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Evolutionary computation is a discipline that has been emerging for at least 40 or 50 years. All methods within this discipline
are characterized by maintaining a set of possible solutions (individuals) to make them successively evolve to fitter solutions
generation after generation. Examples of evolutionary computation paradigms are the broadly known Genetic Algorithms
(GAs) and Estimation of Distribution Algorithms (EDAS). This paper contributes to the further development of this dis-
cipline by introducing a new evolutionary computation method based on the learning and later simulation of a Bayesian
classifier in every generation. In the method we propose, at each iteration the selected group of individuals of the population
is divided into different classes depending on their respective fitness value. Afterwards, a Bayesian classifier—either naive
Bayes, seminaive Bayes, tree augmented naive Bayes or a similar one—is learned to model the corresponding supervised
classification problem. The simulation of the latter Bayesian classifier provides individuals that form the next generation.
Experimental results are presented to compare the performance of this new method with different types of EDAs and GAs.
The problems chosen for this purpose are combinatorial optimization problems which are commonly used in the literature.

Keywords: hybrid soft computing, probabilistic reasoning, evolutionary computing, classification, optimization, Bayesian
networks, estimation of distribution algorithms

1. Introduction bination with the simulation of models induced to guide
their search.
Estimation of Distribution Algorithms (EDAs) (Larrafiaga In most of EDAs all selected individuals chosen for

and Lozano, 2001; Mihlenbein and Paal3, 1996; PeBkan pyilding the probabilistic graphical model, usually the
al., 1999) deals with evolutionary computation techniques fittest ones, are treated equally for the learning step, and
that store more than a solution every iteration similarly no difference is done between the fitness of one or another.
as Genetic Algorithms (GAs) (Goldberg, 1989; Holland, One of EDAs in which the learning takes into account the
1975). The main difference between these two paradigmsgitferences in fitness among the selected individuals is the
is the fact that GAs evolve using crossover and mutation gjt-Based Simulated Crossover (Syswerda, 1993). Other
operators, without explicitly expressing the characteristics aythors have already applied fitness in many evolutionary
of the selected individuals within a population. EDAs take Computation Operators in the past, for instance, in multi-
into account these characteristics by considering the inter-gpjective GAs (Zitzleet al, 1999; Thierens and Bosman,
dependencies between the different variables that form anp001) and in discretization (Cantu-Paz, 2001).

individual and learning a probabilistic graphical model to This paper introduces EBCOAs (Evolutionary

represent them. Bayesian Classifier-based Optimization Algorithms) as a
EDAs allow us to take into account the dependen- new approach in evolutionary computation. The motiva-
cies between variables, and they have therefore shown tdion for this approach that makes it innovative is twofold:
be more suitable for complex problems where these typesfirstly, it evolves a generation of individuals by con-
of dependencies apply (Inzt al, 2000). EDAs have a  structing Bayesian classifier models that take into account
theoretical foundation in probability theory and are based deeper differences rather than simply a subset of individu-
on probabilistic modelling of promising solutions in com- als of the previous population. Secondly, it also takes into
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account the differences between individuals in the popula-
tion that make them more or less fit regarding their fitness
values, and it applies this knowledge to create a new popu-
lation by enhancing the characteristics of the fitter individ-
uals and tries to avoid the less fitted ones. In this paper we
analyse many of the different possibilities that can be ex-
ploited in this new framework. Briefly speaking, the main
contribution of this new approach is to propose the use of
classification techniques in the form of Bayesian networks
applied to optimization problems in order to improve the
generation of individuals in every iteration.

This paper is organised as follows: the next section
describes the estimation of distribution algorithms, paying
special attention to the step of learning the probabilistic
graphical model that allows the population to improve step

after step. Section 3 describes the new paradigm that we

propose in this paper as an innovative way of construct-
ing probabilistic graphical models in the discrete domain

by taking into account not only the dependencies between
the different variables, but also the different fitness val-

ues of each of the individuals. Section 4 describes the
experiments carried out, as well as the results obtained
compared to other evolutionary computation techniques.
Finally, Section 5 explains the conclusions and the future
work to be done in this domain.

2. Anumber N (N < R) of individuals are selected
from D, following some criteria (usually the ones
with the best fitness values are selected, although in
the literature there are many different selection pro-
cedures that allow any individual to be selected).
These individuals form the selected populatibr'.

. The n-dimensional probabilistic modep;(x) =
pi(z| DY) that better represents the interdependen-
cies between the: variables is induced. This model
is created in the form of a probabilistic graphical
model (i.e. a Bayesian network if the domain is
discrete) containing the variableX¥;, Xo, ..., X,
wheren is the size of each individual.

. Finally, the new populationD;,; formed from the
R new individuals is obtained by carrying out the
simulation of the probability distribution learned in
the previous step.

Steps 2, 3 and 4 are repeated until a stopping criterion
is satisfied. Examples of stopping criteria are: achieving a
fixed number of populations or a fixed number of different
individuals, uniformity in the generated population, or the
fact of having arrived at the optimum solution (at least, if
the latter is known).

