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In this paper we address an extension of a very efficient genetic algorithm (GA) knavyBaa physical parallelization

of the gradual distributed real-coded GA (GD-RCGA). This search model relies on a set of eight subpopulations residing
in a cube topology having two faces for promoting exploration and exploitation. The resulting technique has been shown
to yield very accurate results in continuous optimization by using crossover operators tuned to explore and exploit the
solutions inside each subpopulation. We introduce here a further extensity3,afalledHy4, that uses 16 islands arranged

in a hypercube of four dimensions. Thus, two new faces with different exploration/exploitation search capabilities are added
to the search performed BByy3. We analyze the importance of running a synchronous versus an asynchronous version of
the models considered. The results indicate that the propgdgédnodel overcomes thEy3 performance because of its
improved balance between exploration and exploitation that enhances the search. Finally, we also show thatilyd async
model scales better than the sync one.

Keywords: parallel genetic algorithms, continuous optimization, premature convergence, heterogeneity

1. Introduction pecially popular. Distributed evolutionary algorithms are
a subclass of decentralized evolutionary algorithms (Alba
Evolutionary algorithms (EAs) are stochastic search and Tomassini, 2002) aimed at reducing the probability
methods that have been successfully applied in manyof convergence to local optima, promoting diversity, and
search, optimization, and machine learning problems finding alternative solutions to the same problem. Their
(Béck et al, 1997; Goldberg, 1989; Holland, 1975; advantage lies in partitioning the population into several
Michalewicz, 1992). Unlike most other optimization tech- subpopulations, each being processed by a GA, indepen-
niques, EAs maintain a population of tentative solutions dently of the others. Furthermore, a sparse migration
that are competitively manipulated by applying some vari- of individuals produces an exchange of genetic material
ation operators to find a satisfactory, if not globally, opti- among the subpopulations that usually improves the accu-
mum solution. Among the well-accepted subclasses of racy and efficiency of the algorithm.
EAs (Béack, 1996), genetic algorithms (GAs) (Goldberg,
1989; Holland, 1975) have been widely studied. The goal
of this paper is to extend a previous work (Albaal.,
2003; 2004) dealing with a new model for optimization in
continuous domains with GAs.

By making different decisions on the component sub-
algorithms in a dGA, we obtain the so-callbdteroge-
neousdGAs (multi-resolution methods). One way of con-
structing a heterogeneous dGA is through the applica-
tion of different search strategies in each component al-

GAs iteratively improve a population of individuals gorithm. This means that the search occurs at multiple ex-
by applying a recombination operator (merging two or ploration and exploitation levels at the same time. In this
more parents to yield one or more offsprings) and a muta- paper we extend a heterogeneous dGA catlga (Alba
tion of their contents (random alterations of the problem et al, 2003; 2004).Hy3 is, in turn, a parallel extension
variables). However, if we stick to natural evolution, we of another heterogenous dGA nangrddual distributed
should not operate on a single population in which a given real-coded GAGD-RCGA) (Herrera and Lozano, 2000).
individual has the potential to mate with any other partner This model of search is an example of the distributed tech-
in the same population (panmixia). Instead, species evolvenique that runs eight populations concurrently in a cu-
in structured neighborhoods, and tend to reproduce within bic topology with sparse migrations of individuals among
subgroups. Among the existing types of structured GAs, them. The GD-RCGA model is suitable for the optimiza-
distributed GAs (dGAs) (Alba and Troya, 1999) are es- tion of continuous functions, because it includes in the ba-



sic improvement loop of the algorithm the utilization of distributed GAs (Alba and Troya, 1999). In dGAs, an at-
crossover operators specialized for float genes (variables)tempt to overcome the premature convergence problem is
engineered with fuzzy logic technology to deal explicitly made by preserving diversity due to the semi-isolation of
with the traditional “fuzzy” GA concepts of exploration the subpopulations.

and exploitation. Distributed GAs may be classified into the following

There exist some studies on GD-RCGA in the litera- two categories, with respect to subpopulation homogene-
ture (Herrera and Lozano, 2000). However, although theity (Lin et al, 1994):
algorithm offers a straightforward parallelization, only se-
guential implementations exist. In them, a concurrent ex- e Homogeneous dGA&very subpopulation performs

ecution of the islands is simulated at hand on a monopro- the same kind of search (same genotype, operators,
cessor. Thély3algorithm presented in (Albat al., 2003; etc.) on different sets of randomly generated individ-
2004) provides the first parallel implementation that actu- uals. They are considered as a direct extension of the
ally runs in a cluster of machines. The contribution of the canonical GA, and most dGAs proposed in the litera-
present work is, first, to propose a further extension of the ture are members of this category (Mihlenbetial,

Hy3 model, calledHy4 (Hypercube). This new model 1991; Tanese, 1989).

is configured as a hypercube of four dimensions with 16

subpopulations, where a more advantageous balance be- ® Heterogeneous dGAsThe subpopulations are pro-
tween exploration/exploitation could be achieved. Addi- cessed using GAs with either different control pa-
tionally, we are interested in investigating the advantages rameter values, or genetic operators, or an encoding
that could outcome from an asynchronous design, instead ~ scheme, etc. The result is a robust multi-resolution

of the synchronous search that the basic GD-RCGA sug- search method that can be explicitly tuned to carry
gests. ThusHy4 comes as a new parallel model in which out exploration and exploitation depending on the
new numerical and efficiency challenges need to be stud- ~ problem. A taxonomy of this sort of dGAs is pre-
ied. sented in this section.

