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This paper reports a system based on the recently proposed evolutionary paradigm of gene expression programming (GEP).
This enhanced system, called EGIPSYS, has features specially suited to deal with symbolic regression problems. Amongst
the new features implemented in EGIPSYS are: new selection methods, chromosomes of variable length, a new approach to
manipulating constants, new genetic operators and an adaptable fitness function. All the proposed improvements were tested
separately, and proved to be advantageous over the basic GEP. EGIPSYS was also applied to four difficult identification
problems and its performance was compared with a traditional implementation of genetic programming (LiIGP). Overall,
EGIPSYS was able to obtain consistently better results than the system using genetic programming, finding less complex
solutions with less computational effort. The success obtained suggests the adaptation and extension of the system to other
classes of problems.
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1. Introduction particular classes of problems so as to analyse its perfor-
mance.
Evolutionary Computation (EC) constitutes an emerging ] ) ]
area of research and it has been successfully applied to _ This paper describes a flexible tool, named EGIPSYS
many problems ranging from computer science to engi- (Enhanced Gene-expression Programming for SYmbolic
neering and biology. The central idea in EC is that so- egression problems). This tool is based on GEP and was
lutions to a problem are represented as entities able toSPecifically developed for symbolic regression problems.
evolve throughout generations as a consequence of interEGIPSYS implements the basic GEP algorithm proposed
actions with other candidate solutions and the applicationn (Ferreira, 2001) and has several other improvements.
of genetic operators. The main factor in the evolution is Amongst the new features implemented in our system are:
selective pressure caused by the bias towards the best sd1eW Selection methods, chromosomes of variable length,
lutions. EC includes several paradigms which use con- 2 NéW approach to manipulating constants, new genetic
cepts drawn from the natural evolution of living beings OPerators and an adaptable fitness function. In this pa-
and genetics. Amongst these paradigms, the commonesPer We describe in detail the special fea_tures of EGIPSYS
are: Genetic Algorithms (GA) (Goldberg, 1989; Holland, and evaluate the performaqce of su_ch improvements with
1995), Genetic Programming (GP) (Koza, 1992; 1994), a test proplem. An application of this tool to a number 0]‘
Evolutionary Programming (EP) (Fogel al, 1966) and proble_r_ns is _also reporte_d, and results are compared with
Evolution Strategies (ES) (Rechenberg, 1973; Schwefel, @ traditional implementation of GP.
1977). More recently, Ferreira (2001; 2003) proposed a  symbolic regression is a class of problems that are
new evolutionary technique as an extension of GP, namedcharacterized by a number of data points to which one
Gene Expression Programming (GEP). Since GEP s veryyants to fit an equation. Contrary to linear, polynomial
recent, it has not yet gained widespread use, althoughpy other types of regression where the nature of the model
its characteristics suggest a large application range, over{s specified in advance, in symbolic regression one is
lapping with those of GA and GP. This encourages the given only instances of inputs-outputs (independent and
comparison of GEP with other evolutionary algorithms in - gependent variables), and no information about the model.
 This work was partly supported by a CAPES grant to W.R. Wein- T.hUS., the 90"’" CO”,SiStS in finding a mathematicgl EXpres-
ert, and a CNPQ grant to H.S. Lopes, process number Sion involving the independent variable(s) that is able to
552022/02-0. minimize some measure of error between the values of
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the dependent variable, computed with the expression and  On the other hand, if the stop condition is not met, the
their actual values. In this context, finding both the func- best solution of the current generation is kept (this means
tional form and the appropriate numeric coefficients of an elitism) and the rest is submitted to a selective process.
expression at the same time is a real challenge for whichSelection implements the survival-of-the-fittest rule, and
no efficient mathematical procedure exists. Consequently,the best individuals will have a better chance to generate
heuristic approaches, such as GP and GEP, have been delescendants. This whole procedure is repeated for several
vised to solve this problem (see, e.g., Ferreira, 2003; Hoaigenerations. As generations proceed, it is expected that,
et al, 2002; Salhet al,, 1998; Shengwet al.,, 2003). on the average, the quality of the population is improved.

2.1. Chromosome Encoding
2. Fundamentals of Gene Expression

. A chromosome is composed of genes, usually more than
Programming

one (multigenic). Each gene is divided into a head and a

. . . tail. The size of the headi] is defined by the user, but
Gene Expression Programming was proposed by Ferrequhe size of the tailt) is obtained as a function of and a

E)ZO?(l) ?SGT altdeggtl;/e to olverclc:jme tgf comr_lrjr(])n drgw— parametern. This parameter is the largest arity found in
acks o an or réal-worid problems. The€ Main e f;nction set used in the run. The following equation

Qn‘fgr_ence between GE',D’ GA and ,GP resides in the WaY elates the tail size with the other parameters:

individuals of a population of solutions are represented.

