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Grammatical Evolution (GE) is a novel data-driven, model-induction tool, inspired by the biological gene-to-protein map-
ping process. This study provides an introduction to GE, and demonstrates the methodology by applying it to construct
a series of models for the prediction of bankruptcy, employing information drawn from financial statements. Unlike prior
studies in this domain, the raw financial information is not preprocessed into pre-determined financial ratios. Instead, the
ratios to be incorporated into the classification rule are evolved from the raw financial data. This allows the creation and
subsequent evolution of alternative ratio-based representations of the financial data. A sample of 178 publicly quoted, US
firms, drawn from the period 1991 to 2000 are used to train and test the model. The best evolved model correctly classified
86 (77)% of the firms in the in-sample training set (out-of-sample validation set), one year prior to failure.
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1. Introduction

The last decade has seen significant advances in the field
of computational intelligence, leading to the development
of powerful new modelling technologies. Generally, these
technologies fall into three categories, i.e., those which
are inspired by the workings of biological neurons (Neu-
ral Networks), those which are inspired by an evolution-
ary metaphor (Genetic Algorithms, Genetic Programming
and Grammatical Evolution), and those which are in-
spired by studies of social interactions (Particle Swarm
and Ant Colony models). While neural networks, and to a
lesser extent genetic algorithms and ant-algorithms, have
attracted considerable interest, other forms of computa-
tional intelligence have received relatively less attention.

Grammatical Evolution (GE) (O’Neill and Ryan,
2003) represents an evolutionary automatic programming
methodology, and can be used to evolve ‘rule sets’. These
rule sets can be as general as a functional expression
which produces a good mapping between a series of
known input-output data vectors. A particular strength of
the methodology is that the form of the model need not be
specifieda priori by the modeler. This is of particular util-
ity in cases where the modeler has a theoretical or intuitive
idea of the nature of the explanatory variables, but a weak
understanding of the functional relationship between the
explanatory and the dependent variable(s). GE does not

require that the model form is linear, nor does the method
require that the measure of model error used in model con-
struction is a continuous or differentiable function. A key
element of the methodology is the concept of aGrammar,
which governs the creation of the rule sets. This paper in-
troduces the GE methodology, and applies it to construct
a series of models for the prediction of bankruptcy, em-
ploying information drawn from financial statements.

Classification is a commonly encountered decision
scenario in business. Examples include decisions as to
whether or not to invest in a firm, whether to extend trade
credit to a new customer, or whether to extend a bank loan.
In each of these scenarios, the possibility of financial loss
exists if a firm is incorrectly classified as being financially
healthy, when in fact it is not. Corporate bankruptcy can
impose significant private costs on many parties includ-
ing shareholders, providers of debt finance, employees,
suppliers, customers and auditors. Nonetheless, it must
also be recognized that corporate failure is a natural com-
ponent of a market economy, facilitating the recycling of
financial, human and physical resources into more pro-
ductive organizations (Easterbrook, 1990; Schumpeter,
1934). At an atomic level of analysis, many individuals
including shareholders, providers of debt finance, employ-
ees, suppliers, customers, managers and auditors have an
interest in the financial health of organizations as corpo-
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rate failure can impose significant private costs on all these
groups. It has been suggested that indicators of corporate
failure can be present up to ten years prior to final fail-
ure (Hambrick and D’Aveni, 1988), providing an oppor-
tunity for the construction of models which predict corpo-
rate failure.

Corporate failure can arise for many reasons. It may
result from a single catastrophic event, or it may be the
terminal point of a process of decline. Under the sec-
ond perspective, corporate failure is a process which is
rooted in management defects, resulting in poor deci-
sions, leading to financial deterioration and finally cor-
porate collapse (Altman, 1993; Hambrick and D’Aveni,
1988). Most attempts to predict corporate failure implic-
itly assume that management decisions critically impact
on firm performance (Argenti, 1976). Although manage-
ment decisions are not directly observable by external par-
ties, their consequent effect on the financial health of the
firm can be observed through their impact on the firm’s
financial ratios. Previous studies have utilized a wide va-
riety of explanatory variables in the construction of corpo-
rate distress models, including data drawn from the finan-
cial statements of firms, data from financial markets, gen-
eral macro-economic indicators, and non-financial, firm-
specific information. In this study, we limit our attention
to information drawn from financial statements.

1.1. Motivation for the Study

There are a number of reasons to supposea priori that
the use of an evolutionary automatic programming (EAP)
approach such as GE can prove to be fruitful in the finan-
cial prediction domain. The field is characterized by the
lack of a strong theoretical framework and has a multitude
of plausible, potentially interacting, explanatory variables.
The first problem facing the modeler is the selection of a
‘good’ subset of these variables, and the second problem
is the selection of an appropriate model form, representing
a high-dimensional combinatorial problem. Evolutionary
methodologies such as GE which can automate this pro-
cess will be valuable.