The step of estimating the joint probability distri-
bution associated with the database of the selected indi-

viduals constitutes the hardest work to perform, and this
task has to be performed for each generation. That is
why methods proposed for learning probabilistic graph-
ical models from data have been applied to EDAs. Fur-
thermore, all the different EDA approaches proposed in
the literature can be categorized in order of interdepen-
The main idea of Estimation of Distribution Algorithms dencies between variables that they can take into ac-
(EDASs) (Larrafiaga and Lozano, 2001; Miihlenbein and count as follows: the ones that consider all the variables
PaaR, 1996; Pelikaet al, 1999) is to keep a population to be independent of each other (Baluja, 1994; Hatik

of individuals (or a set of solutions to a particular prob- al., 1998; Muhlenbein, 1998; Syswerda, 1993), the ones
lem) and to make them evolve in order to obtain in each that consider pairwise dependencies (Baluja and Davies,
iteration a population of fitter individuals. Each individual 1997; Chow and Liu, 1968; Pelikan and Muhlenbein,
is a vector of values considered to be instantiations of sta-1999), and the ones that can take into account multi-
tistical variables. In EDAs the new population of individ- ple dependencies between the variables (Etxeberria and
uals is generated by sampling from a probabilistic graph- Larrafiaga, 1999; Harik, 1999; Mlhlenbein and Mahning,
ical model. This probabilistic graphical model is learned 1999; Muhlenbeiret al., 1999; Pelikaret al, 1999). The
from a database containing only selected individuals from reader can find a more complete review on this topic in
the previous generation, and the interrelations between thglLarrafiaga and Lozano, 2001).

different variables that form each individual are expressed
explicitly through the joint probability distribution associ-
ated to the individuals selected in each iteration.

2. Estimation of Distribution Algorithms
(EDAS)

2.1. Introduction

2.2. Towards a More Efficient Learning Phase

The step of learning the probabilistic graphical model is
performed at each iteration, and this results in a new pop-
ulation. In EDAs, the set of individuals selected to learn
the probabilistic graphical model are usually the best ones

Generally speaking, the EDA approach, illustrated in
Fig. 1, contains the following steps:

1. The first populationD, of R individuals is gener-

ated. The generation of thede individuals is usu-
ally produced by assuming a uniform distribution on
each variable, and then each individual is evaluated.

1 Other methods in the literature propose to create multiple copies
of the fittest solutions and fewer for the inferior ones to form the
new population.
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Fig. 1. lllustration of the EDA approach in the optimization process.

(i.e. the fittest ones). This particular selection of individ-

uals ensures that the model will represent the interdepen-

dencies of the variables on the selected individuals.

In

addition, in practically all EDAs proposed in the literature
the fitness value of each of the selected individuals is not
taken into account, and therefore the best and worst indi-
viduals within D}V are treated equally in the learning step
(i.e. the fitness value of each individual is ignored after the

selection-of-individuals step).

Considering that the fitness of each of the individu-
als should be also taken into account in the learning step,
three of the possible ways of considering these are the fol-

lowing:

e Weighting the influence of the individuals depending

on their fitness value.This possibility consists in

adding the fitness value given by the objective func-
tion directly in the learning step. This fithess value
is used to give a different weight to the different se-
lected individuals in the construction of the proba-
bilistic graphical model. An example of this idea is

present in BSC (Syswerda, 1993). Another way of
taking into account the differences in the fithess of in-
dividuals in a population is to use also a proportional
selection method, as well as a Boltzman distribution
based selection (Mihlenbein and Mahning, 1999).

e Adding the fithess as a new variableThis sec-

ond category takes into account the fithess value ob-
tained by the different individuals as a new variable.
This variable is included in the probabilistic graph-
ical model together with the variableX, ..., X,,.
The fact of including the fitness value as another
variable requires that the learning algorithms that
are to be applied deal with a variable that is typ-
ically continuous, while the rest of the variables
are usually discrete. When this is the case, the
learning procedures that can be applied for the
construction of the probabilistic graphical model
are more complex and require considerable CPU
time.

Turning into a supervised classification problem.
The main idea here is to classify all individuals of
a population into different classes, and to use algo-
rithms to build Bayesian classifiers in order to create
new individuals taking into account the characteris-
tics of the fittest classes and trying to avoid those of
the worst classes. The aim is to guide the search
taking into account both the fittest and the less fit-
ted individuals. This is the approach that we pro-
pose in this paper, and it is described in the next
section.
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3. Evolutionary Bayesian Classifier-Based rithm also takes into account the characteristics that the
Optimization Algorithm less fitted individuals have when evolving to the next gen-
eration. This idea aims at providing faster convergence
This section describes the new method called Evolution- in optimization problems by modelling the different char-
ary Bayesian Classifier-based Optimization Algorithms acteristics that make individuals in the current population
(EBCOAs) that we propose for optimization problems. fitter or worse using Bayesian classifiers.
In much the same way as EDASs, this approach combines EBCOAs follow an evolutionary computation ap-
both probabilistic reasoning and evolutionary computing. proach similar to EDAs, although the main differences be-
In particular, EBCOAs are based on using Bayesian clas-yyeen EDAs and EBCOAs concern the method for build-
sifiers in evolutionary computation. A description of the ing the Bayesian network: in the former the learning algo-
state of the art approaches to applying supervised clasyithms are taken from the general purpose Bayesian net-
sification techniques to optimization is introduced firstly. \york induction algorithms while the latter are algorithms
Next, some notation is introduced prior to the formal de- 5 pyild Bayesian classifiers using the information pro-

scription of the new method. vided by the fitness function in a more appropriate man-
ner. Figure 2 illustrates the EBCOA approach, and Fig. 3
3.1. State of the Art shows its pseudocode. If we compare these figures with