GEP follows the same Darwinian principle of the survival t=h(n—1)+1. (1)

of the fittest and uses populations of candidate solutions to

agiven problem in order to evolve new ones. The evolving Each gene encodes an expression tree. In the case of
populations undergo selective pressure and their individu- multigenic chromosomes, all ETs are connected together
als are submitted to genetic operators. by their root node using a linking function. Every gene has

a coding region known as an ORF (open reading frame) or

In GEP, like in GA, an individual is represented by a . ) -
genotype, constituted by one or more chromosomes. This® K-expression that, after being decoded, is expressed as

work follows (Ferreira, 2001) in the sense that we use only &" ET, representing a candidate solution for the problem.
one chromosome per individual. In GA, a chromosome is Symbol!c regression problem; are modelled using a set
composed of one or more genes that represent the encode@f functions and a set of terminals. The set of functions

variables of the problem. When decoded, they represemusually includes, for instance, basic arithmetic functions,
: ’ trigonometric functions or any other mathematical or user-

the phenotype. In GP, an individual is represented as a" 2 i i
tree and, usually, there is no encoding, so that the geno_deﬁned functions that the user believes can be useful for

type and the phenotype are equivalent (this is not true forthe construction of the model.. The set of terminals is com-
particular implementations). In GEP, a chromosome is aposed of constants and the independent variables of the

linear and compact entity, easily manipulable with genetic ProPlem. In the heads of genes, functions, terminals and

operators (mutation, crossover, transposition, etc. — segconstants are allowed, while in the tails, only terminals or

Section 2.2). In living beings, genes encoded in the DNA constants. Figure 1 shows how a chromosome with two

strands of the chromosomes are expressed, meaning th4lenes is encoded as a I.inea.r string and how it is expressed
they are translated into proteins with biological functions. as an ET. Note that, in this exa}mple, ,bOth genes have
In the same way, in GEP, expression trees (ETs) are thecod!ng (expressed) _and non-coding regions, just like the
expression of a given chromosome. ETs constitute the°ding and non-coding sequences of biological genes.
phenotypic representation of the problem. Inking

ORF + ORF * function

The first step of the GEP algorithm is the genera- o12:45670 012345675
tion of the initial population of solutions. This can be ac- =>-bebbablabrabbbal
complished by means of a random process or using some -
knowledge about the problem. Then, chromosomes are
expressed as ETs, which are evaluated according to a fit-
ness function that determines how good a solution is in the
problem domain. Usually, the fitness function is evaluated
by processing a number of instances of the target problem,
known as fitness cases. If a solution of satisfactory qual- e s vn
ity is found, or a predetermined number of generations is
reached, the evolution stops and the best-so-far solution isgig, 1. Chromosome with two genes and its decoding in GEP.
returned.

gene 1 gene 2

chromosome

(b-(b*a))+(a*b)
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2.2. Selection Method and Genetic Operators 3.1. Chromosome Structure and the Initial Population

GEP uses the well-known roulette-wheel method for se- As mentioned before, we propose a more flexible repre-
lecting individuals. This method is sometimes used in sentation for individuals using chromosomes of variable
both GA (Goldberg, 1989) and GP (Koza, 1992). In con- length. These chromosomes can be formed by one or
trast to GA and GP, GEP has several genetic operators tanore genes of the same size. In the original GEP, finding
reproduce individuals with modification. the optimal size of the head of a gene is an open problem.
GEP uses simple elitism (known as cloning) of the Ugually, bigger. problems.reqlljire alarger gene head.(Fer—
best individual of a generation, preserving it for the next reira, 2001). Since there is still no procedure for setéing
one. Replication is an operation that aims to preserve sevP”O”_the gene hea_d size, _frquently the user has t9 run the
eral good individuals of the current generation for the next a}lgprlt_hm sevgral tlmgs W'th different gene head S1z€s un-
one. In fact, this is a do-nothing probabilistic operation til finding a suitable dimension for a satisfactory solution.

that takes place during selection (using the rouIette—wheeIT0 cwcgmvent this problem, in EGIPSYS t'he population
method), and replicated individuals will be subjected to °f Solutions can have chromosomes of various length.

the action of the genetic operators. When the initial population is created, care must be
taken so as to have a large diversity of chromosomes. That

modifications into a given chromosome. A particularity of IS, fch_e initial popula_tlon needs to have as many different
individuals as possible so as to better explore the search

this operator is that some integrity rules must be obeyed so . . L
P arty y space in further generations. The original GEP gener-

as to avoid syntactically invalid individuals. In the head of I .
a gene, both terminals and functions are permitted (exceptztefs tlTehmllftlalf E[)r? pulat|o|n t"’ﬂ rqndor.?. IT EGIPtS ZS’.t?‘y
for the first position, where only functions are allowed). ctaull, hait of the population 1S uniformly created wi