The paper is organized as follows. We first outline
a taxonomy of heterogeneous dGAs in the next section.
Section 3 presents the background to understanéiytde

The homo/heterogeneity could be understood as a
term referring to the execution platform, where each is-
model and a discussion on our parallel implementations land executes over a different hardware or o_perating SYs-
In Section 4, we briefly introduce the problems contained. tem (Albaet al, 20(.)2)' However, there_ exist different lev-
in our bench,mark In Section 5, we present the parameter-?ls for heterogenelt_y as regards the kind Qf search that the

: ’ islands make. At this “software” or numeric level, we can

;ﬁzt'?ensg;gt ;Irv:nlmjzeguhn?;?i.cg]l g‘f dnri)s E;C;'or;'ir\:\tle;cgﬂgvzealso distinguish various sublevels according to the source
P " of heterogeneity:

Finally, we summarize the conclusions and discuss sev-

eral lines for future research in Section 7. 1. Parameter level The first approach to achieve the
numeric heterogeneity is to use the same GA in each
I . island with different parameters of selection, recom-
2, Heterogeneous Distributed Genetic bination, mutation, and/or migration. These parame-
Algorithms ters could be initially preprogrammed (Adamidis and
Petridis, 1996; 2002), randomly chosen during the
evolution (Hiroyastet al,, 1999; Miki et al., 1999),
or they could follow an adaptive strategy (Hinterding
et al, 1996; Schlierkamp-Voosen and Mihlenbein,
1994; Schnecke and Vornberger, 1996).

One of the main difficulty in heuristics is premature con-

vergence (e.g., in GAs (Baker, 1987; de Jong, 1975)). It
arises when the search is likely to be trapped in a region
that does not contain the global optimum. An approach to
address this problem focuses on keeping the diversity of

the population high. The lack of diversity in the popula- 5 qherator level At this level, heterogeneity is intro-
tion may be provoked in turn by the loss of critical alleles duced by using different genetic operators into the

due to selection, the disruption due to crossover, or a poor same GAs (Herrera and Lozano, 1997; Heregral.
parameter setting (Herrera and Lozano, 2000; Rutid, 1998). ' ' ’

1994), among other things.
In this sense, diversity preservation methods based 3. Representation levelThis is a more subtle kind of

on spatial separationhave been proposed in order to heterogeneity, where each subpopulation stores lo-
avoid premature convergence (Manderick and Spiessens,  cally encoded solutions represented with a different
1989; Mihlenbeiret al,, 1991; Tanese, 1989). One of the encoding technique (representation) (Aickelin and

most important examples of such a kind of algorithms are Bull, 2002; Linet al,, 1994).
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4. Algorithm level This is the most general class. Each of using in the same algorithm different exploration or ex-
subpopulation can potentially run a somewhat dif- ploitation degrees, which leads to the design of hetero-
ferent (evolutionary or even non-evolutionary) al- geneous distributed RCGAs based on this kind of opera-
gorithm (Pottset al., 1994; Sefrioui and Périaoux, tors (Herrera and Lozano, 1997). This issue is especially
2000; Tsutsui and Fujimoto, 1993). important for continuous optimization tasks. GD-RCGA

is included into such a class of heterogeneous algorithms
Note that the algorithm-level heterogeneity contains since it applies a different crossover operator in each of

all previous levels. For example, a dGA with different pa- jts component subpopulations. Figure 1 depicts a graphic
rameters in its subpopulations is also algorithm-level het- outline of the algorithm.

erogeneous. We introduce it for hard-to-classify heteroge-
neous models. There also exist tools for the production of EXPLOITATION PLANE

evolutionary algorithms not directly matching this classi-
+ /

fication, e.g., by allowing the automatic distribution of the

;

computation (Arenast al, 2002; Tierra, 2004), thus facil-
itating the creation of heterogeneous dGAs.

Another orthogonal level of heterogeneity can be de-
fined with respect to the relationship maintained among
the elementary algorithms in the dGA. Basically, if the e
amount of resources (individuals) of each subpopula-
tion is not constant during the evolution, i.e., the size
of a subpopulation depends on the previous success of
its search strategy, then it can be said that subpopula- EXPLORATION PLANE
tions are competing. Otherwise, it seems that the sub-
populations collaborate to find the optimum. Hence,
we differentiate between competition-based heterogeneity
(Hu and Goodman, 2002; Gét al, 2002; Schlierkamp- The distribution scheme of GD-RCGA is based on a
Voosen and Miihlenbein, 1996; Yt al, 2000) and hypercube topology with three dimensions. There are two
collaboration-based heterogeneity (Herrera and Lozano,important faces in this hypercube that have to be consid-
2000; Venkateswaragt al., 1996). ered:

The models we deal with in this work (GD-RCGA,
Hy3, and Hy4) exhibit different levels of heterogeneity.
On the one hand, they are parameter-level heterogeneous,
since the subpopulations use different values of selec-
tion pressure. But subpopulations also utilize different
crossover operators, so they can also be considered as
operator-level heterogeneous. On the other hand, the sem-
inal GD-RCGA model shows collaboration-based hetero-
geneity, since its subpopulations cooperate, and do not
compete, in order to perform the search.

SN

Fig. 1. Connection topology of a GD-RCGA.

e Thefront sideis devoted to exploration. It is made
up of four subpopulationgr,, . .., E4, in which sev-
eral exploratory crossovers are applied (see Table 2
in Section 3.1.3).

e Therear sidepromotes exploitation. It is composed
of subpopulations, . . ., e4, that apply exploitative
crossover operators (see Table 2 in Section 3.1.3).