To date, most attempts at developing models for the
prediction of corporate failure have utilized a limited set
of financial ratios (Altman, 1993). These ratios are gen-
erally selected on anad-hocbasis by the modeler (Mor-
ris, 1997). Unfortunately, the number of ratios which can
be calculated from a set of financial statements is large.
A set of financial statements could contain several hun-
dred numbers between the primary financial statements
and the detailed notes accompanying the primary state-
ments, resulting in a multitude of possible financial ra-
tios which could potentially be included in a classification
model. Most studies in this domain utilize similar finan-
cial ratios, typically justifying the choice of ratios by ref-

erence to earlier studies. This methodological approach
leaves open the possibility that alternative, better repre-
sentations of the financial data exist. This study applies
GE to this task, and novelly allows the modelling process
to evolve different ratio representations from raw financial
information.

The rest of this contribution is organized as follows:
The next section provides an overview of the literature on
corporate failure, followed by a section which describes
Grammatical Evolution. We then outline the data set and
methodology utilized. The following sections provide the
results of the study followed by a number of conclusions.

2. Background

Research into the prediction of corporate failure using fi-
nancial data has a long history (Fitzpatrick, 1932; Smith
and Winakor, 1935; Horrigan, 1965). Early statisti-
cal studies such as Beaver (1966) adopted a univariate
methodology, identifying which accounting ratios had
greatest classification accuracy in separating failing and
non-failing firms. Although this approach did demon-
strate classification power, it suffers from the shortcoming
that a single weak financial ratio may be offset (or exac-
erbated) by the strength (or weakness) of other financial
ratios. This issue was addressed in Altman (1968) by de-
veloping a multivariate LDA model and this was found to
improve classification accuracy. Altman’s (1968) discrim-
inant function had the following form:

Z = .012X1+.014X2+.033X3+.006X4+.999X5, (1)

where

X1 = working capital to total assets,

X2 = retained earnings to total assets,

X3 = earnings before interest and taxes to total assets,

X4 = market value of equity to book value of total debt,

X5 = sales to total assets.

A later study by Altmanet al. (1977), using a larger
data-set, selected the following set of explanatory vari-
ables (the study did not disclose the coefficients):

X1 = return on assets (EBIT / Total Assets),

X2 = stability of earnings,

X3 = debt service (EBIT / Total Interest),

X4 = cumulative profitability (Retained Earnings / To-
tal Assets),

X5 = liquidity (Current Assets / Current Liabilities),

X6 = capitalization (Equity / Total Capital),

X7 = firm size (Total Assets).
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Since the pioneering work of Beaver (1966) and Alt-
man (1968), a vast array of methodologies have been ap-
plied for the purposes of corporate failure prediction. In
the 1970s and 1980s, attention was focussed on Logit and
Probit regression models (Gentryet al., 1985; Zmijew-
ski, 1984; Ohlson, 1980). In more recent times, as the
field of biologically-inspired computing has flourished,
the methodologies applied to the domain of corporate fail-
ure prediction have expanded to include artificial neural
networks (Shah and Murtaza, 2000; Serrano-Cinca, 1996;
Wilson et al., 1995; Tam, 1991), genetic algorithms (Var-
retto, 1998; Kumaret al., 1997), and grammatical evolu-
tion (Brabazonet al., 2002). Other methodologies applied
to this problem include support vector machines (Fan and
Palaniswami, 2000), rough sets (Zopounidiset al., 1999),
and multicriteria decision analysis models (Zopounidis
and Dimitras, 1998). Review studies covering much of
the above literature can be found in (Dimitraset al., 1996),
and (Morris, 1997). Zhanget al. (1999) provide a good
review of prior applications of artificial neural networks
to the domain of corporate failure.

2.1. Definition of Corporate Failure

No unique definition of corporate failure exists (Altman,
1993). Possible definitions range from failure to earn
an economic rate of return on invested capital, to legal
bankruptcy, followed by the liquidation of the firm’s as-
sets. Typically, financial failure occurs when a firm incurs
liabilities which cannot be repaid from liquid financial re-
sources. However, this may represent the end of a period
of financial decline, characterized by a series of losses and
reducing liquidity. Any attempt to uniquely define cor-
porate failure is likely to prove problematic. While few
publicly quoted companies fail in any given year (Morris
(1997) suggests that the rate is below 2% in the UK, and
Zmijewski (1984) reports that this rate is less than 0.75%
in the US), poorer performers are liable to acquisition by
more successful firms. Thus, two firms may show a sim-
ilar financial trajectory towards failure, but one firm may
be acquired and ‘turned-around’ whilst the other may fail.

