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One of the classical problems of morphogenesis is to explain how patterns of different animals evolved resulting in a
consolidated and stable pattern generation after generation. In this paper we simulated the evolution of two hypothetical
morphogens, or proteins, that diffuse across a grid modeling the zebra skin pattern in an embryonic state, composed of
pigmented and nonpigmented cells. The simulation experiments were carried out applying a genetic algorithm to the Young
cellular automaton: a discrete version of the reaction-diffusion equations proposed by Turing in 1952. In the simulation
experiments we searched for proper parameter values of two hypothetical proteins playing the role of activator and inhibitor
morphogens. Our results show that on molecular and cellular levels recombination is the genetic mechanism that plays the
key role in morphogen evolution, obtaining similar results in the presence or absence of mutation. However, spot patterns
appear more often than stripe patterns on the simulated skin of zebras. Even when simulation results are consistent with
the general picture of pattern modeling and simulation based on the Turing reaction-diffusion, we conclude that the stripe
pattern of zebras may be a result of other biological features (i.e., genetic interactions, the Kipling hypothesis) not included
in the present model.

Keywords: mammalian coat pattern, morphogenetic field, Turing reaction-diffusion, evolving cellular automata, develop-
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1. Introduction

One of the classical problems of morphogenesis, or the de-
velopment of complex forms and patterns found in living
organisms (Prusinkiewicz, 1993), is to explain how pat-
terns of different animals (i.e., mammals, seashells, ma-
rine fishes) evolved resulting in a consolidated and sta-
ble pattern generation after generation. In 1952 Turing
published a paper showing how patterns might grow from
an initially nearly homogeneous state and how diffusion
could drive to instability. A result of such instability is the
emergence of patterns as a consequence of the breakdown
of symmetry and homogeneity. Turing proposed that the
temporal variation of the concentrations of two different
chemicals, named by Turing as morphogens (the activator
morphogenMA and the inhibitor morphogenMI ), both
diffusible but at different rates (DA and DI ), can create
patterns (DA and DI nonzero) on an initially homoge-
neous tissue by reacting in accordance with the nonlinear
functionsf and g:

∂MA

∂t
= f(MA,MI) + DA∇2MA,

∂MI

∂t
= g(MA,MI) + DI∇2MI .

In Turing’s model, the activator morphogenMA activates
the production of itself and the production of the inhibitor
MI , whereasMI inhibits the production of itself and de-
creases the activatorMA production. Twenty years after
Turing’s contribution, Gierer and Meinhardt (1972) devel-
oped a model of pattern formation based on a short-range
activator and a long-range inhibitor which would promote
the future development of simulation models by means of
cellular automata. Cellular automata are discrete space
and time models that have been used to model biologi-
cal systems as a counterpart method to differential equa-
tions (Lahoz-Beltra, 1997; 1998). A cellular automaton
in two dimensions consists of a regular grid of cells, and
each of them can be in one of a finite number of possi-
ble states, being updated synchronously in discrete time
steps according to a local, identical interaction rule (Tof-
foli and Margolus, 1987; Wolfram, 1984b). The state of
each cell at the next time stept + 1 is determined by its
present state at timet and the states of its surrounding
neighbors. Depending on the pattern of initial cell states
and transition rules, thus on how neighboring states influ-
ence the state of a particular cell, patterns of cell states
in the checkerboard evolve over time and can propagate,
interact, store and compute information (Wolfram, 1983;
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1984a). Based on such an approach, Young (1984) sim-
ulated Turing’s reaction-diffusion model considering that
cells lay out on a grid with two states, pigmented or non-
pigmented, assuming that the pigmented cells produce ac-
tivator MA and inhibitor MI morphogens diffusing at
different rates across the grid. The results obtained by
Young were similar to those obtained with continuous
reaction-diffusion equations. Recently, the morphogens of
vertebrate and invertebrate animals have been identified as
proteins which exhibit diffusion and organize protein gra-
dients (The and Perrimon, 2000). This is an important
fact if we consider that computer simulation experiments
using genetic algorithms (Goldberg, 1989), thus search al-
gorithms based on the Darwinian natural selection, have
demonstrated to be useful helping to find new clues and
insights about the molecular evolution of proteins (i.e., en-
zymes (Lahoz-Beltra, 2001; Lahoz-Beltraet al., 2002)).
In the aforementioned papers we explored how electronic
circuits modeling the catalytic function performed by en-
zymes and called ’electronic enzymes’ evolved, leading to
a metabolic ring similar to those present in organisms.