One salient feature of GD-RCGA is the use of an
elitist strategy(de Jong, 1975) in the subpopulations, an
important factor that may yield excessively rapid conver-
gence. However, this is necessary in order to solve com-

In thi . d ibe the basic behavi £ th plex problems, because otherwise the best individual so
n this section, we describe the basic behavior of the ¢, o disappear due to crossover or mutation.

GD-RCGA (Herrera and Lozano, 2000), and explain how

3. Hy4 Model

it has been parallelized to yield the nédy3 algorithm The resulting algorithm is a parallel-suited multi-
(Alba et al, 2004). Finally, the newdy4 algorithm is in- resolution method using several crossover operators
troduced and described. which allow GD-RCGA to achieve simultaneously a di-

versified search (reliability), and an effective local tuning

(accuracy). Furthermore, subpopulations are adequately
3.1. GD-RCGA connected for exploiting the multi-resolution irgeadual

way, since the migrations between subpopulations belong-
The present availability of crossover operators for real- ing to different categories (front-rear migrations) may in-
coded genetic algorithms (RCGAS) allows the possibility duce the refinement/expansion of the best emerging zones.
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Fig. 2. Three types of migration in a GD-RCGA.

Let us explain the migration scheme and the selec-by 7min. If 7min is low, high pressure is achieved,
tion mechanism used in GD-RCGA that help to establish whereas if it is high, the pressure is low. Different se-
a correct coordination between refinement and expansionlection pressure degrees were assigned to every subpop-
ulation of GD-RCGAs, by selecting the,.;, values as

3.1.1. Migration Scheme shown in Table 1.

Di.strib.uted GAs bghavior is strongly determined by the Table 1. Crossover exploration/exploitation degrees
migration mechanism (Alba and Troya, 2000; Cantu-Paz, and 7 values for each island.

1995; Goldberget al, 1995). GD-RCGA uses a migration
model where copies of migrants are sent only towards im-
mediate neighbors along a dimension of the hypercube,
and each subsequent migration takes place along a dif

Exploitation Exploration
es e3 e e FEi E E3 E

ferent dimension of the hypercube. Particularly, the best | Crossover — + = - - - +
element of each subpopulation is sent towards the corre-| min 08 07 06 05 03 02 01 00
sponding subpopulation periodically, as shown in Fig. 2.

The sequence of applications is as follows: first, the re- Linear ranking is combined witstochastic universal

fir!eme_nt migr_ations; second., the.refinement/expansionsamp|ing(Baker' 1987). This procedure guarantees that
migrations; third, the expansion migrations; and finally, {he number of copies of any individual is bounded by the
the sequence start_s again. The place of an emigrant is|oor and ceiling of its expected number of copies.
taken by the incoming individual.

This migration scheme keeps a global elitist strategy,
since the best element of all subpopulations is never lost,3.1.3. Fuzzy Connectives-Based Crossover Operators
although it could be moved from one subpopulation to an-
other. The GD-RCGA was implemented endowed with a
fuzzy connective-basextossover operator, called FCB-
crossover, which is based on three functions, S,
and M (Herreraet al, 1995), for combining genes.
We use the same selection mechanism as in (Herrera andfach function has different exploration/exploitation de-
Lozano, 2000):linear ranking selectior(Baker, 1985).  gree properties (Table 1) and can be calculated by four
It is used because the induced pressure can be easily adamilies of fuzzy connectivesiogical Hamachey Al-
justed. In the linear ranking selection, the individuals are gebraic andEinstein Therefore, four families of FCB-
sorted in order of raw fitness, and then the selection prob-Crossover operators may be obtained by using these fam-
ability, p,, of each individualZ; is computed according ilies of fuzzy connectives. As we stated before, these
to its rank rank(Z;), with rank(Iest) = 1, by using the ~ Crossover operators have different properties: fieand

3.1.2. Selection Mechanism

following non-increasing assignment function: S-crossover operators inducing promoting exploration,
and the M-crossover operators show exploitation. The
ps(l;) = 1 (nmax — (hmax — nmin)rank(li) - 1) 7 exploration/exploitation degree of each crossover opera-
N N -1 tor depends on the fuzzy connective on which it is based.

In fact, the EinsteinF- and S-crossovers show the max-
imum exploration, whereas the Logical ones present the
minimum exploration. On the other hand, the Logical
M-crossover shows the maximum level of exploitation.
They were properly configured, as shown in Table 2.

where N is the population size, ang,;, € [0, 1] spec-
ifies the expected number of copies for the worst individ-
ual (the best one hagy.x = 2 — Nmin €Xpected copies).
The selection pressure of linear ranking is determined
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. . - Exploitation +
Table 2. FCB-crossover configuration.

Rear Sidé M-crossover  Front Sidel'- and S-crossover

e1 Hamacher E; Logical

es Algebraic E> Hamacher hel
e3 Einstein E3 Algebraic /
e4 Logical Ey Einstein _

3.2. GD-RCGA Parallelization: the Hy3 Model

Although GD-RCGA suggests a direct parallel implemen-
tation, its synchronous behavior has not been tested on
parallel machines until (Albat al., 2003), where an asyn-
chronous modification is also analyzed.

Chromosome
ted
/F + Exploration -
Buffer GA Individual ]
Fig. 4. Hy4topology.

Problem Algorithm Population the population at any time. Since the incoming individ-
ual always replaces the best one in the subpopulation in
the two modes, the async version could lead to the loss
of the global elitism due to its asynchronism (the best in-

\ \ dividual of a subpopulation could be replaced before it is
ProblemSphere ProblemPolynomialFitting migrated).