The definition of corporate failure adopted in this
study is the court filing of a firm under Chapter 7 or Chap-
ter 11 of the US Bankruptcy code. The selection of this
definition provides an objective benchmark, as the occur-
rence (and timing) of either of these events can be de-
termined through the examination of regulatory filings.
Chapter 7 of the US Bankruptcy code covers corporate
liquidations and Chapter 11 covers corporate reorganiza-
tions, which usually follow a period of financial distress.
Under Chapter 11, management is required to file a reor-
ganization plan in a bankruptcy court and seek approval
for this plan. On filing the bankruptcy petition, the firm
becomes adebtor in possession. The management con-

tinues to run the day-to-day business operations, but the
bankruptcy court must approve all significant business de-
cisions. In most cases, Chapter 11 reorganizations involve
significant financial losses for both the shareholders (Rus-
selet al., 1999) and the creditors (Ferriset al., 1996) of the
distressed firm. Moulton and Thomas (1993), in a study of
the outcomes of Chapter 11 filings, found that there were
relatively few successful reorganizations, despite the per-
ception that some management teams were using Chap-
ter 11 filings as a deliberate strategy for dealing with cer-
tain firm specific events such as onerous labor contracts or
product liability claims. Out of a sample of 73 firms enter-
ing Chapter 11 between 1980 and 1986 that were exam-
ined in the study, only 44 were successfully reorganized
and only 15 of these firms emerged from Chapter 11 with
more than 50% of their pre-bankruptcy assets.

2.2. Explanatory Variables Utilized in Prior
Literature

A comprehensive survey of the financial ratios employed
in 47 journal articles on corporate failure is provided by
Dimitras et al. (1996). If attention is restricted to ra-
tios drawn from the financial statements of companies,
five groupings are usually given prominence in the liter-
ature, namely, liquidity, debt, profitability, activity, and
size (Altman, 2000). Liquidity refers to the availability
of cash resources to meet short-term cash requirements.
Debt measures focus on the relative mix of funding pro-
vided by shareholders and lenders. Profitability consid-
ers the rate of return generated by a firm in relation to its
size, as measured by sales revenue and/or asset base. Ac-
tivity measures consider the operational efficiency of the
firm in collecting cash, managing stocks and controlling
its production or service process. Firm size provides in-
formation on both the sales revenue and asset scale of the
firm and acts as a proxy metric on firm history (Levinthal,
1991). A range of individual financial ratios can repre-
sent the groupings of potential explanatory variables, each
with slightly differing information content. The groupings
are interconnected, as weak (or strong) financial perfor-
mance in one area will impact on another. For example, a
firm with a high level of debt may have lower profitability
due to high interest costs. Whatever modelling method-
ology is applied in order to predict corporate distress, the
initial problem is to select a quality set of model inputs,
to preprocess these into a suitable ratio format, and then
to combine the ratios using suitable weightings in order to
construct a high quality classifier.

3. Grammatical Evolution

Evolutionary algorithms (EAs) operate on the principles
of evolution, usually being coarsely modelled on the the-
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ories of the survival of the fittest and natural selection. In
general, evolutionary algorithms can be characterized as

x[t + 1] = v
(
s
(
x[t]

))
, (2)

where x[t] is the population of solutions at iterationt,
v(·) is the random variation operator (crossover and mu-
tation), ands(·) is the selection operator. Therefore the
algorithm turns one population of candidate solutions into
another, using selection, crossover and mutation. Selec-
tion exploits information in the current population, con-
centrating interest on ‘high-fitness’ solutions. Crossover
and mutation perturb these solutions in an attempt to un-
cover better solutions, and these operators can be consid-
ered as general heuristics for exploration.

GE is a grammatical approach to Genetic Program-
ming (GP) that can evolve computer programs (or ‘rule-
sets’) in any language, and a full description of GE can be
found in (O’Neill and Ryan, 2001; 2003; O’Neill, 2001;
Ryanet al., 1998). Rather than representing the programs
as syntax trees, as in Koza’s GP (Koza, 1992), a linear
genome representation is used. Each individual, a vari-
able length binary string, contains in its codons (groups
of 8 bits) the information to select production rules from
a Backus Naur Form (BNF) grammar. In other words, an
individual’s binary string contains the instructions that di-
rect a developmental process resulting in the creation of a
program or a ‘rule’. As such, GE adopts a biologically-
inspired, genotype-phenotype mapping process.

At present, the search element of the system is car-
ried out by an evolutionary algorithm, although other
search strategies with the ability to operate over bi-
nary or integer strings have also been used (O’Neill and
Brabazon, 2004; O’Sullivan and Ryan, 2002). In particu-
lar, future advances in the field of evolutionary algorithms
can be easily incorporated into this system.

3.1. Biological Approach

The GE system is inspired by the biological process of
generating a protein from the genetic material of an organ-
ism. Proteins are fundamental in the proper development
and operation of living organisms and are responsible for
traits such as eye color and height (Lewin, 2000).