In this paper, we simulate the evolution of two hy-
pothetical morphogens, or proteins, that diffuse across a
grid. The grid models the zebra skin in an embryonic
state, composed of pigmented and nonpigmented cells.
The simulation experiments were carried out applying a
genetic algorithm to Young cellular automata searching
for proper values of the diffusion distance and the field
value: the two main features that define a morphogen like
activator or inhibitor in Young’s model. In the biological
realm, it is generally believed that zebras are dark ani-
mals, the white stripes being the areas where the pigmen-
tation is inhibited. In agreement with Kipling (1908) and
considering that predators such as lions cannot see colors,
the zebra stripes may serve as camouflage. Such cam-
ouflage is an adaptation that prevents zebras from being
seen by predators, confusing the zebras with most natu-
ral backgrounds. Murray (1981) showed that the chevrons
at the base of zebra limbs result from the overlapping of
two reaction-diffusion systems. Nevertheless, at present
it is unknown how the zebra skin pattern is generated
even when Turing’s reaction-diffusion model could pro-
duce their characteristic stripe pattern. Our results show
that on molecular and cellular levels and under the as-
sumption of the absence of predators, recombination is
the genetic mechanism that plays the key role in mor-
phogen evolution. However, spot patterns appear more
often than stripe patterns on the simulated skin of zebras.
These results could support the view that on the popula-
tion level Kipling’s hypothesis or another alternative hy-
pothesis could explain why zebras have stripe patterns.
We propose that other biological features (i.e., genetic in-
teractions, Kipling’s hypothesis) different from those in-
cluded in the present model (i.e., pigmented and non-

pigmented cells, two morphogens with different diffusion
rates) would promote those zebras with the stripe pattern
against the zebras with spot patterns.

2. Model Description

2.1. Cellular Automata Approach to Turing’s
Reaction–Diffusion Model

The model proposed by Young (1984) assumes the animal
skin in an embryonic state, formed by a uniform distri-
bution of melanocytes or differentiated pigmented cells
(black, state 1) and undifferentiated cells (white, state
0). Melanocytes produce the activator morphogenMA

which stimulates the transition from state 0 to 1 of nearby
undifferentiated cells, as well as the inhibitor morphogen
MI promoting the opposite transition, thus from state 1
to 0, for nearby differentiated cells. When considered
together, both morphogens define a morphogenetic field
which is assumed to be circular and composed of two con-
centric rings (Fig. 1). The inner annulus is the activation
region with radiusR1 and a large constant positive field
value ω1. The outer annulus is the inhibition area with
radius R2 and a constant small negative field valueω2.
As a consequence, the morphogenetic field results from
a short-range activation and long-range inhibition areas
defined around a melanocyte cell located at the origin or
center of the morphogenetic field (Fig. 1). Once the pig-
mented cells are randomly distributed on a grid, the transi-
tion rules are applied to the pigmented and nonpigmented
cells. In agreement with the model introduced by Young,
each cellR on the grid in position(i, j) receives influ-
ences of the morphogens produced by all pigmented cells

R2R1 1ω 2ω

M1 M2

M1

M2

R1

1ω

R2
2ω

Fig. 1. Chromosome with genes modeling the diffusion
distanceR and the morphogenetic fieldω values
of two different morphogen molecules, or proteins,
labeled asM1 and M2. The illustration assumes
that in the morphogenetic field (obtained by decod-
ing the chromosome)M1 is the short-range activa-
tor andM2 the long-range inhibitor.
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Rp of the neighborhood in positions(i′, j′). Thus, let
R∗ be the Euclidean distance betweenR and Rp:

R∗ = |R−Rp| =
√

(i− i′)2 + (j − j′)2.

If the Euclidean distanceR∗ is less than or equal to radius
R1 (R∗ ≤ R1), then the cellR located in position(i, j)
receives the effect of the activator morphogenMA, which
is simulated by a positive field valueω1. Otherwise, if
R∗ is greater thanR1 and less than or equal toR2 (R1 <
R∗ ≤ R2) then the cellR in position (i, j) would receive
the effect of the inhibitor morphogenMI , which is given
by a negative field valueω2. Finally, if for the cell R in
position (i, j) we consider the composition of the effects
of the morphogens produced by all nearby pigmented cells
Rp in the neighborhood, then the future state of the cell
R will be given by the sum of the field values. According
to the model, the automaton transition rules for cells are
given by the following rules:

Rule 1: If
∑

p ω(|R−Rp|) > 0, then the state of cellR
at time t + 1 is pigmented (state 1).

Rule 2: If
∑

p ω(|R−Rp|) = 0, then the state of cellR
at time t + 1 does not change and is equal to its state at
time t (state 0 or 1).

Rule 3: If
∑

p ω(|R−Rp|) < 0, then the state of cellR
at time t + 1 is not pigmented (state 0).