Hy3 was analyzed in (Alb&t al,, 2003; 2004), and
showed a high accuracy and parallel advantage, especially
in asynchronous execution. However, we felt that we
could go further with a new model in terms of either ac-

) ) _ curacy or efficiency. This leads us to propose Hhel
The Hy3 model was implemented in Java, using algorithm.

sockets for inter-process communication. The UML class

diagram in Fig. 3 depicts the design followed for its paral-

lelization. TheGA class represents the island behavior of 3 3. ExtendingHy3: the Hy4 Model

the dGA. It manages the program execution by controlling

the termination, the computation of new algorithm steps, The Hy4 model we are introducing here is aimed at re-
and the migration scheme. The inclusion of Beffer  ducing even more the frequency of convergence to local
class was necessary to avoid deadlocks (they are uncoupptima achieved by its two predecessors. The main goal
pling buffers). EactGA object has an associat@liffer ~ of the method is to reach a new balance between explo-
element located in the same node, from which it takes mi- ration and exploitation that allows us to effectively tackle
grated individuals. The rest of the classes are devoted tomgre complex problems. THey4 algorithm is a hetero-

the Computation of the problem, implementing Selection, geneous dGA based on a hypercube top0|ogy with four
crossover, mutation, and evaluation of individuals. dimensions (Fig. 4).

Fig. 3. UML design used to implemehy3.

Two versions of Hy3 were implemented: Syn- Four sides can be differentiated in the topology of the
chronous Hy3andAsynchronous Hya3lIn the first one, in new model.Side 2andSide 3correspond to th&ont side
each migration phase, every subpopulation sends its besand therear sideof Hy3. (Although they appear rotated
individual and then waits for another coming from the cor- with respect to Fig. 1.) Furthermore, these sides are con-
responding neighbor. In the async mode, this considera-figured as arHy3 algorithm (see Section 3.18ide 2is
tion is not taken into account; thus, any individual stored devoted to exploration whil8ide 3focuses on exploita-
in its buffer by a precedent migration can be included in tion. Side landSide 4are configured to stress tisede 2



andSide 3search features, i.e., to achieve high exploita- e between two exploratory subpopulations from a
tion and high exploration degrees, respectively. higher degree to a lower one, i.e., frohF,;; to

If we consider theHy4 algorithm as twoHy3 algo- hE;, or
rithms adequately connected, two cubes can be differenti- ¢ between two exploitative subpopulations from a
ated in Fig. 4: an inner one composedide 2andSide 3 lower degree to a higher one, i.e., frdm; to he; 1.
and an outer one made 8fdes landSide 4 These two
cubes have the same selection mechanism, crossover op- ~ On the other side, the migrations in the opposite di-

erator configuration, and mutation as thg3 model. rections produce the expansion effect, since the individ-
uals included may act as reference points for generating

The different search features that we mentioned diversity in zones showing promising properties located

above are achieved by increasing the probabilities of thein the exploitation planes
crossover (high exploration) and mutation (high exploita- i , ' .

tion) genetic operators in the respective subpopulations Topology is an important factor in the perfc_erance
(see Section 5). Thus, the high exploration properties of °f dGAS because it determines the speed at which a good
Side 1are produced by higher crossover rates in Subpop_solunon spreads to other subpopulations. If the topology
ulations hE1, ..., hE4 whereas, by increasing the muta- has a dense connectivity, a short diameter, or both, good
tion rates in subpopulationsel, .. ., hed, Side 4reaches  Solutions will spread quickly to all of the subpopulations
the required high levels of exploitation. Additionally, (Cantt-Paz, 1995). Note that this kind of topology (along

these crossover and mutation rates are uniformly chosenVith frequent migrations) could lead dGAs to panmixia.

so that the migrations between subpopulations provoke!nN HY4 this is avoided by performing migrations infre-
the refinement or expansion of the best zones. quently. Therefore, the short diameter of tHg4 model
is suitable for favoring refinement and expansion, since

The refinement is induced when migrations are pro- genetic material will be quickly exchanged between sub-

duced: populations.
e from an exploratory subpopulation toward an ex- Figure 5 depicts the proposed migration model for
ploitative one, i.e., fromh.E; to he;, the Hy4 algorithm. Its goal is to maintain the gradual
Refinement Migrations REF/EXP Inter-Plane Migrations

hE4

he2)

hE4

Fig. 5. Migration phases diy4.
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effects of refinement and expansion of thg3 migration with the optimum located in a steep parabolic val-
presented in Section 3.1.1. Here, copies of the best indi- ley with a flat bottom (i.e., hard progress to the opti-
viduals of each subpopulation are also sent towards the mum).

corresponding subpopulation, being their position filled

by the incoming ones. Since we have an additional di- ® fscr IS @ continuous and unimodal function. Its dif-

mension with respect to thidy3 algorithm, four migra- ficulty concerns the fact that searching along the co-
tion phases are needed. They are cyclicly applied in the ~ ordinate axes only gives a poor rate of convergence
following order: first, the refinement migrations; second, because the gradient ofs.;, is not oriented along

a first refinement/expansion phase (calREF/EXP Inter- the axes. It presents similar difficulties ., but
Plane Migrationin Fig. 5) takes place; third, the expan- its valley is much narrower.

sion migrations. (Note that these three phases correspond ) ) ]

to the migration mechanism of tiéy3 algorithm but they * [ras is@scalable, continuous, and multimodal func-
occur both in the inner and the outer cubes that form the ~ tion, which is made fromyfs,;, by modulating it with

Hy4model.) In the fourth place, the refinement/expansion acos(wi;).
Inter-Cubephase produces a genetic material exchange

between subpopulations of the two cubes e far IS acontinuous and multimodal function. This

function is difficult to optimize because it is nonsep-

To finish the presentation dfly4, we also want to arable.
point out that two versions of the model were imple-
mented: a synchronoudy4 and an asynchronousy4. e fio is a function that has nonlinear interactions be-
The basic aim is as fddy3 (cf. Section 3.2). tween two variables. Its expanded versiofio is

built in such a way that it induces nonlinear interac-

tions across multiple variables. It is nonseparable as
4. Problems well.