The genetic material (usually DNA) contains the in-
formation required to produce specific proteins at differ-
ent points along the molecule. For simplicity, consider
DNA to be a string of building blocks called nucleotides,
of which there are four, named A, T, G, and C, for adenine,
tyrosine, guanine, and cytosine, respectively. Groups of
three nucleotides, called codons, are used to specify the
building blocks of proteins. These protein building blocks
are known as amino acids, and the sequence of these
amino acids in a protein is determined by the sequence

of codons on the DNA strand. The sequence of amino
acids is very important as it determines the final three-
dimensional structure of the protein, which in turn has a
role to play in determining its functional properties.

TRANSCRIPTION

TRANSLATION

DNA

RNA

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Biological System

Phenotypic Effect

Program /
Function

Executed Program

Fig. 1. Comparison between the grammatical evolution system
and a biological genetic system. The binary string of
GE is analogous to the double helix of DNA, each guid-
ing the formation of the phenotype. In the case of GE,
this occurs via the application of production rules to
generate the terminals of the compilable program. In
the biological case, this occurs by directing the forma-
tion of the phenotypic protein by determining the order
and type of protein subcomponents (amino acids) that
are joined together.

In order to generate a protein from the sequence of
nucleotides in the DNA, the nucleotide sequence is first
transcribed into a slightly different format, that being a
sequence of elements on a molecule known as mRNA.
Codons within the mRNA molecule are then translated
to determine the sequence of amino acids that are con-
tained within the protein molecule. The application of
production rules to the non-terminals of the incomplete
code being mapped in GE is analogous to the role amino
acids play when being combined together to transform the
growing protein molecule into its final functional three-
dimensional form.

The result of the expression of the genetic material
as proteins in conjunction with environmental factors is
the phenotype. In GE, the phenotype is a sentence or
sentences in the language defined by the input grammar.
These sentences can take the form, for example, of func-
tions, programs or, as in the case of this study, rule sets.
The phenotype is generated from the genetic material-
(the genotype) by a process termed a genotype-phenotype
mapping. This is unlike the standard method of generating
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a solution directly from an individual in an evolutionary
algorithm by explicitly encoding the solution within the
genetic material. Instead, a many-to-one mapping process
is employed within which the robustness of the GE system
lies. Figure 1 compares the mapping process employed in
both GE and biological organisms.

3.2. Mapping Process

When tackling a problem with GE, a suitable BNF
(Backus Naur Form) grammar definition must first be de-
fined. The BNF can be either the specification of an entire
language or, perhaps more usefully, a subset of a language
geared towards the problem at hand.

In GE, a BNF definition is used to describe the out-
put language to be produced by the system. The BNF
is a notation for expressing the grammar of a language
in the form of production rules. BNF grammars con-
sist of terminals , which are items that can appear
in the language, e.g., binary operators+, −, unary op-
eratorsSin, constants1.0 etc. andnon-terminals ,
which can be expanded into one or more terminals
and non-terminals. For example, from the grammar
detailed below,<expr> can be transformed into one
of four rules, i.e., it becomes<expr><op><expr> ,
(<expr><op><expr>) (which is the same as the first,
but surrounded by brackets),<pre-op>(<expr>) , or
<var> . A grammar can be represented by the tuple
{N,T, P, S}, whereN is the set of non-terminals,T the
set of terminals,P is a set of production rules that maps
the elements ofN to T , and S is a start symbol which
is a member ofN . When there are a number of produc-
tions that can be applied to one element ofN , the choice
is delimited with the ‘|’ symbol. For example,

N = { <expr>, <op>, <pre_op> }
T = {Sin, +, -, /, *, X, 1.0, (, )}
S = <expr>

And P can be represented as:

(A) <expr> ::= <expr> <op> <expr> (0)
| ( <expr> <op> <expr> ) (1)
| <pre-op> ( <expr> ) (2)
| <var> (3)

(B) <op> ::= + (0)
| - (1)
| / (2)
| * (3)

(C) <pre-op> ::= Sin

(D) <var> ::= X (0)
| 1.0 (1)

The program, or sentence(s), produced will consist of ele-
ments of the terminal setT . The grammar is used in a de-
velopmental approach whereby the evolutionary process
evolves the production rules to be applied at each stage of

a mapping process, starting from the start symbol, until a
complete program is formed. A complete program is one
that is comprised of elements ofT .

As the BNF definition is a plug-in component of the
system, it means that GE can produce code in any lan-
guage, thereby giving the system a unique flexibility. For
the above BNF, Table 1 summarizes the production rules
and the number of choices associated with each one.

Table 1. Number of choices available
from each production rule.

Rule No. Choices

A 4

B 4

C 1

D 2

The genotype is used to map the start symbol onto
terminals by reading codons of 8 bits to generate a cor-
responding integer value, from which an appropriate pro-
duction rule is selected by using the following mapping
function:

Rule = Codon V alue % No. Rule Choices. (3)

Consider the following rule from the given grammar, i.e.,
given the non-terminalop, which describes the set of bi-
nary operators that can be used, there are four production
rules to select from:

(B) <op> :: = + (0)
| - (1)
| / (2)
| * (3)

If we assume the codon being read produces the integer 6,
then

6 % 4 = 2

would select rule(2) /. Each time a production rule has
to be selected to transform a non-terminal, another codon
is read. In this way the system traverses the genome.