2.2. Evolving Morphogen Features with a Genetic
Algorithm

In this model, we define a population of chromosomes
(Fig. 1) simulated as strings of real values. In the ge-
netic algorithm terminology, genes were defined by four
real values modeling the diffusion distanceR and the
morphogenetic field valueω of two different morphogen
molecules, or proteins, labeled asM1 and M2. At each
gene, and from left to right, the first gene position rep-
resents the diffusion distanceR1 and the second gene
the field valueω1 of the first morphogen moleculeM1,
whereas the third gene represents the diffusion distance
R2 and the fourth gene the field valueω2 of the second
morphogen moleculeM2. Note that at the beginning of
the simulation the two molecules are not defined as ac-
tivator or inhibitor, both being candidates to be one or
another type of morphogen during evolution. The cur-
rent genetic algorithm uses one-point recombination and
a population size of 60, testing recombination probability,
as well as mutation probability values in different sim-
ulation experiments. Starting with a random population
of chromosomes, reproduction, recombination and muta-
tion were simulated, thus obtaining new generations of
equal sizes. The initial population of chromosomes was
obtained choosingR1 and R2, as well asω1 and ω2,

from a uniform distribution with0 ≤ R1, R2 ≤ 10 and
−5 ≤ ω1, ω2 ≤ 5.

2.2.1. Reproduction

At each generation, the fitnessf of each chromosome,
thus the degree of the achievement of theM1 and M2

molecules in the morphogenic field,

f =

{
fspot if fspot > fstripes ,

fstripes if fspot < fstripes ,

was evaluated choosing the highest value of the following
functions:

fspot = C−
(
|αww−Nww|+ |αwb−Nwb|+ |αbb−Nbb|

)
,

fstripes = C−
(
|βww−Nww|+|βwb−Nwb|+|βbb−Nbb|

)
,

whereC is 2500, thus the total number of contacts among
cells. In the above functions,Nww, Nwb and Nbb are
the numbers of contacts between white-white, white-black
and black-black cells, respectively, andα and β are the
parameters of the fitness functions whose values were set
up as follows: αww = 1430, αwb = 350, αbb = 720,
βww = 720, βwb = 350 and βbb = 1430. The func-
tions fspot and fstripes were proposed assuming that in
the search space spot and stripe patterns are both stable
solutions. The main reason to justify such an assump-
tion is that both types of patterns are widely spread in
animals, and other motives found in nature are spot and
stripe variations. The parametersα and β were ob-
tained experimentally based on Young’s cellular automata
model. In agreement with Young (1984), simulation ex-
periments were performed considering the values reported
by Young: the activator morphogenMA was a molecule
with R = 2.30, ω = 1, and the inhibitor morphogenMI

a molecule withR = 6.01. Based on these values we
generated 300 spot patterns (ω = −0.34 for the inhibitor)
and 300 stripe patterns (ω = −0.20 for the inhibitor) ob-
taining the average values ofNww, Nwb andNbb in each
kind of pattern. The mean values ofNww, Nwb and Nbb

were labeled asαww, αwb and αbb in the spot patterns
and βww, βwb, βbb in the stripe patterns, respectively.

In order to obtain the value off , the diffusion dis-
tances as well as the field values of theM1 and M2

morphogens were decoded from chromosomes. Thus, the
simulation of Young’s cellular automaton model was car-
ried out based onR1, R2 and ω1, ω2 values coded by
each chromosome. The simulation begins assuming 95%
of white cells (undifferentiated cells) and 5% of black
cells (melanocytes or differentiated pigmented cells) ran-
domly distributed on a rectangular lattice, updating the
state of the cells with transition rules until the resulting
pattern no longer changes. With proper values ofR1,
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R2 and ω1, ω2, Young found that five iterations were
enough for convergence to a stable pattern and that the
final pattern is not sensitive to the initial distribution of
melanocytes or black cells. However, in preliminary ex-
periments we found unstable patterns as a consequence of
the fact that we simulated how the Darwinian natural se-
lection was able to find the proper activator and inhibitor
diffusion distances and field values during evolution. In
order to find the most suitableM1 and M2 molecules,
we applied the following criterion: Once the cellular au-
tomaton evolves during five iterations, we test the stability
of the final pattern, comparing the obtained pattern in the
fifth iteration with the pattern obtained in the next iter-
ation, thus in the sixth one. The reason to compare the
fifth iteration only with the next one is that in preliminary
experiments where we used more iterations we found sim-
ilar results to those obtained with the present criterion. If
during such an additional iteration the pattern is not sta-
ble, then there will be a change in the number of different
kinds of cellular contacts (white-white, white-black and
black-black) and, consequently, in the value of the fitness
function f . In such a case we introduced the assumption
that a pattern is unstable, and its fitness is equal to 0 if the
difference Ndiff of the total number of contacts among
cells is above a threshold value (Ndiff > θ):