Fig. 1, it can be seen that the main difference between

One of the first proposals in the literature for applying EBCOAs and EDAs is precisely the step of learning the
classification techniques in optimization is the Learnable model.
Execution Model (LEM) (Michalski, 2000). In contrast to
other evolutionary computation techniques such as GAs3 3 Notation
and EDAs, LEM algorithms apply classifiers to develop a
population of solutions. In this approach, individuals of Let X = (X3,...,X,,) be ann-dimensional random
a population are divided into the fittest and the less fitted variable. Thenxz = (z1,...,2,) represents one of its
ones, and characteristics of the good ones are strengthenepossible instantiations and therefore one of the possible
while bad ones are avoided. Michalski proposed in his individuals. The probability of X will be denoted by
work an original machine learning method called AQ18 p( X = ), or simply p( ). The conditional probability
(Kaufman and Michalski, 1999). This supervised classifi- of the variableX; given the valuez; of the variableX
cation method uses general inductive rule learning meth-will be written as p(X; = z;|X; = z;), or simply as
ods that are configurable for faster convergence. LEM p(x;|z;).
can be regarded as a hybrid approach that applies non- et D, be thel-th population (database) of the
statistical model learning approaches while relying on tra- individuals that has to evolve into th@ + 1)-th one. In
ditional evolutionary computation mechanisms (Ventura EBCOAs, before proceeding to the learning, the popula-
etal, 2002). tion D; is divided into | K| different classes following a

There are also other statistical approaches that com-supervised classification approach, and we define a vari-
bine statistical classifier-construction methods and evo-able K that can take the value§l, 2, ..., [K|[}. We de-
lutionary computation. Examples of these are, for in- note by D¢ the databaseD; after it has been divided
stance, the use of decision trees (Llora and Goldberg,into he |K| classes, in which for each individual in the
2003; Mufioz, 2003). population we have assigned a vallgo the variable K
with 1 < k < |K| in order to represent the class to which
each individual has been assigned. Since all the classes
are not usually used for the learning, prior to training the

Our innovative approach, called Evolutionary Bayesian Bayesian classifier we choos€’| < || classes and the
Classifier-based Optimization Algorithms (EBCOAs), 'estare simply |gnore<3(for learning purposes. We denote
proposes the use of classifiers in the form of Bayesian by Dy the subset ofD;* that will be used for the learn-

networks for optimization problems by applying them in ing. We also denote by’ the variable that assigns a class
a manner analogous to that used in the EDAs. The main

¢ (with 1 < ¢ <|C]) to each of the individuals irDlC.

idea is that in each generation the population will evolve The result of the learning step is the construction of

by constructing a new Bayesian classifier, but in contrast @ probabilistic graphical model, that is, a Bayesian net-
to EDAs, individuals that are used for constructing the Work in the discrete domain. In EBCOAs, this Bayesian

probabilistic graphical model in EBCOAs are not simply network is a Bayesian classifier that takes into account the
the selected ones (i.e. most usually the fittest ones), and irvariables Xy, Xs, ..., X,,, as well as the variable'.

each generation the bad (less fitted) individuals will also The main task in an EBCOA is to estimatg( « | ¢),

be considered for the learning procedure so that the algo-that is, the probability of an individualke to be part of

3.2. Description of the New Method
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Fig. 2. lllustration of the EBCOA approach in the optimization process.

c)

Dy «— GenerateR individuals (the initial population) randomly

Repeatfor [ = 0,1,2... until a stopping criterion is met

K

Dy

«— Divide the R individuals in | K| < R different classes fronD;
according to a criterion

C

Dy

«— Selectthe|C| < |K| classes ofD[ that will be used for building the
Bayesian classifier, usually taking into account at least the best and worst cl

The individuals of the classes not included®f’ ¢ D are ignored

pi(c| ) o pi( x|c) — Estimate the probability distribution of an individual iR’
of being part of any of the different possibl€’| classes

Diy1 « SampleR individuals (the new population) from; ( z|c)

asses.

Fig. 3. Pseudocode for the EBCOA approach.
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each of the classeg, 2, ..., |C| in Df. This probability Bayes(Kononenko, 1990)simple BayeGammerman
must be estimated in every generation since the populationand Thatcher, 1991), dndependent BayeélTodd and
and hence the nature of the classes are different for eactStamper, 1994). Although it has a long tradition in pag-

of them. In EBCOAS, the Bayesian network structiuffe tern recognitioncommunity (Duda and Hart, 1973), the
that is induced as a result of the learning step will contain naive Bayes classifier was commented for the first time in
the variablesX,, ..., X,, asin EDAs, but also the newly themachine learnindield by (Cestnilet al,, 1987). Grad-
defined variableC'. This variableC' will be present in all ually, the machine learning community realized its poten-
the structures that are obtained using Bayesian classifiertial and robustness in supervised classification problems.
building algorithms by EBCOAs, and' will always be a In that sense, although in this classifier the estimation of
parent of all the other variables ii. p(elxy, ..., x,) is not well calibrated, naive Bayes has

In EBCOAs we apply methods from the Bayesian proved to be quite effective for many classification prob-
classifier-building algorithms that are described in the 18ms (Domingos and Pazzani, 1997), being able to obtain
next section. results comparable to other more complex classifiers.