During the genotype-to-phenotype mapping process,
it is possible for individuals to run out of codons, and in
this case we wrap the individual and reuse the codons.
This is quite an unusual approach in EAs, as it is entirely
possible for certain codons to be used two or more times.
This technique of wrapping the individual draws inspira-
tion from the gene-overlapping phenomenon that has been
observed in many organisms (Lewin, 2000).

In GE, each time the same codon is expressed it will
always generate the same integer value, but, depending
on the current non-terminal to which it is being applied,
it may result in the selection of a different production
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rule. This feature is referred to as intrinsic polymorphism.
Crucially, however, each time a particular individual is
mapped from its genotype to its phenotype, the same out-
put is generated. This is the case because the same choices
are made each time. However, it is possible that an in-
complete mapping could occur, even after several wrap-
ping events, and in this case the individual in question is
given the lowest possible fitness value. The selection and
replacement mechanisms then operate accordingly to in-
crease the likelihood that this individual is removed from
the population.

An incomplete mapping could arise if the integer val-
ues expressed by the genotype were applying the same
production rules repeatedly. For example, consider an in-
dividual with three codons, all of which specify rule 0
from below,

(A) <expr> :: = <expr><op><expr> (0)
|(<expr><op><expr>) (1)
|<pre-op>(<expr>) (2)
|<var> (3)

even after wrapping the mapping process would be
incomplete and would carry on indefinitely unless
stopped. This occurs because the nonterminal<expr>
is being mapped recursively by production rule 0, i.e.,
it becomes <expr><op><expr> . Therefore, the
leftmost<expr> after each application of a production
would itself be mapped to a<expr><op><expr> ,
resulting in an expression continually growing as follows:
<expr><op><expr><op><expr><op><expr> ,
etc.

Such an individual is dubbed invalid as it will never
undergo a complete mapping to a set of terminals. For
this reason we impose an upper limit on the number of
wrapping events that can occur. It is clearly essential that
stop sequences are found during the evolutionary search
in order to complete the mapping process to a functional
program, the stop sequence being a set of codons that re-
sult in the non-terminals being transformed into elements
of the grammars terminal set.

Beginning from the left-hand side of the genome,
then, codon integer values are generated and used to se-
lect rules from the BNF grammar, until one of the follow-
ing situations arises:

1. A complete program is generated. This occurs when
all the non-terminals in the expression being mapped
are transformed into elements from the terminal set
of the BNF grammar.

2. The end of the genome is reached, in which case
the wrapping operator is invoked. This results in
the return of the genome reading frame to the left-
hand side of the genome once again. The reading
of codons will then continue, unless an upper thresh-
old representing the maximum number of wrapping

events has occurred during this individual’s mapping
process.

3. In the event that a threshold on the number of wrap-
ping events has occurred and the individual is still
incompletely mapped, the mapping process is halted,
and the individual is assigned the lowest possible fit-
ness value.

To reduce the number of invalid individuals being passed
from generation to generation, a steady-state replacement
mechanism is employed. One consequence of the use of
a steady-state method is its tendency to maintain fit indi-
viduals at the expense of less fit and, in particular, invalid
individuals.

In this study, the GE algorithm uses a steady-state
replacement mechanism, such that two parents produce
two children the best of which replaces the worst indi-
vidual in the current population, if the child has greater
fitness. The standard genetic operators of bit mutation
(probability of 0.01), and crossover (probability of 0.9)
are adopted. A series of functions is pre-defined as these
are a series of mathematical operators. A population of
initial rule-sets (programs) is randomly generated, and by
means of an evolutionary process, these are improved. No
explicit model specification is assumedex-ante, although
the choice of mathematical operators defined in the gram-
mar does place implicit limitations on the model specifi-
cations amongst which GE can search.

4. Problem Domain and an Experimental
Approach

This section describes both the data utilized by, and the
model development process adopted in, this study.

4.1. Sample Definition and Model Data

A total of 178 firms were selected judgemental (89 failed,
89 non-failed), from the Compustat Database. Firms from
the financial sector were excluded on the grounds of a lack
of comparability of their financial ratios with other firms
in the sample. The criteria for the selection of the failed
firms were:

i. Inclusion in the Compustat Database in the period
1991–2000

ii. Existence of required data for a period of three years
prior to entry into Chapter 7 or Chapter 11