Ndiff = |N t+1
ww −N t

ww|+ |N t+1
wb −N t

wb|+ |N t+1
bb −N t

bb|

being the iteration timet equal to 5. The present simula-
tion experiments were carried out with a threshold value
θ equal to 100. Otherwise, ifNdiff ≤ θ, then the pat-
tern is stable andf > 0. Note that the number of un-
stable patterns that pass the test increases as the threshold
value θ does. In order to study the effect of the thresh-
old, 250, 500 and 2500 values were studied in a different
set of simulation experiments. Once the chromosomes are
evaluated, we select the mating pool of the next genera-
tion using the roulette wheel algorithm of parents selec-
tion (Davis, 1991). This is a method for implementing re-
production, and thereby the Darwinian natural selection,
by spinning a roulette wheel that assigns to each chromo-
some a slot whose arc size is proportional to its fitness
value. Of course, other selection schemes are possible
such as tournament selection, truncation selection, as well
as linear and exponential ranking selection (Blickle and
Thiele, 1995); however, the roulette wheel parents selec-
tion scheme bears a better resemblance to the Darwinian
natural selection (Lahoz-Beltra, 2001).

2.2.2. Recombination

Once a new generation of offspring chromosomes is ob-
tained, a single point crossover proceeds with pairs of
mates randomly selected. Whether or not we are going

to perform crossover on a current pair of parent chro-
mosomes is decided on the basis of a Bernoulli trial re-
garding recombination as having a given probability (re-
combination probability). In the present model we as-
sume that genes which define the features of the activa-
tor and inhibitor morphogens are linked and inherited to-
gether. Thus, and from left to right, the first and second
genes define a first segment in the chromosome codify-
ing the M1 features and the third and fourth genes de-
fine a second chromosomic segment in which theM2 fea-
tures are codified. Therefore, since the first gene is linked
with the second one and the third gene is linked with the
fourth one, the crossover point is not randomly selected
from a uniform distribution as is usual in a genetic algo-
rithm. As a consequence, the crossover point is equal to
2 in the present simulations, just in the middle position
of the chromosome. Finally, a single point crossover oc-
curs when the segments of the two parent chromosomes
i, j (Ri

1, ω
i
1, R

i
2, ω

i
2 and Rj

1, ω
j
1, R

j
2, ω

j
2) are swapped

(Ri
1, ω

i
1, R

j
2, ω

j
2 and Rj

1, ω
j
1, R

i
2, ω

i
2).

2.2.3. Mutation

Mutation at a gene was simulated changing at random the
value gene, choosing the mutated values ofR or ω from
a uniform distribution with a similar range to those defined
to obtain the initial population of chromosomes (0 ≤ R ≤
10 and −5 ≤ ω ≤ 5). Once again whether or not to
change a gene value on a chromosome is decided on the
basis of a Bernoulli trial, mutation being a success with a
given probability (mutation probability).

3. Genetic Algorithm Protocols

The goal of the following experiments was to find how
a different arrangement of recombination and mutation
operators performed in different protocols. Experiments
were carried out applying recombination (single point
crossover) and mutation to the chromosomes, setting the
recombination and mutation probabilities to 0.25, 0.50,
0.75 and 0.05, 0.30, respectively. We tried out four proto-
cols (Fig. 2) which were called R (only recombination),
SGA (simple genetic algorithm), SDS (simulated DNA
shuffling) and Wallace (a name arbitrarily chosen). The
first protocol, R (Fig. 2(a)), evaluates a population of chro-
mosomes before reproduction and once a new generation
is obtained based on a single cycle of recombination. The
protocol SGA (Fig. 2(b)) is a conventional genetic algo-
rithm (Goldberg, 1989) which evaluates a population of
chromosomes before reproduction and once a new gen-
eration is obtained based on a single cycle of recombi-
nation and mutation. The protocol SDS (Fig. 2(c)) was
inspired by protein in vitro evolution experiments (Lahoz-
Beltra, 2001; Lahoz-Beltraet al., 2002). The protocol
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15 GENERATIONS
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RECOMBINATION

GENERATION > 25

(d)

Fig. 2. Genetic algorithm protocols: (a) R; (b) SGA;
(c) SDS and (d) Wallace.

involves a cycle of mutation and recombination through
15 generations as emulation of error-prone PCR or ran-
dom nucleotide insertion and DNA reassembly by homol-
ogous recombination followed by repeated cycles of re-
combination, one per generation, in the absence of mu-
tation. Finally, Wallace (Lahoz-Beltra, 2001) was defined
(Fig. 2(d)) as follows: A simulation experiment starts with
the first cycle that includes only recombination for 15 ini-
tial generations. In the second cycle, mutation is intro-
duced together with recombination until the 25-th gener-

ation. The experiment concludes in the third cycle with
recombination in the absence of mutation.