The naive Bayes approach (Minsky, 1961) is the sim-
plest among the classifiers that are presented in this paper.
This Bayesian network has always the same structure: all

This section revises some of the classifiers in the form of variables X, ... X,, are considered to be conditionally
Bayesian networks that have been proposed as classifier§’dependent given the value of the class valuieFigure 4

in the literature. Their main characteristic is the number Shows the structure that would be obtained in a problem
of dependencies between variables that the Bayesian netWwith four variables.

work can take into account. We revise here these classi-
fiers from the simplest to the most complex ones.

Thesupervised classificatigoroblem consists in as-
signing a vectorz = (z1,...,z,) € R to one of the
|C| classes of variabl&'. The true class is denoted ly
and it takes values from the sét,2,...,|C|}. We can
regard the classifier as a function : (x1,...,2,) —
{1,2,...,|C|} that assigns labels to observations.

According to (Duda and Hart, 1973), and for the par-

. ; o .
ticular case of having a loss functidiy1*, the optimum The main advantage of this approach is the fact that

Bayesian classifier (in the sense that it minimizes the to- ; . )
. o X i o the structure is always fixed, that is, the process of learn-
tal misclassification error cost) is obtained by assigning to . o :
X . ing the classifier is very fast since the order of dependen-
the examplex = (z1,...,x,) the class with the highest

posterior probability, i.e cie_s to be found is fixed and reduced t_o two varigbles. In

S naive Bayes, the only task to accomplish so far is the es-

J2n). 1) timation of the probabilities that are to be considered fol-
lowing this Bayesian network.

Following the naive Bayes model, we have that when

This section revises Bayesian classifiers that are . B !
o O classifying an exampler, it will be assigned to the class
meant specifically for classification problems. Therefore, L9 . . .
¢ for which it has a higher posterior probability. In order

some of these classifiers can be considered as too simi0 calculate this posterior brobability. we have
plistic or not very efficient from the point of view of the P P Y

3.4. Bayesian Classifiers

Fig. 4. Graphical structure of the naive Bayes model.

v(x) = argmax p(c|xy, ...
(&

classification task, and some of them can be of interest for n
optimization with EBCOAs since our purpose is to have plc| @) < ple, z) = p(c) [ [ plailo). 2
a relatively effective learnable algorithm that can be exe- i=1

cuted in a reasonable period of time at every iteration. The estimation of the prior probability of the class,

p(c), as well as the conditional probabilitiegz;|c), is
3.4.1. Naive Bayes performed based on the database of selected individuals

) ) in each generation.
The paradigm that combines the Bayes theorem and

the conditionally independent hypothesis given the class

is known asidiot Bayes(Ohmannet al, 1988), naive  3-4-2. Selective Naive Bayes

2 Ina 0/1 loss function the cost of misclassifying an element is T he main difference between the selective naive Bayes ap-
always 1. proach (Kohavi and John, 1997; Langley and Sage, 1994)
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Pazzani (1997) presents a greedy approach in which
redundant and dependent variables are detected. When de-
pendent variables are found, a new variable is created as
the Cartesian product of these. Two greedy algorithms are
presented, the first of them in a forward direction called
FSSJ (Forward Sequential Selection and Joinjnghd
the second in the backward direction nanBsEJ (Back-
Fig. 5. Example of a graphical structure of the selective naive ward Sequential Elimination and Joining) The pseu-

Bayes model for a problem of four variables. docode ofFSSJis shown in Fig. 6. TheBSEJalgo-
rithm follows an analogous approach, and can be inter-
esting in optimization problems in which the objective
function depends on all or nearly all variables. Note

and naive Bayes is that in the former not all variables have
to be present in the f|na'| model. Figure 5 shqws the strgc- that this modelling process follows a wrapper approach
ture that could be obtained in a problem with four vari- ;
T . (Kohavi and John, 1997).

ables, where one of them is missing in the final structure.
In naive Bayes the condition of having to take into ac- Figure 7 shows an example of the application of
count all variables appears to be very strict for some type the FSSJalgorithm.  The procedure that is followed in
of classification problems, since some variables could bethis figure is explained next. In (1), after comparing all
irrelevant (i.e. variables that always have the same valueshaive Bayes models with a single predictor variable, the
in all classes) or redundant (i.e. those in which all values variable X, was selected. In (2), the rest of the variables
appear similarly in the different classes and therefore dowere compared, and adding the variable is the model
not reflect any difference between the characteristics ofthat provides most gain after comparing the following
the classes) for classification purposes. subsets of variables{Xy, X1}, {X4, Xo}, {Xy, X5},