iii. Sales revenues must exceed $1M

The first criterion limits the study to publicly quoted US
corporations. For every failing firm, a matched non-failing
firm is selected. Failed and non-failed firms are matched
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both by the industry sector and the size (sales revenue
three years prior to failure). It is recognized that the use
of an equalized, matched sample entails a sampling bias
and eliminates the firm size and industry nature as poten-
tial explanatory variables (see Morris (1997) for a detailed
discussion of these points), and it is noted that utilizing an
unmatched sample imposes its own bias. The set of 178
matched firms are randomly divided into model building
(128 firms) and out-of-sample (50 firms) datasets, with
each dataset consisting of matched pairs of failed and non-
failed firms. The dependant variable is binary (0,1), rep-
resenting either a non-failed or a failed firm. In this study,
rather than pre-specifying financial ratios, GE can create
ratios from raw financial data. We have initially restricted
our choice of raw financial data to the following twelve
items, extracted from their annual financial statements:

i. Sales

ii. Net Income

iii. Gross Profit

iv. EBIT

v. EBITDA

vi. Total Assets

vii. Total Current Assets

viii. Total Liabilities

ix. Total Current Liabilities

x. Total Long-Term Debt

xi. Cash from Operations

xii. Free-Cash Flow

Such information was collected for each firm for the three
years prior to entry, either by themselves or their matched
firms, into Chapter 7 or Chapter 11 (denoted as T-3, T-2
and T-1, where T-3 is three years prior to failure). The
date of entry into Chapter 7 or Chapter 11 was determined
by examining US Securities and Exchange Commission
(SEC) regulatory filings for each firm.

Three grammars are employed, in order to exam-
ine the impact on predictive accuracy of allowing GE to
evolve classification rules of varying complexity. The
three grammars are as follows:

Grammar 1

<lc> ::= output = <coeff> * ( ( <var> ) / ( <var> ) );
<coeff> ::= ( <coeff> ) <op> ( <coeff> )

| <float>
<var> ::= Sales | Net Income | Gross Profit

| EBIT | EBITDA | Total Assets
| Total Current Assets | Total Liabilities
| Total Current Liabilities | Total Long Term
Debt | Cash From Operations | Free Cash Flow

<op> ::= +
| -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar 2

<lc> ::= output = <expr> ;
<expr> ::= ( <expr> ) + ( <expr> )

| <coeff> * ( <var> / <var> )
<var> ::= Sales | Net Income | Gross Profit

| EBIT | EBITDA | Total Assets
| Total Current Assets | Total Liabilities
| Total Current Liabilities | Total Long Term
Debt | Cash From Operations | Free Cash Flow

<coeff> ::= ( <coeff> ) <op> ( <coeff> )
| <float>

<op> ::= +
| -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar 3

<lc> ::= output = <expr> ;
<expr> ::= ( <expr> ) + ( <expr> )

| <coeff> * ( <ratio> / <var> )
<ratio> ::= <ratio> <op> <ratio>

| <var>
<var> ::= Sales | Net Income | Gross Profit

| EBIT | EBITDA | Total Assets
| Total Current Assets | Total Liabilities
| Total Current Liabilities | Total Long Term
Debt | Cash From Operations | Free Cash Flow

<coeff> ::= ( <coeff> ) <op> ( <coeff> )
| <float>

<op> ::= +
| -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar 1 permits the construction of a predictive rule
consisting of a single ratio, formed from any two discrete
pieces of raw financial data. This ratio can be rescaled as
required by an evolved coefficient parameter. In essence,
this grammar searches for the best univariate predictive
model. Grammar 2 permits the construction of predictive
rules which chain ratios together, producing linear rules of
the form

output = coefficient * Ratio X

+ coefficient * Ratio Y + · · · .

In each of these Grammars, only ratios of the forma/b,
where a and b are discrete pieces of financial data, are
permitted. Grammar 3 allows the construction of a lin-
ear chain of ratios, where the ratios can take the form
(a + b + · · ·)/x, greatly increasing the number of possi-
ble ratios that can be formed from the raw data. The output
from the classifier is post-processed using a cut-off value
of 0.50 to produce a classification.

4.2. Selection of the Fitness Function

Most studies of corporate failure adopt classification ac-
curacy as their error (fitness) criterion. If misclassification
costs are symmetric, the sample error rate is

error sample =
m1 + m2

n1 + n2
, (4)
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where m1 is the number of failed firms (out ofn1) in
the sample that are misclassified andm2 is the number
of non-failed firms (out ofn2) in the sample that are mis-
classified. It is recognized that misclassification costs will
not always be symmetric, and in this case, overall classifi-
cation accuracy will not be an adequate measure of model
performance because it does not reflect the relative costs
of misclassifications between the two groups. However,
misclassification costs cannot be defined uniquely, as their
relative sizes will vary depending on the identity of the
decision-maker. This study assumes that misclassification
costs are symmetric, but alternative treatments could be
easily incorporated in the fitness function.

5. Results

The results from our experiments are now provided. Each
of the GE experiments is run with a population size of
500, for 100 generations, with one-point crossover at a
probability of 0.9, one point bit mutation at a probability
of 0.01, roulette selection, and steady-state replacement.
30 independent runs of the GE algorithm were undertaken
in each experiment, and the reported results include the
best evolved individual, the mean best fitness and mean
average fitness over the 30 runs in each case.