All simulation experiments were carried out during
40 generations repeating each experiment twenty times in-
cluding the stability test (Section 2.2.1) into the protocols
for the obtained patterns. The results were compared with
the second set of experiments, where the protocols were
similar except that the stability test for the obtained pat-
terns was not carried out before reproduction, thus during
chromosomes evaluation. In consequence, a total number
of 920 trials or simulation experiments were performed
based on the model described in Section 2.

4. Simulation Results

Computer simulation experiments were carried out using
the population size, the morphogen diffusion distances
and morphogenetic field values described in Section 2.2
as well as the recombination and mutation probabilities
referred to Section 3. In Fig. 3, we show the performance
graph (average fitness per generation) for each of the ex-
periments performed under different protocols. Indeed,
all protocols drive the population of chromosomes to a
uniform population of similar genotypes with a maximum
average fitness close to 2500. In the R protocol as well
as the SGA one, and regardless of the recombination and
mutation probabilities, the number of white (Fig. 4(a)) and
black (Fig. 4(b)) patterns (the white pattern constitutes al-
most 90% of the sum of black and white zebras) is greater
than the number of zebras with the spot pattern (Fig. 4(c))
and this last one is greater than those with the stripe pat-
tern (Fig. 4(e)). We also obtained in the R protocol a few
zebras bearing a thin stripe pattern (Fig. 4(f)). However,
when the stability test was not carried out before reproduc-
tion, the number of zebras with the spot pattern was higher
than those with white and black patterns, being again the
lowest number of zebras with the stripe pattern. In the
SDS protocol with the mutation probability equal to 0.05,
and regardless of the recombination probability, the re-
sults were similar to those obtained with the R and SGA
protocols, obtaining a few zebras bearing a thin stripe pat-
tern. A similar result was obtained in the SDS protocol
when patterns were evolved without applying the stabil-
ity test, but zebras with the thin stripe pattern were not
obtained. Increasing the mutation probability to 0.30 no
matter whether the stability test is applied or not, the SDS
protocol drives the population of chromosomes to results
similar to those obtained with the R and SGA protocols
in the absence of the stability test. Finally, the Wallace
protocol and setting up the mutation probability of 0.05
lead to results that were similar to those obtained with the
R protocol, as well as the SGA and SDS protocols with
a similar mutation probability. In the absence of the sta-
bility test and setting up a mutation probability of 0.05 or
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Fig. 3. Performance graph obtained under different protocols.
(a) R; (b) SGA; (c) SDS; (d) Wallace.

0.30, the results obtained with the Wallace protocol were
similar to those obtained with a mutation probability of
0.30 under the SDS protocol or the SGA protocol in the
absence of the stability test. Therefore, our results indi-
cate that the evolution of the morphogens leads to a higher
number of white and black zebras, as well as zebras bear-
ing the spot pattern, being always the lowest number of
zebras with the stripe pattern.

  (a) (b)

  (c) (d)

  (e) (f)

Fig. 4. Zebra skin patterns obtained after the evolution of
the skin morphogenetic field: (a) white; (b) black;
(c) spot pattern; (d) unstable stripe pattern; (e)
stripe pattern; (f) thin stripe pattern.

In Figs. 5 and 6 we show two representative zebras
bearing a spot pattern and stripe pattern, respectively. An
example of the skin development of a zebra bearing an
unstable thin stripe pattern is shown in Fig. 7. Such pat-
terns were obtained with the activator-inhibitor model pro-
posed by Young using theM1 and M2 features, thus
their diffusion distances and field values. The morphogen
features were obtained by decoding one of the chromo-
somes selected from a uniform population (all the chro-
mosomes are the same) evolved under one genetic algo-
rithm protocol with the maximum average fitness. Then,
the morphogenetic field was updated during six iterations
based on Young’s transition rules, illustrating the chang-
ing states for each cell until the resulting pattern no longer
changes. Therefore, our results indicate that the evolution
of morphogens does not depend on the genetic algorithm
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protocol and similar results are obtained in the presence
or absence of mutation. Our findings support the view
that recombination is a process that plays the key role in
morphogen evolution. As a consequence, if mutation was
present, morphogen evolution would not be sensitive to
its presence during all generations (SGA protocol), during
the initial generations (SDS protocol) or during the middle
generations (Wallace protocol). In the biological realm,
biologists have recently observed the diffusion of proteins
in particular morphogens into the extracellular space (The
and Perrimon, 2000) as well as how these molecules are
organized into extracellular protein gradients (Sog, Wing-
less/Wnt, etc.), providing for the first time a confirma-
tion of Turing’s hypothesis. For instance, Srinivasanet