Itis known (Liu and Motoda, 1998; Inzt al, 2000)  L(X4: X1)}, {(Xa, X2)}, {(X4, X3)}. In (3), adding

that the behaviour of the naive Bayes paradigm degradesIhe vgnable X1 .bg'lr'qup.ed t0 X, is the winner of the
with redundant variables, and therefore the motivation for '€Maining possi llities: { X4, Xo, X1}, {Xu4, X2, X3},

this approach is to remove those variables in order to ob-1(Xa, X1), Ko}, {Xy, (X3, X2)}, {(X4, X5), Xo},
tain more efficient classifiers. {X4, (X3,X2)}. As the algorithm ends without adding

. . . . the variable X3 to the final structure, this means that
FoIIov_vmg th_e selective naive I_Bayes modgl, a_nd using hq models{ Xy, X, (X1, Xa)}, {(Xa, X3), (X1, Xa)},
fthe' §elect|ve naive Bayes cIassnﬁer show'n in Fig. 5, an (X4, (X3, X1, X2)} do not exhibit any improvement
individual @ = (1,22, 23,24) will be assigned to the o1 the model obtained in (3). As a result, following the
class seminaive Bayes model and using the final classifier ob-
tained in this figure, an individuale = (z1, z2, x5, z4)

c¢* = arg max p(c)p(z1|c)p(za|c)p(x4|c). 3) . i !
c (Op(ze)plezlc)p(zale) will be assigned to the following class:

3.4.3. Seminaive Bayes o = arg maxp(c)p(xl,:1:2|c)p(:1:4|c). (4)

The seminaive Bayes approach (Kononenko, 1991) can be
considered as a more sophisticated type of the Bayesian
classifier regarding the type of dependencies that it can
take into account, as it allows groups of variables to be
considered as a single node in the Bayesian network.
The aim of this seminaive Bayesian classifier is to avoid
the strict premises of the naive Bayes paradigm by al-

lowing to group some variables in a single node of the | . )
structure. Figure 7(3) illustrates an example of a semi- into account. These models represent the relationships be-
tween the variables{y, ..., X,, conditional on the class

naive Bayesian classifier in a problem with four variables, . .

showing that the Bayesian network structure treats theseva”ablec by using a tree structure.
grouped variables as a single one regarding the factoriza-  The tree augmented naive Bayes structure is built in
tion of the probability distribution. When grouping vari- a two-phase procedure for which the pseudocode is given
ables, whether two, three or more, all dependencies be-n Fig. 8. Firstly, the dependencies between the different
tween them are taken into account implicitly for classifi- variables X, ..., X,, are learned. This algorithm uses
cation purposes. On the other hand, Fig. 7(3) also showsa score based on information theory, and the weight of a
that it is possible that some variables are not included in branch (X;, X;) on a given Bayesian network is de-

the final classifier. fined by the mutual information measure conditional on

3.4.4. Tree Augmented Naive Bayes

Tree augmented naive Bayes (Friednetral, 1997) is
another Bayesian network classifier in which the depen-
dencies between variables other théh are also taken
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Initialize the set of variables to be used in the null set.
Classify all the examples as being of a class with highs)
Repeatin every iteration: choose the best option between
(a) Consider each variable that is not in the model as a new one to be
included in it. Each variable should be added as conditionally
independent of the variables in the model given the class
(b) Consider grouping each variable not present in the model with a varjable
that is already in it
Evaluate each possible option by means of the estimation of the percentage
of cases well classified
Until no improvement can be obtained

Fig. 6. Pseudocode of tHeSSJalgorithm for seminaive Bayes models.

() ) [ ()
3

(2 )

Fig. 7. Steps of the construction of a Bayesian classifier followingRB&J
algorithm in a problem with four variablesX, X2, X3, X4 are the
predictor variables and’ is the variable to be classified.

3

. Elp(x"’ Yi> €r) 108 s Sntws 1en)

Calculate7(X;, X; | C) = 3
i=13j
,n

with i < j,5=2,...
Build an undirected complete graph, where the nodes correspond to the predictd
variables: X, ..., X,. Assign the weight/ (X;, X, | C) to the edge connecting
variablesX; and X
Assign the largest two branches to the tree to be constructed

=

Repeatin every iteration:
Examine the next largest branch and add it to the tree unless it forms a loop.
In the latter case discard it and examine the next largest branch
Until n — 1 branches have been added to the structure

Transform the undirected graph in a directed one, by choosing a random
variable as the root

Build the tree augmented naive Bayes structure adding a node labeli@daasl later
add one arc fromC' to each of the predictor variable¥; (i =1,...,n)

Fig. 8. Pseudocode of theee augmented naive Bayalgorithm.
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OO

(6)

Fig. 9. lllustration of the steps for building a tree augmented naive Bayes classifier in a problem with four

variables. X1, X», X3, X4 are the predictor v
the class variable as
= p(e) (X, X,|C = )
P

=Y > plwi,j,0)log

c T Zj

p<xiv Lj |C)

- (3)
p(xilc)p(z;lc)
With these conditional mutual information values the al-
gorithm builds a tree structure. In the second phase, the
structure is augmented into the naive Bayes paradigm.