In this section, we present the benchmark used to test our

algorithms. We have analyzed the results of minimiza-

tion experiments on six test functions and three real-world 4.2. Real-World Problems

problems in order to sustain our claims on a wide and di-

versified benchmark. It is usual to utilize these problems In order to better assess our conclusions, we chose three
as a kind of standard benchmarking tasks for new algo- 2dditional real-world problemssystems of linear equa-
rithms, especially in continuous optimization. We have tions(Eshelmaretal, 1997),frequency modulation sound
therefore selected the same benchmark as (Herrera an@arameter identification problerf'sutsui and Fujimoto,
Lozano, 2000), because it is very complete, and also for 1993), and aolynomial fitting problen{Storn and Price,
comparison purposes. The problems are described in thel995). They all are described in the next subsections.
next subsections.

4.2.1. Systems of Linear Equations

4.1. Test Functions
This problem may be stated as solving for the elements

We considered six classical and well-known test func- of a vector &, given the matrixA and the vectorb in
tions: spheremodel (fs,5) (de Jong, 1975; Schwefel, the expressioMs = b. The evaluation function used for
1981),generalized RosenbrocKisnction (fr,s) (de Jong, these experiments is

1975), Schwefel's problem 1.2fs.,) (Schwefel, 1981),

generalized Rastrigin’sfunction (fr.s) (Back, 1992; . L
Toorn and Antanas, 1989 riewangk’sfunction (fg,.) Fste(T) = ’ Z Z(aiﬂj) —bi
(Griewangk, 1981), aneéxpansion of f1def1o) (Whit- ==t

ley et al, 1995). Figures 6 and 7 show their formulation
and display their fitness landscape. The dimension of the
search space is 10 farf1o and 25 for the remaining test
functions. Each has its particular features and difficulties:

Clearly, if the system of equations is solvable, the
best value for this objective function i&;. (Z*) = 0. Fur-
thermore, the range of parameters+4€.0, +11.0]. Inter-
parameter linkage (i.e., nonlinearity) is easily controlled
e fs, is acontinuous, strictly convex, and unimodal in systems of linear equations like this one, since their

function. nonlinearity does not deteriorate as the number of param-

eters used is increased, and they proved to be quite diffi-

e fros IS @ continuous, nonseparable (nonlinear in- cult. We considered a ten-parameter problem instance. Its
teractions among variables), and unimodal function, matrices are included in Fig. 8.
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Fig. 8. Matrices of the analysed system of linear equations.

4.2.2. Frequency Modulation Sound Parameter
Identification Problem

The problem is to specify six parametets, w1, as, wa,
az, ws, of the frequency modulation sound model repre-
sented by

y(t) = aq sin (w1t9 + ag sin (wgte + as sin(wgtﬁ)))

with 0 = 271'/100 If ¥ = [a17w17a27w2,a3,w3], the

The solution to the polynomial fitting problem con-
sists of the coefficients of,(z). This polynomial os-
cillates between—1 and +1 when its argumentz is
between—1 and +1. Outside this region, the polyno-
mial rises steeply in the direction of high positive ordi-
nate values. This problem has its roots in electronic fil-
ter design, and it challenges an optimization procedure by
forcing it to find parameter values with grossly different
magnitudes, something that is very common in industrial
systems. The Chebyshev polynomial employed here is

Ts(z) = 1 — 3227 + 1602" — 2562° + 1282°.

Itis a nine-parameter problen® & [z1, ..., 29]). A
small correction is needed in order to transform the con-
straints of this problem into an objective function to be
minimized, calledf ., (see (Herreraand Lozano, 2000)
for all the details). Each parameter (coefficient) is in the
range[—5.12, +5.12]. The objective function value of the
optimumis fopes (Z*) = 0.

5. Parameterization

In order to perform subsequent comparisons, the whole
population of all the evaluated models is composed of 160
individuals. Thus, thély3variant uses 20 individuals per

fitness function is defined as the sum of the squared errorssybpopulation, whereas the islands of thet algorithms

between the evolved data and the model data as follows:

100 9
Fms(@) =Y (y(®) = wo(t))",

t=0

where the model data are given by the following equation:
yo(t) = 1.0sin (5.0t9—1.5 sin (4.8t0+2.0 sin(4.9t9))).

Each parameter is in the ran¢e6.4, +6.35]. This is
a highly complex multimodal problem having strong epis-
tasis, with minimum valuef,,, (Z*) = 0.
4.2.3. Polynomial Fitting Problem
This problem lies in finding the coefficients of the follow-
ing polynomial in z:

2k
P(z) = chzj, kez*
=0

such that\vz € [—1,+1],
P(z) € [-1,+41], P(4+1.2) > Tor(+1.2),

P(~1.2) > Ty (~1.2),
where Ty (z) is a Chebyshev polynomial of degreé.

contain 10 individuals. All the models also perform a mi-
gration every 160 generations. The mutation operator ap-
plied is nonuniformmutation (Michalewicz, 1992). This
operator needs two parameteisi(set to value 5), which
determines the degree of dependency on the number of
iterations, andM G, which is the maximum number of
generations (see its different values in Table 4).

Table 3. Selective pressure;fin), Crossover rate,
and mutation rate forly4islands.