However, in the tail of a gene only terminals are allowed. chromosome_ SIZ€s proportional t(.) a user-defined parame-
ter that specifies the gene head size range. The remaining

Similarly to GA, GEP uses one-point and two-point elements of the initial population are randomly generated
crossover. The second '[ype is somewhat more interesting/vithin the same range. This method for generating the
since it can turn on and off noncoding regions within the nitial population was inspired in the well-known ramped-
chromosome more frequently. In addition to that, another hajf-and-half method for GP proposed by Koza (1992).
kind of crossover was implemented — gene recombina- Experiments reported in Section 4 demonstrate that the
tion — that recombines entire genes. This operator ran-procedure proposed here for generating the initial popula-

domly chooses genes in the same position in two parenttion s beneficial to the evolutionary process.
chromosomes to form two new offsprings.

The mutation operator aims to introduce random

In GEP, there are two transposition operators: IS (in- 32 Constants
sertion sequence) and RIS (root IS). An IS element is a
variable-size sequence of elements extracted from a ran- crucial property that functions and terminals sets must
dom starting point within the genome (even if the genome have in GP is sufficiency (Koza, 1992). This means that
was composed of several chromosomes). Another posi-these sets must have all the elements needed to represent
tion within the genome is chosen as the insertion pOint. a Satisfactory solution for the prob|em. However, some-
This target site must be within the head part of a gene andtimes one does not have a full insight into the problem
cannot be the first element (gene root). The IS element istg determine those sets beforehand. This is specially true
sequentially inserted in the target site, shifting all elements \yhen considering the use of constants in the terminal set.

from this point onwards and a sequence with the same|n particular, for symbolic regression problems, constants
number of elements is deleted from the end of the head, sacan be useful, allowing solutions to be fine-tuned.

that the structural organization is maintained. This oper-
ator simulates the transposition found in the evolution of . : . .
gorithm itself or using a list of ephemeral constants that

biological genomes. RIS is similar to the IS transposition, makes part of the chromosome (Ferreira, 2003). In EGIP-

except that the insertion sequence must have a function A%vS we propose a user-defined policy for constants. de-
the first element and the target point must be also the firstﬁned’ by tF\)NopparameterS' the prgbab>illity of using C(,)n-

element of a gene (roof). stants and their initial range. During evolution the ab-
solute value of the constants can extrapolate the initial
range due to the mutation operator. EGIPSYS implements
a local search operator (see Section 3.5) that uses a hill-
climbing policy to fine-tune constants. Also, the system
allows the use of pre-defined constants, likee or other
user-defined values. This is particularly interesting when

In GEP, constants can be created either by the al-

3. Methodology

In this section we describe the improvements in the origi-
nal GEP implemented in EGIPSYS.
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the user knows, for example, that some physical constant3.5. Local Search Operator

will be present in the final expression. o o )
The difficulty in finding appropriate values for the con-

stants of an expression is a common problem emerging
when using GP for symbolic regression problems. Usu-
ally, GP (and also GEP) is not able to fine-tune constants,
which results in solutions of lower quality. In EGIPSYS

we devised a local search operator, especially suited for
fine-tuning the constants of a chromosome. Since this op-
erator has a high computational cost, it is probabilistically

3.3. Alternative Selection Methods

Originally, GEP uses the fitness roulette wheel method to
select individuals to be replicated and then to undergo the
action of genetic operators. For the application of the
operators, replicated individuals are chosen at random.
Besides this strategy, in EGIPSYS we implemented two - . i X
other methods: always using the roulette wheel (without 2PPlied depending on a user-defined parameter. This op-
random selection) or always using the stochastic tourna-6rator is intelligent in the sense that, after its application,
ment. Both the strategies are common in GAs. The first the current mOd_'f'ed sc_)Iutlor_1 IS evaluated a”F* if an im-
one induces a strong selective pressure and usually makeBroved solution is obtained, it is kept. Otherwise, the op-
convergence faster (most often to a local maximum). To €ration is undone. The operator is applied in two steps
circumvent this possibility, we also implemented a dy- as follows: first, the current fitness of a chromosome is

namic linear scaling, as proposed by Goldberg (1989) for saved and, s.tarting from the left outermost chromosome
GAs, to be used in conjunction with this method (see towards the right outermost one, one seeks for a constant.