Three series of models were constructed for each
grammar, using raw financial information drawn from
one, two and three years (T-1, T-2 and T-3) prior to
failure. In all cases the reported accuracies are deter-
mined across three recuts of the dataset into training and
test (out-of-sample) data, maintaining an equal balance
of failed/non-failed companies in the resulting training
and testing datasets. The average of the best individu-
als evolved, across all three data recuts, for each period
is reported in Table 2.1

Table 2. In-sample (out-of-sample) classification accu-
racies for the best individuals, averaged across
the three recuts of the dataset, in each gram-
mar for the three years prior to failure.

Years Prior Grammar

to Failure 1 (%) 2 (%) 3 (%)

1 82.67 (70.67) 85.67 (73.33) 86.00 (76.67)

2 77.33 (68.67) 80.33 (73.33) 80.33 (73.33)

3 71.67 (57.33) 73.00 (62.67) 75.00 (56.67)

As expected, the classification accuracies improve
as the date of failure approaches, ranging from approx-
imately 85% (in-sample) at T-1, to approximately 73%

1 The best individual is defined with reference to performance on the
in-sample data.

(in-sample) at T-3. Across the three grammars, Gram-
mar 1, which can only evolve a univariate ratio, is slightly
out-performed both in and out-of-sample by Grammars 2
and 3. Neither Grammar 2 nor 3 clearly dominate each
other, suggesting that the ability of Grammar 3 to evolve
complex ratio forms has not led to the generation of better
quality classifiers.

To assess the overall hit-ratio of the developed mod-
els (out-of-sample), Press’s Q statistic (Hairet al., 1998)
was calculated for each model. For T-1 and T-2, the null
hypothesis that the obtained out-of sample classification
accuracies are not significantly better than those that could
occur by chance alone was rejected at the 5% level. At-
test of the hit-ratios also rejected a null hypothesis that the
classification accuracies were no better than the chance at
the 5% level for both T-1 and T-2.

Additional metrics were collected on the positive ac-
curacy (correct prediction of non-failure) and negative ac-
curacy (correct prediction of failure) for each of the mod-
els. Table 3 provides these for the out-of-sample datasets.
All reported results are averaged across the three different
randomizations of the dataset for each year. In the case
of the univariate grammar (Grammar 1), the results for
T-2 and T-3 display asymmetry, with the evolved classifier
identifying surviving companies more easily than failing
companies. Generally the results for Grammars 2 and 3
are reasonably symmetric, but in line with prior findings
(Altman, 1993) the evolved classifiers find it slightly eas-
ier to correctly classify non-failing than failing compa-
nies.

Table 3. Positive (negative) classification accuracy
out-of-sample for the best individuals, aver-
aged across all three recuts.

Years Prior Grammar

to Failure 1 (%) 2 (%) 3 (%)

1 69.33 (72.00) 77.33 (69.33) 78.67 (74.67)

2 90.67 (46.67) 73.33 (73.33) 74.67 (72.00)

3 65.33 (49.33) 65.33 (60.00) 65.33 (48.00)

Graphs of the evolution of fitness during the train-
ing run, for the best individual for each Grammar, time
period and data cut are provided in Figs. 2–4. Graphs of
the fitness evolution for the average of the best individuals
across all 30 runs are also provided. The graphs suggest
that the choice of 100 generations was sufficient to allow
the evolution of quality classifiers for each grammar, with
most of the gains in evolutionary fitness occurring in the
first 50 generations.

In order to provide insight into the form of the clas-
sifier rules evolved by the grammars, Table 4 lists the best
classifiers (defined as producing the ‘best’ classification
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Fig. 2. Best (left) and average (right) fitness values for
all three recuts, for one year prior to failure, for
all three grammars on the in-sample dataset.

performance on the training dataset) for each grammar
for T-1 to T-3. In some cases, there was more than one
rule producing an equivalent classification accuracy. In
these cases, the best classifier listed in the table was cho-
sen judgementally. The interpretation of these classifier
rules is considered in Section 5.1.

5.1. Discussion

Despite using financial data drawn from a wide variety of
industrial sectors, the evolved models showed a capabil-
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Fig. 3. Best (left) and average (right) fitness values for
all three recuts, for two years prior to failure,
for all three grammars on the in-sample dataset.

ity to discriminate between failing and non-failing firms,
most notably in the two years prior to corporate collapse.
The risk factors suggested by each classifier in Table 4
differ somewhat but present plausible findings.

In Grammar 1, the best evolved ratios for all three
time periods contain an earnings (profit) component, and
relate the size of the company’s profits to its short-term
liabilities. In all cases, the sign of the ratio coefficient is
plausible, with lower (or negative) earnings indicating a
greater risk of failure.