Exploitative side

hes hes hes her hE:
Tmin 08 07 06 05 03 02 01 0.0
Crossover 06 0.6 06 06 07 08 09 10
Mutation 0.5 0.4 0.3 0.2 0.125 0.125 0.125 0.125

Explorative side
hE> hEs hE,

The Hy3 model and the subpopulations, ..., e4
and Ey, ..., E, of theHy4 algorithms present the same
selective pressure, crossover, and mutation configuration.
All of them use a crossover probability of 0.6 and a
mutation probability of 0.125. Concerning the selective
pressure of linear ranking selection, they use the,
values shown in Table 1. The rest of thly4 islands,
i.e., hei,...,heqg andhEy, ..., hE, follows the specific
configuration shown in Table 3. This configuration allows
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Table 4. Maximum number of generation3{G) Table 5. Execution times (in ms) of the synchronous
and target fitness (TF). and asynchronoudy3.

| Problem MG TF |Problem MG TF | | Time (ms) 1CPU 8CPUs |
Fspn 15000 2e-13 fr.s 30000 4e-1] ] Sync  Async t-test Sync Asynci-test|
JRos 60000  9eQ fori 5000 2Ze-2 Fson 51826 60221 + | 9115 7890 +
fseh 5000  4eQ efio 15000  2e-3 FRos 28173 111638 +| 4797 8150 -
| Problem MG TF | Fsen 9670 12952 + | 1729 1956 —
Fote 5000 4el fRas 111367 121567 + |16867 16073 -

Fims 5000 1lel fani 10344 17533 + | 1879 2339

fches 100000 2e2 efio 54215 62840 + | 8982 8710
Fste 1123 1104 - | 563 566 —
Fpms 8894 10353 - | 1714 1612 -
us to emphasize the explorative and exploitative features Fones 8863 8935 — | 1430 11436 —

of the new faces introduced by théy4 model. In the
appendix, we give a detailed description of thg4 con-

figuration.
g - i i “+” symbols meaning the significance of thetest at the
The original GD-RCGA work imposed a predefined  ggoqjeyel) for the six test functions. When using a sin-

number of iterations (5000), but we cannot do the same yo yrocessor, the original idea of synchronous execution
because we want to measure the time to find equivalentg¢ o underlying model seems to perform well. Similar
solutions withHy3/Hy4 models (sync/async versions) and {jes were reported for the three complex instances for
also to compute with respect to the original work. Thus, ¢ g versions oHy3. Although this is somewhat sur-
we calculated a maximum number of iterations for eVery priging we can check in the right part of Table 5 that the
problem (see Table 4), and we defined our goal as reachingyy ¢ and async differences vanish when running the eight
the fitness values appearing in this tak?'e (that qureSpondsubalgorithms in eight CPUs. These results can be ex-
to the average of the best fitness function found in the ba-y5ined hecause of the very fast optimization achieved for
sic reference work (Herrera and Lozano, 2000)). The pre- i test functions, in which fitness evaluation is extremely
sented results are the averages over 30 independent rung,st and therefore residual times (setting up processes, de-

all of them reaching the target fitness in Table 4. lays in communications, etc.) dominate the whole execu-
Our computing system is a cluster of Sun Ultra 1 400 time.

workstations running Solaris 2.8. Each of them has
a 400 MHz Ultra-SPARC Il processor with 256 MB of
memory. The machines are interconnected by a Fast
Ethernet network at 100 Mbps. We used JDK 1.4.0-b92
and compiled the programs with th@ optimization flag.

Therefore, we conclude that the run times provided
_by theHy3 model are relatively independent of the syn-
chronization mechanism, because of its multi-migration
scheme. However, we do report a great improvement
in the parallel efficiencysf) of the asynchronous models
with respect to the synchronous oned\f is the number
6. Results of processors andy is the speedupsty = #1/ty), with

n = sy /N being the efficiency. In Fig. 9 we include the

Let us now proceed with the presentation of the results. A, value as the difference between the parallel efficiency
We first analyze the sync/async behavior with respect to of async and sync executions, i.8\,, = 7async —sync. A
the execution time and numerical effort of the models. In positive value ofA, means an improved result of async
a later subsection, a comparison betwekd andHy4 is Hy3 versus the sync one, while a negative value of this
performed. measure points out a higher efficiency of the sync ver-
sion. One can naotice that all but one value are positive
and of a large magnitude, meaning that the efficiency (and
thus scalability and quality of the parallelization) is really
In Table 5 we show the execution time of synchronous higher in the asynchronous case. Ffy. the efficiency
and asynchronous versions of tHg3 model. We con-  reémains aimostthe same, affigh.; is an exception, since
sider first the monoprocessor case. It can be observed thafiere exists a huge variance in the time and evaluations to
the synchronous algorithms produced a faster executionfind @ solution for this problem.
than the asynchronous ones. In fact, we can notice that Table 6 presents the execution times of tHg4
there exists statistical confidence for this claim (see themodel. In the monoprocessor case, the behavior of this

6.1. Run Time Results
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Table 6. Execution times (in ms) of the synchronous
and asynchronoudy4 models.

| Time (ms) 1CPU 16 CPUs |
’ Sync Async t-test Sync Asynct-test‘
Fsph 91223 82433 + (10995 6991 +
fRos 52975 87766 — | 2832 4686 —
fsen 11632 18060 + | 1956 1583 -
SfRas 183071 172358 —|21032 14188 +
fari 16390 20275 + | 2507 1864 +
efio 88054 94188 —| 8701 7466 +
fste 2364 2465 — | 1195 1195 -
frms 16189 20929 +| 1984 1592 +
Jnen 19630 11411 - | 1709 1434 -

algorithm is similar to theHy3 one, i.e., sync versions

Fig. 10. Parallel efficiency of they4 model.

optimization tasks, which is an expected result since all
the machines have a similar computational power.