Section 3.6 for details). The default selection method in ©Nce found, the value of the constant is incremented by

EGIPSYS is the stochastic tournament. This method usest0%: The solution is then re-evaluated and, if the fitness
a parameter that indicates the percentage of the populatiorS Nigher than before, the constant will be increased again.
to be chosen at random for the tournament. These individ- | S Procedure is repeated until the fitness no longer in-

uals will compete and the best ones will be selected to beC€ases, or a limit of 10 operations is reached. If, after
replicated. the first increment, the fitness value decreases, the opera-

tion is undone and the constant is then decreased by 10%.
] The procedure is repeated as before while the fitness is im-
3.4. Regular Genetic Operators proving or 10 operations are done. This finishes the first

EGIPSYS uses elitism in the same way as in the origi- step. If the limit number of operations was reached in the

nal GEP. Transposition operators were not changed infirst step (either incrementing or decremgnting the con-
their essence, except that they were adapted to work WithStam)' no further step is needed. Otherwise, the last two

variable-length chromosomes. This adaptation was necesY alues of the constant are considerdg: (the last value,

sary to warrant the creation of synctactically valid individ- when the fitness has decreased) and(the last but one

uals. Single point crossover was not implemented, only valtue, whbelntthe f|tnests |sﬂt1he h'?ﬁest;[ Oft th? St?p)'thlt IS
the two-point version was considered. Finally, gene re- not possible to guarantee thij is the best value for the

combination operates only over chromosomes of the sam constant and a new local search procedure is started aim-

size so as to guarantee that all chromosomes keep theit"9 to fine-tune that value. A new value for the constant

genes with the same head and tail sizes. Is obtained using the average;.c., = (k1 + k2)/2. The
chromosome is re-evaluated: if the fitness increases, we

The mutation operator was theione that was most Setky — knew, Otherwisek; — k... The procedure is
deeply ch_anged: basically to cope W_'th constants. Whenrepeated 10 times, thus completing Step 2. Then the next
mutation Is applied to a constant (with the defaulf[ Prob- - onstant of the chromosome is sought and the two-step lo-
ability, see Table 1), two outcomes of this operation are cal search procedure is repeated. It is worth emphasizing

possmle.: (_elthekrja_smacljl Eerturbztlon IIS added t? th|§ CON"that the local search operator has a very high computa-
stant or it is substituted by another element (a function, a ;). cost and its application must be careful.

terminal or a random constant). The probability for each
of these outcomes is 50%. In the case when a random ] ]
perturbation is to be added to the constant, it works as3-6- Fitness Function

foII_ows: if a random-generated number (betwe@rand The fitness function evaluates how good a candidate solu-
1) is greater than or equal 10.5, another random value tion is for the problem. In EGIPSYS, we normalized the
no larger the_m 10% of _the current value of Fhe constant ¢iness function between 0 and 1 such that 0 represents the
is added to it. Otherwise, the same value is SUbtr""Ctedworst possible value and 1, the best. This normalization

fr(?]m It | In the Cfe when a (lzonstant 1S subfsgté;c:ed by atr:- helps users to understand the evolution of fitness through-
other element, the structural constraints o MUSt be, ¢ generations independently of the problem. For sym-

respected, such that in the tail of genes only terminals andboIiC regression problems, it is customary to employ an
constants can appear. error measure like the sum of absolute or quadratic errors.
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We improved these two measures including two parame-

ters, ref _val and mult,

ref _wval
ﬁtness(i’t) = fN_e s (2)
ref _val+multy |S(i,5)—C(j)]
=1
fitness ; ;= re]:v_eval , (3)
ref _val+mult > [S(i,7)—C(j)]?
=1
where:
ref _wval. user-defined reference value,

fitness of individuali in generationt,
user-defined multiplying factor,

value returned by expression for fithess
casej,

actual value of fitness casg
number of fithess cases.

fitness ; 4:
mault:

S5, 4):

C():
Ne:

Both mult and ref _wval play important roles in the
fithess function since they can be used for scale compres

sion and uncompression. Depending on the value of the

fitness function for the individuals of a generation, it can
be difficult to establish an efficient selective pressure and,
therefore, evolution can stagnate. On the other hand, if the

€&

fitness. This fitness adjustment is used only for selection
purposes and is computed in every generation.

3.7. Default Parameters

Based on the original GEP (Ferreira, 2001) and on a num-
ber of empirical experiments (not reported here), we de-
fined standard values for the running parameters of EGIP-
SYS, such that it can reveal a good performance for var-
ious problems. Generality in symbolic regression prob-
lems was the focus instead of efficiency for a specific
problem. It is clear that complex problems may request
a specific configuration of parameters, as will be shown
later. Table 1 defines all default parameters for EGIPSYS.

Table 1. Default parameters for EGIPSYS.