Figure 9 shows an example of the appli-
cation of the tree augmented naive Bayes algo-
rithm.  This figure assumes thaf (X, X5|C) >
I(XQ,X3|O) > I(X17X3‘C) > I(Xg,X4|C) >
I(XQ,X4|C),I(X1,X4|C) . In (4) the branCl"(Xl, Xg)
is rejected since it would form a loop. Here (6) is
the result of the second phase of augmenting the tree
structure. Following the tree augmented naive Bayes
model, and using the classifier shown in this figure, an
individual « = (z1,x2,x3,24) Will be assigned to the
class

¢ = argmaxp(c)p(a1]e, z2)p(wsc)

(6)

X p(xsle, x2)p(asle, x3).

ariables ard is the variable to be classified.

In contrast to the wrapper approach as a score to mea-
sure the goodness of the structures applied in the semi-
naive Bayes model, the tree augmented naive Bayes al-
gorithm follows a method that is analogous to filter ap-
proaches, where only pairwise dependencies are consid-
ered.

3.4.5. Other Methods

There are several other methods to build Bayesian classi-
fiers taking into account more or fewer dependencies be-
tween variables. These methods have been extensively
proposed in the last years and their number is growing

quite fast as they constitute a hot research topic. Ex-

amples of Bayesian classifiers that can be found in the

literature are the K-dependence Bayesian classifier (Sa-
hami, 1996), Bayesian augmented networks (Cheng and
Greiner, 1999), general Bayesian networks (Neapolitan,

2003), and Bayesian multinets (Kontkaredral., 2000).

3.5. Description of the Main Steps of EBCOASs

Having described the different Bayesian classifiers that

we can apply to EBCOAs, this section describes the main

steps of the method as well as the implications of the dif-
ferent choices to be done on them.
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3.5.1. Supervised Classification Step: Labelling
Individuals and Selecting Classes

In EBCOAS, instead of selecting a subset of individuals
as EDAs do, the whole population is firstly classified into
a fixed number| K| of different classes. These classes
are formed by dividing the whole population into groups
of individuals from the fittest to the least fitted ones. The
result of this procedure is to assign to each individual in
D, alabelk (with k € {1,2,...,K}). Each of theR
individuals is assigned a labél, and they form the class
variable K in the database¥.

As in EBCOASs the aim is also to take into account

the main characteristics that distinguish both the fittest andfittest and less fitted classes.

the less fitted classes, some of the classe®fh could

3.5.3. Simulation Step: Instantiating the New
Population

The step of instantiating the probabilistic graphical model
to obtain the newR individuals is also performed in a
similar way as in EDAs, although there is an important
difference due to the fact of the existence of thevari-

able in the Bayesian network: every individual will be
generated using a specific criterion, such as, for instance,
the probability distributionp; ( x|c). Therefore, the simu-
lation of the individual is performed following the proba-
bility distribution learned in the previous step.

But the main difference comes from the need to re-
flect the different characteristics of individuals from the
In that sense, to perform
the simulation and thus the generation of new individuals

be discarded to facilitate the learning. An example of this that will form the next populationD,_ , the individuals

idea is to ignore the middle classesif¢ for the learning

should be generated using all classe£inOur proposal

of the Bayesian classifier, so that the differences betweenis to generateR new individuals by assigning a different

the most distant classes are enhancl¥. is the result of
removing from DX the classes that are not used for learn-
ing, and C is the class variable that is used for learning
as the root of the Bayesian classifiers, with| < |K|.

3.5.2. Learning Step: Building the Bayesian Classifier

Learning is performed by applying an algorithm to induce

number of individuals by instantiating the probability dis-
tribution of all classes proportional to(c), knowing that

> fa), 7

| C(T)=c

p(c) x

where f( ) is the fitness value of the individuat, and
C(=z) is the class assigned to the individual in Df .
After generating these new individuals, we fuse these
with the previous R individuals of the populationD;,

a Bayesian classifier such that it forms a Bayesian networkand we select thelz/C' individuals that better adjust to

in which the root is the variabl€' representing the labels
of the individual (' is treated as another variable), and the
rest of the variablesX; to X, can also be present. This
Bayesian network will be formed following different clas-

the characteristics of each of the casse§'othus obtain-
ing the R individuals that will form the next population
Di.

The reason for doing the simulation in this way is to

sifier construction algorithms such as the ones describedensure that individuals from all classes will be present in
in the previous section. Therefore, the probabilistic graph- the next generation, while giving more chance to include
ical model obtained as a result of this method will contain individuals from the fittest ones according to the fitness
a maximum ofn 4+ 1 nodes (the variableX; to X,, and value of the individuals. Following this procedure, even
(), with the variableC' always being the root and the par- individuals from the less fitted classes will be included
ent of all the rest. As a result of this learning procedure, in the new generations, and this fact ensures that the dif-
probability distribution can be represented by a factoriza- ferences between the fittest individuals and the less fitted
tion of the formp;(c| ) x p;( x|c). ones are still present in the last generations of the search
. ) ) process as the algorithms converge to the optimum solu-
. Itis Important to realize that in our case we are ot i, The fact of keeping these differences is important
mterested n obtalnlng the best p055|bl_e_ Bayesian CIaSSI'since the convergence of the whole approach is based on
fier to represent a strictly correct classifier. These algo- the ability of the Bayesian classifier to model the main

nthms_for obtamlEg optlmum_ classifiers n the fo(;thf @ characteristics that place an individual within the fittest
Bayesian network are very time consuming, and the eX- |1<< found in the whole search process.