The numerical behavior is the same in 8 out of 9
problems, wherd¢dy3 andHy4 are similar (the “—” sym-
bol), or we find one of them more efficient than the other
depending on the number of CPUs. Hence, we can con-
clude nothing about the superiority of any version of the
two models: they seem equally well suited and efficient
for the problems considered. There is one exception in
each model. In thély3 algorithm, the sync version is al-
ways more efficient numerically for the functigfy.;. On
the other hand, in thiely4 model, the async version needs
a lower number of evaluations to solve tlfig,;, function.

6.3. Comparison between thédly3 and Hy4 Models

Let us now address an explicit comparison between the
Hy3andHy4 models. Tables 9 and 10 summarize the exe-

are faster than async ones. Nevertheless, there is an exeytion times of the models when running over 1 CPU and

ception for fg,, (with statistical confidence) in which
the asynchronoudy4 is faster than the synchronous one.
The results reported for the parallel execution (right half
of Table 6) over 16 CPUs exhibit the same behavior as
the commented exception. The reason is that the synchro

nization constraints among 16 islands imposed by the sync

Hy4 penalize the execution time. It is important to note
that the natural execution mode B3 and Hy4 uses 8
and 16 CPUs, respectively. Tha, value for the paral-
lel executions is also displayed in Fig. 10. It shows, as it
happened with thely3model, that the asynchronotiy4
parallelization scales better than the sync one, too.

6.2. Numerical Effort

Now, we turn to the analysis of the number of evaluations,
i.e., the numerical effort to solve the problems. The results
of the Hy3 andHy4 models are shown in Tables 7 and 8,
respectively. Overall, it seems that the two versions of
the two algorithms need a similar effort to solve all the

8/16 CPUs, respectively. The two tables include an addi-
tional new column, calledatio, containing the relation-

Table 7. Number of evaluations of synchronous
and asynchronoudy3.

|Evals 1CPU 8 CPUs \
Sync Async t-test Sync Async t-test‘

fspn  215505.1 219571.5 —|233929.1 212543.7

fros 110389.5 389569.4 +|114053.1 211710.7

fsen  33933.5 41857.7 +| 33965.8 41046.1

fres 444465.8 423820.1 +|432104.0 429567.4

feri  36526.1 55806.3 +| 38614.1 53480.6

efio 226262.1 229478.1 —|238077.1 233348.5

fste 176.2 176.3 - 176.0 176.9

frms  12759.5 14391.7 —| 15728.9 15444.2

fones  6227.8  6059.3 —| 5551.1 65007.7
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Table 8. Number of evaluations of synchronous Table 10. Time (in ms) of theHy3 andHy4 models run-
and asynchronoudy4. ning over 8 and 16 CPU, respectively.
’ Evals 1CPU 16 CPUs ‘ ’Time (ms) Sync Async ‘
’ Sync Async t-test Sync Async t-test‘ ’ Hy3 Hy4 Ratio ¢t-test Hy3 Hy4 Ratio t-test‘
fspn 437272.6 385450.7 +|443785.7 392144.1 + fspn 9115 10995 1.21 +| 7890 6991 0.89 +
fros 235759.1 3847015 —|106783.8 240906.5 + fros 4797 2832 059 +| 8150 4686 0.57 +
fsen  42180.7 69277.6 +| 49662.9 472124 - fsen 1729 1956 1.13 —| 1956 1583 0.81 -
fras 828287.0 764227.0 +|835929.7 798764.4 — fres 16867 21032 1.25 +|16073 14188 0.88 -
feri  61970.1 79646.8 +| 86087.4 69430.7 + fera 1879 2507 1.33 +| 2339 1864 0.80
efio 424349.1 428604.6 —|460939.9 413389.7 — efio 8982 8701 0.97 +| 8710 7466 0.86
fste 198.6 196.7 - 198.1 1984 - Sste 563 1195 212 —| 566 1195 2.11 -
frms ~ 24153.3 30142.9 +| 29322.5 24392.7 - frms 1714 1984 116 —| 1612 1592 0.99 -
feney 13906.2 6826.6 —| 12450.1 9763.3 - fones 1430 1709 1.19 —|11436 1434 0.13 +
Table 9. Time (in ms) of theHy3andHy4 First, the number of individuals in 16 islandstéy4is 10,
models running over 1 CPU. in order to maintain a total population size of 160 individ-
: uals. Second, each subpopulatiorHy4 has to synchro-
[Time (ms) Sync Async | nize with four other ones (its four neighbors in the four-

] Hy3 Hy4 Ratiot-test Hy3  Hy4 Ratiot-tesﬂ dimensional hypercube) while Hy3 each population has

fon 51826 91223 1.76 +| 60221 82433 1.36 + only three. neighbors.. These two facts make the ratio

fros 28173 52975 1.88 +|111638 87766 0.79 - “comrp])uta_tmn./communlc_atlop”ddecrtlaase and thet_refotr_ethe
' synchronization constraints induce larger execution times.

fsen 9670 11632 120 - 12952 18060 139 - Oynly the sync execution of théz,, ancgi]eflo functions

j: fas 11;:2; 118(:;’2;; 1156; 121567 172358 1.42° —  jyes advantage of the higher computational power used
Gri .