Parameter Value

Population size 30

Number of generations 50

Linking function sum

|Function set &, —, %/}

Number of genes 3

Gene head size 6

Probability of using constants 0.2

Selection method for replication

Stochastic tournan

ent

discrepancies among fitness values are large, the high se
lective pressure leads to premature convergence. The twg

FTournament size ize

Elitism operator

10% of population g

parameters of the fitness functions in (2) and (3) can be

set by the user to adjust the normalized fitness to the mag-|

nitude of the error measure (see Fig. 2). Typical values
for mult are 10, 1 or 0.1, and foref wval they are 1, 10
or 100. Besides this static adjustment of the fithess val-

ues, there is also a dynamic adjustment given by a linear

scaling, as suggested by Goldberg (1989) for GAs. When

this scaling is on, fitness values are adjusted by a linear

equation such that the average fitness is kept constant an

the maximum fitness is adjusted to the doubled average

e 01
a1
x 10

*o,

normalized fitness

Coen,,
voq,
"’0'0..'0.....

eose

o
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Fig. 2. Fitness normalization usingef_val = 10
for different values ofmult.

Cloning
Mutation probability 0.05
IS and RIS transpositions probabilities 0.1

Two-point crossover probability 0.3

Gene recombination probability 0.1
Accuracy 0.01
Fitness function cf. Egn. (2)
mult 0.1

Uref val 10

Use dynamic linear scaling yes

4. Experiments and Results

In this section we present the results of experiments us-
ing EGIPSYS for selected symbolic regression problems.
EGIPSYS was developed under the graphics interface of
Microsoft Windows 2000 and all experiments reported in
this paper were run on a PC-clone with an AMD Athlon-
XP 2.4 MHz processor and 512 MBytes of main memory.
These experiments aimed to evaluate the improvements
featured in EGIPSYS, as well as to compare its perfor-
mance with a popular GP system, namely LilGP (Zongker
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et al, 1998). LiIGP is based on the genetic programming (functions and terminals) of the best result found
system proposed by Koza (1992), and is useful for vari- (nodes;.s:). Due to the stochastic nature of both systems,
ous problems, including symbolic regression. LilGP ver- we run each experiment 10 times, with different random
sion 1.1 is freely available on the Interheind, for the ex-  seeds and we report the average values and their standard
periments reported here, we used the default parametersieviation. Except for the sunspot problem, unless other-

shown in Table 2.

Table 2. Default parameters for LilGP.

Parameter Value
Population size 500
Number of generations 50

Method for generating the Ramped half-and-half
initial population
Initial tree depth [2..6]

Maximum tree depth during 17
run

Breeding phases 2 (crossover and reproduction)

Selection method for both Roulette wheel
phases

Crossover probability
Reproduction probability

0.9
0.1

The first problem (cf. Section 4.1) concerns the pre-
diction of the number of sunspots, based on previous ob-
servations. This is a classical time-series prediction prob-
lem, a special type of symbolic regression. This problem

is used to evaluate the improvements proposed over thet

basic GEP.

The next problem (cf. Section 4.2) is the identifica-
tion of a quadratic function corrupted by additive noise.
It consists of a simple toy problem for symbolic regres-

wise stated, all the experiments used the default param-
eters shown in Table 1 for EGIPSYS and the parameters
shown in Table 2 for LiIGP.

4.1. Sunspot Problem

In this section, in contrast to the following, we aimed
at verifying what is the effect of the proposed improve-
ments implemented in EGIPSYS, compared with the orig-
inal GEP. Data used in this experiment are related to the
number of sunspots observed yearly, from 1700 to 1988.
This dataset was used for testing several machine-learning
systems, including GEP (Ferreira, 2003; Weigetdl.,,
1992). Originally, there were 289 consecutive observa-
tions, but we use only 100, as the same data were used by
(Ferreira, 2003). For this time-series problem, it was as-
sumed that the prediction of a given value depends on the
previous 10 observations. Therefore, the problem has 10
inputs and one output.

We run EGIPSYS using parameters simulating the
basic GEP (Ferreira, 2001) as the baseline for further com-
parisons. Next, using the same parameters, the effect of
five features implemented in EGIPSYS was tested sepa-
rately. Finally, all the proposed improvements were used
ogether. These experiments were arranged in seven series
in which the system was run 100 times each with different
random seeds. The following experiments were done:

(A) Basic GEP;

sion and, therefore, shall not represent a great challenge(B) GEP with different chromosome lengths. The obje-

for both systems. The remaining three problems (Sec-
tions 4.3—4.5) represent increasing levels of difficulty and
were drawn from a database of identification problems
available on the Internét