  (a) (b)

  (c) (d)

  (e) (f)

Fig. 5. Representative zebra showing a spot pattern obtained
with the activator and inhibitor features obtained by de-
coding one of the chromosomes with maximum average
fitness. The morphogenetic field was updated during six
iterations based on Young’s transition rules, illustrating
the changing states for each cell until the resulting pat-
tern no longer changes.

al. (2002) found a protein gradient in developing fruit fly
embryos, which is believed to trigger the division of the
embryo into the nervous system and different types of epi-
dermis within complex organisms like humans. In conse-
quence, if morphogens are proteins, then such molecules
could have evolved by the recombination of exons as has
been suggested for the enzymes of eukaryotic organisms
(Fersht, 1985; Price and Stevens, 1996).

5. Discussion

The simulation results are consistent with the general pic-
ture of pattern modeling and simulation based on Tur-
ing’s reaction-diffusion scheme. In contrast to the stripe

  (a) (b)

  (c) (d)

  (e) (f)

Fig. 6. Representative zebra showing a stripe pattern obtained
with the activator and inhibitor features obtained by de-
coding one of the chromosomes with maximum average
fitness. The morphogenetic field was updated during six
iterations based on Young’s transition rules, illustrating
the changing states for each cell until the resulting pat-
tern no longer changes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Example of zebra showing an unstable thin stripe
pattern which morphogenetic field was updated
during six iterations.

pattern on fish skin which changes as the fish body size
increases (Kondo and Asai, 1995), the case of zebras as
well as other patterns of mammals (Murray, 1989) is eas-
ier to simulate. The reason for that is that once the pat-
tern is formed in early developmental stages, the num-
ber of stripes does not change during their lifetime even
if the body grows. The fact that the evolution of mor-
phogens in the absence of predators (Kipling, 1908)—or
other selection pressures not included in the proposed fit-
ness function—leads to a higher number of zebras bearing
the spot pattern than zebras with the stripe pattern is in
agreement with previously published results. In general,
striped patterns are more difficult to generate by reaction-
diffusion models than spotted patterns, as has been ob-
served by several authors (e.g., Murray, 1989). In two
morphogen reaction-diffusion models stripe patterns tend
to dissolve into spots, but they can be stabilized by adding

further reactants, thus morphogens, or modifying the non-
linearity of the system (Ball, 1999). Furthermore, the
obtained pattern is related to the shape, in our model a
squared lattice, where diffusion takes place (Vareaet al.,
1999). It was also observed by Murray (1981) that if two
reaction-diffusion systems that produce stripes meet to-
gether, then a chevron pattern emerges which is similar to
the zebra pattern. In agreement with Painteret al. (1999),
the applicability of classical Turing models to biological
pattern formation—in our case the Young cellular automa-
ton is an approximation to Turing’s approach—is limited
by the sensitivity of patterns to model parameters: in our
case the proper values ofR1, R2 and ω1, ω2 were found
with a genetic algorithm. In two-dimensional models (i.e.,
the zebra pattern), the relative distance of the equilibrium
level of the morphogen activator between two constraint
terms which confine the variables within a finite range de-
termines pattern selection (Shoji and Iwasa, 2003). More-
over, regular stripes are unlikely to arise reliably without
tight parameter control (Painteret al., 1999). In conse-
quence, how did the zebra get its stripes? Bard (1977;
1981) proposed a mechanism for the production of zebra
stripes surmising that while neural crest cells begin mi-
gration in the second week of gestation, zebra stripes are
generated between the third and the fifth week depend-
ing upon the species. It is generally accepted that pattern
formation during the early development is usually con-
trolled by networks like genetic networks with complex
genetic interactions or biochemical networks with coupled
biochemical reactions (i.e., Drosophila embryo). In both
cases a stochastic reaction-diffusion algorithm (Gillespie,
1976; 1977) seems to be the most suitable method to simu-
late pattern formation. This suggests that zebra stripe pat-
tern formation should be simulated based on a cellular au-
tomaton approximation of a stochastic reaction-diffusion
model, instead of Young’s cellular automaton model used
as an approximation of the classical Turing approach. In
the population biology realm, Nelson and Shnerb (1998)
applied a reaction-diffusion equation with a stochastic ele-
ment to describe the development of a bacteria population.
In the aforementioned model, when a relative small ampli-
tude is introduced via the stochastic element, a very strong
localization of the steady state solution occurs. Stochas-
tic cellular automata models, thus cellular automata where
the transition rules incorporate stochastic or probabilistic
elements, have been widely used in the simulation of dy-
namical systems (for example, in plant ecology the model
introduced by Inghe (1989) or the model of traffic flow
developed by Schreckenberget al. (1995)) and, in con-
sequence, in reaction-difussion systems. For instance,
Weimar (1997) introduced a cellular automaton with a
look-up table of probabilistic rules for reaction-diffusion
systems. Such a cellular automaton was constructed us-
ing the solutions of partial differential equations being
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always more efficient than explicit numerical techniques
and in many cases more efficient than better numerical
techniques. Savill and Hogeweg (1997) developed a three-
dimensional hybrid model, thus a model based on a cellu-
lar automaton with stochastic rules and partial differen-
tial equations, for the study of morphogenesis in simple
cellular systems, such as the slime moldDictyostelium
discoideum. Based on a different approach, Rohlf and
Bornholdt (2003) introduced a stochastic cellular automa-
ton showing a model of pattern formation which is not
based on the Turing instability. In the model, information
is transmitted through soliton-like particles instead of a
morphogen gradient, whose collective dynamics results in
pattern formation. These models suggest for future work
the interest to develop a stochastic cellular automaton ver-
sion of Young’s model, which could be applied as an alter-
native to stochastic reaction-diffusion equations in model-
ing the zebra stripe pattern.

