed GAs, in which async versions are usu-
ally much faster that sync ones (Alba and Troya, 2001).

In order to show the larger accuracy of theHy4
model, we compared it with theHy3 one. This compar-
ison was carried out with respect to the hit rate (the rela-
tion between the number of executions reaching the target
fitness and the total number of performed tests). From
this point of view, we can conclude that, for our bench-
mark, the new model clearly outperforms theHy3 algo-
rithm. Furthermore, the improvement ofHy4 is quite ev-
ident when comparing the asynchronous versions of the
two models, and when they have to deal with complex
functions. Thus, the goal of obtaining a new method that
avoids the premature convergence problem was achieved
by designingHy4.

As a future work, we will apply the model to com-
binatorial optimization, i.e., to the discrete domain of op-
timization. Also, we plan to introduce a restart technique
and new extended models based on the hypercubic topol-
ogy of search to improve the results on even more complex
problems.
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Appendix

Hy4 Configuration

In Table 11, we show the parameter values of each sub-
population forHy4. Each row contains the side con-
figuration concerning the selective pressure (ηmin), the
crossover probability (pc), and the mutation probability
(pm). The heterogeneity of the model can be clearly seen
by focusing on each column, where different parameter
configurations are applied in eachHy4side.