A. Brabazon and M. O’Neill372

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0  20  40  60  80  100

Me
an

 B
es

t F
itn

es
s (

30
 R

un
s)

Generation

Grammatical Evolution - Corporate Failure

g1 cut1
g1 cut2
g1 cut3
g2 cut1
g2 cut2
g2 cut3
g3 cut1
g3 cut2
g3 cut3

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  20  40  60  80  100

Me
an

 A
ve

rag
e F

itn
es

s (
30

 R
un

s)

Generation

Grammatical Evolution - Corporate Failure

g1 cut1
g1 cut2
g1 cut3
g2 cut1
g2 cut2
g2 cut3
g3 cut1
g3 cut2
g3 cut3

Fig. 4. Best (left) and average (right) fitness values for
all three recuts, for three years prior to failure,
for all three grammars on the in-sample dataset.

The classifier rule for T-1 under Grammar 2 utilizes
a combination of ratios which focus on the ability of the
company to generate cash from its sales, and the size of
the debt of the company relative to its asset base. The
coefficients are plausible with strong cash generation and
low indebtedness suggesting a financially healthy com-
pany. For T-2, the classifier concentrates on the ability
of the company to generate profits from its sales, and the
size of the debt of the company relative to its asset base.
Strong profitability and low indebtedness indicate finan-

Table 4. Best classifiers evolved for each
of the years and grammars.

Years Prior
Best Classifier

to Failure

Grammar 1
1 −2∗(Total Current Liabilities / Net Income)
2 1− 19∗(Net Income / Total Current Liabilities)
3 1− 7∗(Net Income / Total Current Liabilities)

Grammar 2
1 (−1− 6∗(Cash From Operations / Sales) )

+2∗(Total Liabilities / Total Assets)
2 1*(Total Liabilities / Total Assets) -5*(EBIT / Sales)
3 −2∗(Cash From Operations / Gross Profit)

+3− 29.9∗(Net Income / Total Current Liabilities)
Grammar 3

1 −4∗( (Total Assets - Total Current Assets + EBIT) / Sales )
+− 20∗( (EBITDA - Net Income) / Net Income )

2 (−5∗(Net Income / Total Current Liabilities) )
+.1∗(Sales / Gross Profit)

3 ( 3− 20∗(Net Income / Total Current Liabilities) )
−20∗(Cash From Operations / Sales)

cial health. In the case of T-3, the evolved ratios concen-
trate on the cash generation ability of the company, and the
level of short-term debt relative to its profitability. High
cash generation relative to sales and low levels of short-
term debt relative to profits indicate a healthy company.

The evolved classifiers under Grammar 3 are similar
in form for T-3 and T-2, emphasizing the cash generation
ability of the company and the level of profit relative to
the company’s short-term liabilities. In both cases, strong
cash generation and low levels of short-term debt relative
to the company’s profit suggest a financially viable com-
pany. For T-1, the evolved classifier concentrates on the
level of profit generated by the company relative to its
short-term liabilities. Again, high levels of profit relative
to short-term debt indicate a financially strong company.

The evolved rules and their related coefficients,
across all grammars and across all time periods, are in
accordance with financial intuition, and do not display the
evidence of merely resulting from data-mining. The re-
sults also suggest that Grammars 2 and 3, which have the
capability to evolve complex combinations of the financial
data, did not greatly out-perform the simpler models pro-
duced by Grammar 1. Considering the individual gram-
mars, it is interesting that despite the potential of Gram-
mars 2 and 3 to generate long, complex ratio chains, this
bloating did not occur and the evolved classifiers are rea-
sonably concise in form. We also note that the evolved
classifiers (unlike those created by means of a neural net-
work methodology, for example) are amenable to human
interpretation.

6. Conclusions

In this paper a novel methodology, GE, was introduced
and applied for the purposes of the prediction of corporate
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failure. It is noted that this novel methodology has general
utility for rule-induction applications. GE was found to be
able to evolve quality classifiers for corporate failure from
raw financial information. In performing this task, GE
was required to evolve its own ratio representation of the
financial data, rather than being supplied with modeler-
defined financial ratios as is typically the case in studies
of corporate failure.

In assessing the performance of the developed mod-
els, a number of caveats must be borne in mind. The
premise underlying this paper and all empirical work on
corporate failure prediction is that corporate failure is a
process, commencing with poor management decisions,
and that the trajectory of this process can be tracked using
accounting ratios. This approach does have inherent limi-
tations. It will not forecast corporate failure which results
from a sudden environmental event. Although not un-
dertaken in this study, the incorporation of non-financial
qualitative explanatory variables or variables related to the
firm’s share price performance could further improve clas-
sification accuracy. Finally, the firms sampled in this study
are relatively large and are publicly quoted. Thus, the
findings of this study may not be extended to small busi-
nesses. Despite these limitations, the high economic and
social costs of corporate failure imply that models which
can indicate declining financial health will have utility.
Given the lack of a clear theory underlying corporate fail-
ure, empirical modelling usually adopts a combinatorial
approach, a task for which GE is well suited.
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