ecution time requirement is crucial in EBCOAs. Taking Another i tant point h i q
into account the fact that this learning step (i.e. the clas- . h nother Impor a;n boin d\'dir Iconf1n|1|en ‘N9 regarl i
sifier building step) is going to be applied in every gen- Ing the generation of new individuals of the next popula-

eration, it is more important to use a Bayesian classifier t'r?n DHEIIS tf;]e decision of how _to |rr]13tgntlat9 some of K
builder that will return a satisfactory classifier in a rea- the variables that are not present in the Bayesian networ

sonable time rather than a perfect classifier that will be classifier. This can happen, for instance, if in the learning
ignored in the next generation step we apply algorithms such as selective Bayes or semi-

naive Bayes. These two algorithms can induce a Bayesian
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classifier in which some of the variablés;, X, ..., X, DK

are not present at all. Note that for the purpose of instanti- !

ating new individuals using such a model, this is a differ- X, X, X, X, |K
ent situation as to have these variables present but discon- p 2 1 5 s | n
nected, as even when the variables appear to be discon- 2 2 3 4 6 H
nected they have a probability distribution that has been R3 3 1 4 35 H
learned and therefore they have probability distribution | Ri3 41 2 3 1 .. 6 |wm
pi(x) estimated for allowing simulating new individuals. o3 R kY
The meaning of not having a variablg; present in the Er B o
final Bayesian classifier structure implies that the values
assigned to such a variable in the individuals of |l R s o7 gt

classes are not relevant for distinguishing between them.
This has an important consequence, since it does not meaifig. 10. Three classes iDf chosen for our experiments, from

that the value assigned to such variables is not important which only the clased? and L will be used in our
and that any value can be set. Note that the individual is a case. The clas$/ is simply ignored in the learning
point in the search space for a specific problem, and that step, since those individuals will not be presentifi.

all values assigned to all the variables are usually relevant

for obtaining a fitted individual and therefore converge to

the optimum solution. However, as the search goes on,The GAs that we chose are the broadly known basic (cGA)
some variables might have the same values on the bes{Holland, 1975), elitist (eGA) (Whitley and Kauth, 1988)
and worst classes, and therefore in the learning step ofand steady state (ssGA) (Michalewicz, 1992) ones. We
EBCOAs these will be removed from the Bayesian classi- tried three standard optimization problems in the discrete
fiers. As a result, we propose to simulate the variables notdomain such as HIFF, IsoPeak, and IsoTorus, which are
present in the Bayesian classifier as follows: we considerknown to be complex and full of local optima. Table 1 de-
that it is important to distinguish between irrelevant vari- scribes briefly these three functions. The reader can find
ables (i.e. variables that always have the same values inmore information on these problems in (Santana, 2004).
all classes) and redundant variables (i.e. those in which all

values appear similarly in the different classes and there- ~ In our particular experiments, in order to show the
fore do not reflect any difference between the characteris-validity of EBCOAs, we divided each population into
tics of the classes). For the former, the estimated proba-three different classe$X| = 3), from which only those
bility for a redundant variableX; to take its k-th value of the best and worst individuals are used for the learn-
is computed agi(z;) = p(z¥|c). For the latter type of ing step (C| = 2). This is illustrated in Fig. 10. The

variables, we assume that the probability distribution is stopping criterion in all experiments is when obtaining the
uniform. optimum solution in that generation or reaching the gen-

eration number 500.

3.5.4. Stopping Criterion Table 2 shows the mean fitness of the best individ-
ual found in the last generation, as well as the number
of generations to reach the final solution for each of the
experiments. In IsoPeak there is a local optimum with
fithess 3906 which corresponds to the individuals with
only zeros, very close to the global optimum. This fact
confuses most algorithms, and even if some of them are
sometimes able to find it (EBNA 3 times, and ssGA once),
the results show that only the EBCQAx 5 algorithm
was able to find the optimum in all the ten runs. In Iso-
4. Experimental Results Torus there are also other local optima, and EDAs and
GAs fall in these in some of the executions. From the
An experiment was carried out in order to test the perfor- ten runs of each algorithm, most of EDAs and GAs were
mance of EBCOAs compared with some EDAs and GAs. able to find sometimes the global optimum (MIMIC once,
This section describes the experiments and the results obEBNA and cGA 4 times, and SSGA and eGA 5 times), but
tained. We chose EDAs that take into account different EBCOA,, p4,.s and EBCOAr4 v found the global opti-
numbers of dependencies between variables, in particu-mum in all of the 10 runs, while EBCOAinnB—BSs.7
lar, UMDA (Mihlenbein, 1998), MIMIC (de Bonaett al,, and EBCOA. icctivenBayes also found it 8 times and
1997), and EBNAs;c (Etxeberria and Larrafiaga, 1999). twice, respectively. In the HIFF fithess function the results

All the previous steps are repeated in EBCOAs until a
stopping condition is satisfied. Examples of stopping con-
ditions are: achieving a fixed number of populations or
a fixed number of different evaluated individuals, unifor-
mity in the generated population, and the fact of not ob-
taining an individual with a better fithess value after a cer-
tain number of generations.
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Table 1. Description of the HIFF, IsoPeak, and IsoTorus fitness functions. The first column describes the objective funtion, the second
the size of the individual, and the third and the fourth contain are the optimum solutions and their respective fitness values.