Another possibility which was investigated by Ki-
tano (1994; 1995) is to apply a genetic algorithm simu-
lating the metabolism of cells, cell division and neuroge-
nesis. In such a case, the rules which describe chemical
reactions using differential equations, in our case the mor-
phogens, were encoded into chromosomes. Nevertheless,
the fact that pattern formation is ruled by a network (i.e.,
a genetic network) supports the application of a genetic
algorithm to tune up the parameters of the model. For
instance, Hamahashi and Kitano (1999) used a genetic al-
gorithm to tune the parameters of a model describing the
diffusion of proteins along the body of Drosophila. The
aforementioned model was based on a reaction-diffusion
system where pattern formation is regulated by maternal
genes. However, in our model the application of a ge-
netic algorithm to a cellular automaton raises some diffi-
culties related to the fitness function. In the context of fine
arts and in nature, the difficulties in applying genetic algo-
rithms to cellular automata in pattern generation (i.e., the
evaluation of stable patterns or the sort, synchronous or
asynchronous, of cellular automaton updating) were stud-
ied in detail by Bentley (2002). In this study it is suggested
that the asynchronous updating of cellular automata is
more biologically plausible bearing a resemblance to hu-
man artistic updating of paintings.

One of the main results in our experiments is the key
role of recombination as the main genetic mechanism dur-
ing morphogen evolution. This result is in agreement with
the results obtained by other authors in the field of com-
puter simulation. For instance, Kerszberg (1996) devel-
oped a model of morphogen gradient in embryos assum-
ing that evolution operated in part by shuffling DNA re-
sponsive elements (i.e., promoter sequences). In the con-
text of genetic networks in developmental evolution (Gib-
son, 2002), the robustness or stability of such networks
was studied simulating recombination among parameter

solutions. Furthermore, in experiments evolving a cellu-
lar automaton, Werfelet al. (2000) found the advantage
for crossover or recombination versus mutation alone, as
well as other common features (i.e., identifiable building
blocks that contribute to high-fitness solutions, metastable
periods of fitness punctuated by rapid periods of innova-
tion, etc.) which are applicable to other evolutionary sys-
tems based on cellular automata. In the biological realm,
Xia and Levitt (2002) studied the effects of both mutation
and recombination events on the evolution of protein sta-
bility. They found an opposite effect of both mechanisms
which may be relevant to morphogens: protein sequences
under mutation tend to be far from optimal, whereas under
recombination the sequences tend towards the optimum.

At present cellular automata models are considered
as an alternative to differential equations in the modeling
and simulation of dynamical systems (for a detailed expla-
nation, see Culiket al., 1990; Lahoz-Beltra, 1998; Omo-
hundro, 1984; Toffoli, 1984). In consequence, cellular au-
tomata can be used as an alternative to reaction-diffusion
simulators which have been developed based on different
reaction schemes. Such an approach could be used to de-
velop a counterpart of simulators such as Ilya, which sim-
ulates a reaction-diffusion model based on the Brusselator
scheme, or Xmorphia, which shows a beautiful simulation
of the Gray-Scott reaction diffusion mechanism (Pearson,
1993).