The results of the experiments are presented in ta-
bles for both systems, EGIPSYS and LilGP. We present
the correlation coefficient-f that quantifies the similar-
ity between the given set of points of a problem and those
produced by the equation found. This statistical measure
ranges from+1 to —1. At the extremes, there are ex-

act correlations between the observed and predicted val-

ues (directly proportional, i.eq = 1, or inversely pro-
portional, i.e.,» = —1). The closerr to zero, the
less correlation between observed and predicted values.
We also present the number of generations necessary to
find the best solutiongen,.,) that will be used to esti-

tive is to verify the influence of a larger diversity in
the initial population. Gene head lengths were set to
the range[6..12];

(C) GEP with tournament selection. The objective is to
verify the influence of the selection method in the
overall performance;

(D) GEP with linear scaling. This experiment aims to
check whether or not linear scaling can alleviate the
selective pressure caused by the roulette wheel selec-
tion method throughout generations;

) GEP with a different fitness function. The objective
is to verify the utility of the fithess function defined
in Eqn. (2), in comparison with the original method

proposed in (Ferreira, 2001). Parametet$_val
and mult were set to default values (see Table 1);

mate the computational effort, and the number of nodes (F) GEP with constants and the special mutation operator.

Ihttp://garage.cps.msu.edu/software/software-index.html
http://iwww.esat.kuleuven.ac.be/~tokka/daisydata.html

This experiment aims to evaluate the impact of using
constants as building blocks for the algorithm. The
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probability of using constants was set@® and the
initial range to[—10, 10];

(G) EGIPSYS with default parametérsThe objective is
to verify the joint effect of (B+C+D+E+F). Output  System r

Table 4. Results of 10 runs for the noisy
quadratic function problem.

geny, . nodes pest

In Table 3, fi..: is the average fitness value of the y  EGIPSYS 0.987+0.003 34.8+10.9  27.4+3.6
best individual (using the fitness function originally pro- LilGP 0.989+0.000 39.2+£7.4 158.8484.9
posed for GEP),AME is the average of the sums of the
_absolute mean errors (L_Jsed_m thg fithess functipgp),. 4.3 Lake Erie Problem
is the average processing time (in seconds) for the com-
plete run. The other measures were defined before. NOticeThe data for this prob|em are a result of a simulation re-
that, for Experiments E and G, we used Eqn. (2) as the fit- |ated to the identification of the western basin of the lake
ness function. However, in these cases, the original fitnessgrie (USA/Canada) and were first reported in (Guidetzi
of GEP was also computed for the best individual, but it a|. 1980). This database has 4 series of 57 samples with
was used only for comparison with the other experiments. 5 input and 2 output parameters. The four series are: the

original data with no noise and the same data with 10%,
Table 3. Results of different experiments for 20% and 30% additive white noise. The input variables
100 runs of the sunspot problem. are: water temperature{), water conductivity {»), wa-
ter alkalinity (z3), NO3 concentration%,), and the to-
tal hardness of water:§). The output variables are: the

’ EXp fbest AME Dtime T gen best nodes best

A 750295 16.63 56.19 0799 448 22 7 amount of dissolved oxygem) and algae concentration

B 760412 1551 4821 0837 424 191 .(yg). In this study we choose only the outpyt ) for test-

C 7620.84 15.32 61.23 0.825 44.6 23.5 ing EGIPSYS and LIIG_P' .

D 7586.90 1570 56.43 0.822 43.6 219 The results for this problem are shown in Table 5.

E 755151 16.09 57.99 0.820 44.2 291 Note that, |n_aII cases, EGIPSYS performgd co.nS|derab.Iy

- " ) 44 014 better than LilGP, even though the population size used in
05.66 38 55.28 0.836 S “ LiIGP exceeds that of EGIPSYS by a factor of 16.

G 7756.88 13.81 50.50 0.845 46.9 19.8

Table 5. Results of 10 runs for the lake Erie problem.

In Table 3 it can be seen that, except fpm,.,, and |
nodesyest, the basic GEP performed worse than any other :
improvement, notably for the performance measures. On [Vt ~Monoise  EGIPSYS.891:£0.038 45.546.0 '31.2£17.9

the other hand, Experiment G demonstrates that the im- LIGP___0.73120.164 36.5+13.0 155.8£102.5

. X —10% noise EGIPSY®.890+0.030 47.242.4 25.24+4.9
provements implemented in EGIPSYS are really advanta- |* ’ .
geous LIGP  0.71840.125 38.6£14.1 44.8462.3

Y1 — 20% noise EGIPSY®.847+0.037 48.3+1.9 24.8+3.5
LIGP  0.666-£0.127 38.8:10.5 104.8+74.4
4.2. Noisy Quadratic Function Problem y1 — 30% noise EGIPSY®.746+£0.067 45.5+5.3 25.8+4.3