17533 20275 1.16 +|  py theHy4 algorithm.
efio 54215 88054 1.62 +| 62840 94188 1.50 +

In the right half of Table 10 we include a compari-

fste 1123 2364 2.11 —| 1104 2465 2.23 - .

f 8894 16189 182 | 10353 20929 202 — son of the asynchronous executions of Hw3 and Hy4

fms 8863 19630 2'21 8935 11411 1I28 . models. This timeHy4 performs as expected, since it is
Cheb . - .

faster tharHy3 (see the ratio values lower than 1 in the ta-
ble). This indicates that the asynchrondtyg} model en-
i L i hances the scalability and the quality of the parallelization
ship between théty4 andHy3 execution times. Aratio . o\ giding the synchronization requirements imposed by
larger than 1 means the_lt th_{3’4 m_oc_lel Is slower than the the sync model. Special attention must be paid to the
Hy3one. Analqgously, if this ratio is smaller than 1, then Fenes function, where the ratio is 0.13. This shows the
theHy4 model is faster than thidy3 one. capability ofHy4 to improve the search process o3

The results presented in Table 9 show that, for almost,ith complex instances. For the rest of the test problems,
all the problemsHy3 is faster tharHy4 when they are e jgeal ratio 0f0.5 = 8/16 (8 parallel subpopulations
executed over 1 CPU (i.e., concurrently). This can be ex- against 16 ones) is only approximated by the computation
plained by the larger number of subpopulations ofttlye of the fr,s function. Twice the number of islands plus
alg_orithm: this produces a higher overloao! (e.g_., context hyif a population size of thely4 model can explain this
switches), even though the whole population size of the reqyt (j.e., residual times control the total execution time).
two models is the same. The asynchronous execution of To complete the section, we must discuss the actual
the fr,s function constitutes the unique exception. How- benefits of theHy4 model of éearch: its ability to man-
ever, an gdditiongl ;ignificance test reveals that the timesage premature convergence due to an enhanced model of
are statistically similar. search based on a new balance between exploration and

If we compare the synchronous parallel executions of exploitation. Up to now, we have presented the average
the two models (the left part of Table 10), we can notice results over 30 independent runs. This time, we show
that theHy3 algorithm is faster than thiely4 one, which the hit rate of theHy3 andHy4. The hit rate is the per-
is somewhat surprising since the latter runs over twice the centage of executions that reached the target fitness. If
number of processors. This can be justified by two facts. we focus on the numerical aspect (i.e., the effort and hit
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separated regions of the search space (i.e., more explo-

ration). Thus, the new balance exploration/exploitation
120 achieved increases the probability of finding a solution.
Finally, we want to notice the suitability of théy4 algo-
rithm to the complex problem instancg,s, fsms, and
fcnen, for which this new model of search fairly improves
the hit rate of theHy3 one.

Synchronous (1 CPU)

Hit Rate

Sph  Ros Sch Ras Gri ef10 sle fms  Cheb Synchronous (8/16 CPUs)

EHy3 mHy4 120

Asynchronous (1 CPU)

Hit Rate
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Fig. 11. Hit rate of theHy3andHy4 models (1 CPU).

Hit Rate

rate), we can analyze the results when the two models run
over 1 CPU, which is presented in Fig. 11. Several impor-

tant facts can be remarked from this figure. First, for all Sph Ros Sch Ras Gri efl0 sle fms Cheb
the solved instances, afjy4 version (sync/async) of the

algorithm always obtains a higher hit rate than tg3
one. This can be explained by thly4 enhanced search

model. Second, the synchronody4, as a direct exten- Fig. 12. Hitrate oHy3 (8 CPUs) andy4 (16 CPUs).
sion of the GD-RCGA model, shows the highest hit rates, ]
justifying the contribution of this work. Third, a major If we analyze the hit rate when the two models run

improvement of the hit rate is emphasized if we consider 0Ver 8/16 CPUs (Fig. 12), we can observe that the parallel
the asynchronous versions of the two models (the bottomHy#4 €xecution also outperforms tiéy3 one, whichis an
part of Fig. 11). As an example, we can point out the expected result since we hfave a homogeneous comput_lng
fones function, where the hit rate of asyity3is around p!atform. Several con.clu5|ons may be_drawn from this
20%, while the asyngly4 one is over 80%. A subtle rea- discussion about the hit rate of the algorithms:

son that explains this result is the implementation of the
asynchronism. Subpopulations in the asynchronous ver-
sions of the models have to perform a polling operation
to check its buffer for incoming individuals. This polling e The improvement is more significant when compar-

operation is accomplished every 30 iterations, so if it finds ing the asynchronous versions of the two models.
an empty buffer due to the asynchronism of the algorithm,

the subpopulation does not incorporate any individual at e TheHy4algorithm achieves higher hit rates for more
least in 60 iterations, and therefore the new individual complex functions.

may be grossly incompatible with the target subpopula-

tion (the “mule” effect) (Herrera and Lozano, 2000; leh

al., 1994). This leads the async models to evolve subpopu-7. Conclusions and Future Work

lations during a larger number of isolated iterations (more

exploitation) but, sincédy4 has twice the number of is- This paper presents thty4 model of search, being an ex-
lands ofHy3, this exploitation is carried out over more tension of theHy3 algorithm, which is in turn a physical

e For our benchmark, the neWy4 model proposed
outperforms thédy3 one.
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parallelization of the gradual distributed real-coded GA. tracts TIC2002-04498-C05-02 (the TRACER project) and
The basic underlying search model naturally provides a TIC2002-04309-C02-02.
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Appendix

Hy4 Configuration

In Table 11, we show the parameter values of each sub-
population forHy4. Each row contains the side con-
figuration concerning the selective pressung;f), the
crossover probabilityz(.), and the mutation probability
(pm). The heterogeneity of the model can be clearly seen
by focusing on each column, where different parameter
configurations are applied in eakly4 side.

Table 11. Selective pressureg.(,), crossover rates, and mutation ratesHig# islands.
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