The hybridation of genetic algorithms with cellular
automata seems a promising field in biology, physics and
computer science in the solution of theoretical and prac-
tical problems (Mitchellet al., 1993; Cornoet al., 2000).
In the biological realm, such a methodology could offer
the possibility to simulate easily the evolution of morpho-
genetic fields, embryo development as well as the model-
ing and simulation of animal skin patterns.
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ritmos Evolutivos y Bioinspirados (AEB02), pp. 333–340.

Mitchell M., Hraber P.T. and Crutchfield J.T. (1993):Revisiting
the edge of chaos: Evolving cellular automata to perform
computations. — Complex Syst., Vol. 7, pp. 89–130.

Murray J.D. (1981):A pre-patterns formation mechanism for
animal coat markings. — J. Theor. Biol., Vol. 88, pp. 161–
199.

Murray J.D. (1989): Mathematical Biology. — New York:
Springer.

Nelson D.R. and Shnerb N.M. (1998):Non-Hermitian local-
ization and population biology. — Physical Review E,
Vol. 58, pp. 1383–1403.

Omohundro S. (1984):Modelling cellular automata with partial
differential equations. — Physica D, Vol. 10, pp. 128–134.

Painter K.J., Maini P.K. and Othmer H.G. (1999):Stripe forma-
tion in juvenile Pomacanthus explained by a generalized
Turing mechanism with chemotaxis. — Proc. Nat. Acad.
Sci. USA, Vol. 96, pp. 5549–5554.

Pearson J.E. (1993):Complex patterns in a simple system. —
Science, Vol. 261, pp. 189–192.

Price N.E. and Stevens L. (1996):Fundamentals of Enzymology.
— London: Oxford University Press.

Prusinkiewicz P. (1993):Modeling and visualization of bio-
logical structures. — Proc. Conf.Graphics Interface’93,
Toronto, Canada, pp. 128–137.

Rohlf T. and Bornholdt S. (2003): Self-organized
pattern formation and noise-induced control
from particle computation. — Available at:
http://www.arxiv.org/abs/cond-mat/0312366

Savill N.J. and Hogeweg P. (1997):Modelling morphogenesis:
From single cells to crawling slugs. — J. Theor. Biol.,
Vol. 184, pp. 229–235.

Schreckenberg M., Schadschneider A., Nagel K. and Ito N.
(1995): Discrete stochastic models for traffic flow. —
Physical Rev. E, Vol. 51, pp. 2939.

Shoji H. and Iwasa Y. (2003):Pattern selection and the direc-
tion of stripes in two-dimensional Turing systems for skin
pattern formation of fishes. — Forma, Vol. 18, pp. 3–18.

Srinivasan S., Rashka K.E. and Bier E. (2002):Creation of a
sog morphogen gradient in Drosophila embryo. — Devel-
opmental Cell, Vol. 2, pp. 91–101.



Evolving morphogenetic fields in the zebra skin pattern based on Turing’s morphogen hypothesis 361

The I. and Perrimon N. (2000):Morphogen diffusion: The
case of the Wingless protein. — Nature Cell Biol., Vol. 2,
pp. 79–82.

Toffoli T. (1984): Cellular automata as an alternative to (rather
than an approximation of) differential equations in model-
ing physics. — Physica D, Vol. 10, pp. 117–127.

Toffoli T. and Margolus N. (1987):Cellular Automata Ma-
chines. — Cambridge, MA: The MIT Press.

Turing A. (1952):The chemical basis of morphogenesis. — Phi-
los. Trans. Roy. Soc. London B, Vol. 237, pp. 37–52.

Varea A., Aragon J.L. and Barrui R.A. (1999):Turing pat-
terns on a sphere. — Physical Review E, Vol. 60, No. 4,
pp. 4588–4592.

Weimar J.R. (1997):Cellular automata for reaction-diffusion
systems. — Parallel Comput., Vol. 23, pp. 1699–1715.

Werfel J., Mitchell M. Crutchfield J.P. (2000):Resource sharing
and coevolution in evolving cellular automata. — IEEE
Trans. Evolut. Comput., Vol. 4, pp. 388–393.

Wolfram S. (1983):Statistical mechanics of cellular automata.
— Rev. Mod. Phys., Vol. 55, No. 3, pp. 601–644.

Wolfram S. (1984a):Cellular automata as models of complexity.
— Nature, Vol. 311, pp. 419–424.

Wolfram S. (1984b):Universality and complexity in cellular au-
tomata. — Physica D, Vol. 10, pp. 1–35.

Xia Y. and Levitt M. (2002):Roles of mutation and recombina-
tion in the evolution of protein thermodynamics. — Proc.
Nat. Acad. Sci., Vol. 99, pp. 10382–10387.

Young D.A. (1984):A local activator-inhibitor model of verte-
brate skin patterns. — Math. Biosci., Vol. 72, pp. 51–58.