LilGP 0.691£0.129 32.6+12.4 146.0+£74.9

Output System T geNpest nodes pest

This is a synthetic problem of a simple polynomial regres-
sion where the output is corrupted by additive noise. For
this problem, a total of 201 data points were generated by4.4. pH Problem

y = 22% — 3z + 4 + noise, (4) This is a highly nonlinear problem of the process industry
where noise = (rnd/5) — 0.1, and rnd is a randomly and it is .related t? thte s:mulatlgn o(;ta pkH Il;lﬂelfbt\‘zbllzlatlon
generated number in the rand@, 1]. The input vector Eg%czessjr';] a COBIS anh-vo ;Jme_s |rrte ‘T"”bl( 'Cth 3&."d
z(i¢) was obtained fromz (i + 101) = sin(:/10), with : )'. € probiem has two input variables. the acid so-
N lution inflow (z1) and the base solution inflowi{), and
i = —100,...,100. : o
one output dependent variable: the pH of the solution in
the tank ;). There are 2001 samples collected at regular
intervals (L0 sec), which are used as fitness cases in both
systems.

As shown in Table 6, EGIPSYS performs again con-
3parameters shown in Table 1, except for the use of different gene Sidere_‘bly better_than_ LilGP, despite the tremendous differ-
head lengths, see Experiment B. ence in population sizes.

The results presented in Table 4 show that both sys-
tems produced very good results. To illustrate this, the
best solution found by EGIPSYS was = 222 — 3z +
3.981, rather close to Eqgn. (4).
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Table 6. Results of 10 runs for the pH problem. Table 8. Results of 10 runs for the power plant problem.
’Output System r geNyesy  MOAESpest ‘ ’Output System r gen .. nodes pest
Y EGIPSYS 0.636:0.339 41.6:6.2 24.4:3.7 y1  EGIPSYS0.827+£0.057 47.6£2.6 28.6+£8.4
LilGP 0.184+0.171 7.8:9.8 17.4-19.1 LilGP 0.790£0.090 25.4+£12.3 40.0+29.1

y2 EGIPSYS0.634+0.087 47.6+2.2 26.0+6.3

) o LiIGP 0.45840.150 21.9420.5 22.4426.9
Another experiment was performed considering the vs EGIPSYS0.616+0.070 47.5452 252455

putput of the system as depgndent not only on the current LilGP 0.525-£0.117 26.9413.8 162.24147.1
inputs, but also on the previous ones. Therefore, a new
experiment was performed using both the current sample
(i-th) and the previous onéi(— 1)-th). The notation used difficulty for symbolic regression. For all three subprob-
is: iz, for the current acid solution inflow anid 'z, for lems, EGIPSYS performed better than LilGP.

the previous sample, aric:, for the current base solution Again, an additional run of EGIPSYS was done with
inflow and “~ 'z, for the previous sample. Consequently, special parameters. Now, only outpy was used (the

the problem now is to find a mathematical relationship be- one with the worst average results in Table 8). The same
tween the current value of pHy) as a function of'z, parameters of the second additional run of the pH problem
‘zo, 12y and "z, Two further runs of EGIPSYS  were used, except that the local search operator was also
were performed to test its specific features. In the first applied every 50 generations (with a probability(ot ).

run, the range for the head of genes was sg61d5], the The results for this additional run are in Table 9. With
population size was increased to 100 and the number Ofyhe aqditional computational effort needed by the local

generations was set to 250. Fpr the second run, the samegg,cn operator (and more generations), an improvement
parameters were used and we included the local search opg,er the previous solution was observed.

erator, being applied with a probability 61 only in the
last 10 generations, just to fine-tune the constants. All the

remaining default parameters listed in Table 1 were usedTab|e 9. Results for an additional run of EGIPSYS for the
in both runs. power plant problem with non-standard parameters.

The results of these two runs are shown in Table 7, ’ Output _ System , gen nodessn ‘
where it can be seen that EGIPSYS was able to improve EGIPSYS 0699 Zbgsé a1
the previous result further, at the expense of more genera- ’ Y3 : ‘
tions.

N 5. Discussion and Conclusions
Table 7. Results for two additional runs of EGIPSYS for the pH

problem with non-standard parameters. In this paper we presented an enhanced gene expres-
sion programming system (EGIPSYS) specially suited for

Output _System run _r _ geny,, nodesie | symbolic regression and we compared its performance
y EGIPSYS 1 0.766 150 24 against a traditional genetic programming system (LiIGP)
EGIPSYS 2 0.800 243 42 in several instances of identification problems. Besides,

we experimentally showed that all improvements pro-
posed in EGIPSYS over the basic GEP are advantageous.