HIFF(z) = f(z1,...,Zn)

flxi, ... 20) =
! it (15| = 1)

s| + f(z1,...,2s) if (|s| > 1)
s
3 ;= 1,001
HIFF g m) and(;xl 0): | o4 {(11 )| opt = ass

or <1§‘1 T = |s\>

f(z, .. .,x%)
+f(®541,...,25)  otherwise
m=n-+1

m if =00

IsoCy = m—1 if z=11

0 otherwise
if =11

IsoPeak IsoCy =4 " 1T n = 64 a1,..1) Opt = 3907

0 otherwise

FlsoPeak(m) = IsoCy (551, 552)

+ Z IsoCy (ZEZ', ZEi+1)
1=2

7

n=m
m if u=0
IsoTh = m—1 ifu=5
0 otherwise
m? ifu=5
IsoTorus IsoT> = . n =64 1,1,...,1) Opt = 505
0 otherwise

FrsoTorus =
IsoT1 (Z1—m+n + T1—m4n + T1 + T2 + T14m)
n
+ Z ISOTQ(xup + Lleft +x; + L right + xdmun)
1=2

wWhere Ty, Tieft, Ti, Tright, Tdown are defined
as the appropriate neighbors
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Table 2. Mean results after 10 executions with each algorithm and objective functiorEvaedVal columns represent respectively
the best fitness value obtained in the last generation, and the evaluations number in which it ended.

HIFF IsoPeak IsoTorus
Ev. Val. Ev. Val. Ev. Val.
EBCOA,Bayes | 105036.8 290 | 51995.4 3906 | 25175.9 505
EBCOAcicctiven Bayes 94640.7 355.2] 43910.0 3906 | 207914.1 472
EBCOAscminnB—Fsss | 249838.2 290.2 249893.5 3859.8 227610.3 471.6
EBCOAseminnB—Bsss | 189178.9 1845 58694.3 3803.8 66701.9 474.3
EBCOATanB 4589.9 448 | 4391.8 3907 | 3989.6 505
UMDA | 107120.4 295.6| 67303.3 3905.5 47244.7 400.3
MIMIC | 97572.0 283.2| 69385.9 3906 | 46941 422.3
EBNA | 23336.0 448 | 19708.6 3906.3 28703.0 485.2
cGA | 202000 395.2| 202000 3628.1 202000 477.2
eGA | 202000 388.8) 202000 3793.7] 202000 488.5
ssGA | 202000 448 | 202000 3906.1 202000 488.5

are more similar between EBCOAs, EDAs and GAs, since to solve optimization problems. The theoretical founda-
EBCOA74n B, EBNA and ssGA obtained the best result tions and the generic pseudocode have been introduced
in all the 10 runs. Also note that most of EBCOAs require for this new evolutionary computation paradigm. This pa-
fewer evaluations (e.g. fewer different solutions to be eval- per also illustrates the behaviour of these algorithms in
uated during the search) to reach these final results. standard optimization problems in discrete domains such

These results show that the tree augmented naive@s HIFF, IsoPeak and IsoTorus.
Bayes approach performs very well in all these fitness The first results obtained in these experiments show
functions, even improving the results obtained in many that some of the choices (such as the instantiation of vari-
EDAs and GAs. Also, if we compare the behaviour of ables not present in the Bayesian classifier) have to be
EBCOA,, Bayes With that of UMDA, its EDA equivalentin revised and more techniques have to be tried. However,
taking into account the dependencies between variablesthe fact that some EBCOAs perform in these problems in
we see that the results are at least comparable. Finallya similar way and even outperform in some cases EDAs
regarding the seminaive and selective Bayes approachesand GAs is a promising result to encourage further testing.
after monitoring the evolution of the search we realized This experiment was performed with general objective
that the choice of how to instantiate the variables that arefunctions, and further testing should be done with more
not present in the Bayesian classifier is the main reason forcomplex problems and using EBCOASs that can take into
these results, and further research is already in progress. account higher-order dependencies between variables. We

In the light of the results we can conclude that the eéckon that the application of more complex EBCOAs
new paradigm EBCOA produced promising results in this 0 these problems should turn out to improve the perfor-
experiment, sometimes giving better and comparable re-mance of even EDAs and GAs.
sults to GAs and EDAs. However, their potential is still Future research trends also include the study and ex-
to be analysed, as there are still many different aspectsperimentation of new Bayesian network classifiers that
that need to be tested and could result in a considerableare capable of taking into account more interdependen-
improvement in the performance of these algorithms. cies than the ones introduced here. An example of pos-

sible structures to apply are the generalization of struc-
) tures from the EBNA approach in problems where the de-
5. Conclusions and Further Work pendencies between variables are high. Another future

. . o . research topic for EBCOAs also includes applying clas-
This paper mtroduc_es for thg .f|rst time a ne_w.par_adlgm, sification techniques for building statistical probabilistic

qulutlonary Bayesian QIas&ﬁer-pased Optlmlzat!on Al- graphical models in continuous domains so that we can
gorithms (EBCOAs), which combines both evolutionary compare their performance with continuous EDAs and

computation techniques and Bayesian classifiers in orderOther evolutionary approaches in continuous domains.
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