4.5. Power Plant Problem For both EGIPSYS and LilGP, one can evaluate the

average computational effort necessary for finding the best
This problem uses data collected from a 120 MW thermo- solution by means of a produ€yen,, ., - nodespes: - Ne).
electric power plant (Pont-sur-Sambre in France). They This product reflects the number of trials that an algorithm
were used in (Guidorzi and Rossi, 1974) and, later, in needed to find the best solution of the run. Since the runs
(Moonenet al, 1989). There are 5 input variables: gas were performed using the same number of fithess cases
flow (z1), turbine valves openinge(), super heater spray  (Ne) for each problem, this parameter can be disregarded
flow (x3), gas dumpersx,) and air flow 5), and 3 out- for comparison purposes between the methods.

put variables: steam pressurg X, main steam tempera- Another performance metric to be analyzed is the
ture y2) and reheat steam temperatug)( A total of  complexity of the solution, related to the number of nodes
200 samples are available as fitness cases. of the tree representing the best solution. Solutions with

Table 8 reports the results obtained for this problem. a large number of nodes, besides being difficult to under-
Each independent variable represents a different degree oftand (especially in systems where the transfer function
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has some physical meaning), can be overfitted to the in-fitting the target transfer function, cf. Eqn. (4), almost per-

put data (fithess cases). In this case, the extrapolation offectly. This can be inferred by the average correlation co-
the mathematical expression obtained beyond the rangeefficients in Table 4, which are practically the same and
of input data should be performed with care. Therefore, close to1l. However, the computational effort needed by

less complex solutions tend to be more general. Nei- LiIGP was 18 times higher than that of EGIPSYS (recall

ther EGIPSYS nor LilGP have any explicit mechanism to the population size of both systems), and the best solu-
simplify the mathematical expressions manipulated (like tions found were about 6 times larger than those found by
the edition operator suggested by Koza (1992)). Conse-EGIPSYS.

guently, all obtained solutions could be simplified, reduc- For the lake Erie problem, EGIPSYS found good re-
ing the overall number of nodes. Nevertheless, it is possi- gits, whereas LilGP was unable to do so. As expected,
ble that the form GEP represents individuals (coding and the quality of solutions for both systems decreased as the
non-coding regions within the chromosome) that may lead nojse increased (see Table 5). However, EGIPSYS con-
to simpler solutions than those obtained by GP. The bloatsjstently found better solutions than LilGP. Regarding the
effect is a well studied issue in GP, but notin GEP. There- number of generations to find the best solutions, they re-
fore, although this hypothesis seems to be fair, its proof is mained almost the same, independently of the noise level
beyond the scope of this paper. This seems to be an opeRy the problem. Also, EGIPSYS needed much less com-
field for further research. putational effort than LiIGP (around 13 times less, inde-
The experiments performed to evaluate the improve- pendently of the noise level). For most cases, the solutions
ments proposed in EGIPSYS clearly show their advan- found by LilGP were about 5 times more complex than
tages. In all these experiments, the performance measurethose found by EGIPSYS.
by frest and AME was equivalent and the use of a dif- For the pH problem, neither EGIPSYS nor LilGP
ferent fitness function (experiment E) led to a small im- was capable of finding good solutions. The extremely low
provement over the basic GEP. The small difference in quality solutions found by LiIGP suggest that this algo-
the r values for all experiments suggests that this is not a rithm was not able to escape from local minima. Even
good quality measure for a solution. The use of a stochas-so, overall, EGIPSYS revealed again a better performance
tic tournament as the selection method is computation-than LiIGP. The two independent runs of EGIPSYS
ally more expensive than roulette wheel. This is observedwith non-standard parameters showed its potential to deal
in the high p4;,. value of Experiment C. However, this  with difficult nonlinear problems. The assumption that
method does notimpose a high selective pressure throughthe previous inputs have influence on the current output
out generations, thus avoiding fast convergence to localis commonly made in nonlinear identification problems.
minima. This can be inferred from the good performance With this approach the difficulty of the problem increased,
regarding bothf,.s;, AME andr. Itis possible thatfor  as more independent variables were used. Therefore, a
harder problems this selection method can be more usefulgreater computational effort was necessary to find a better
The use of linear scaling to control the selective pressuresolution (see Table 7). When the local search operator was
induced by roulette wheel (Experiment D) did not show turned on, an even better result was found, reinforcing its
significative improvements in performance, but, on the usefulness in difficult problems.
other hand, a small computational effort was needed. The For the power plant problem, only for outpyt it
use of chromogqmes of different Ienght; (Experimgnt B) was possible to find satisfactory solutions. Both EGIP-
decreases significantly the processing timg.(). This gys and LilGP failed to find good solutions for the other
is because the average length of chromosomes is smalleg, ., ,1nuts using the default parameters (see Table 8).
than in the case where the population was created withyy,yever, for all cases the quality of solutions found by
full-length .chromosomes..Thls is reflected directly in the EGIPSYS was better than those found by LilGP. In the
average size O,f the obtained .SOluuonB”(esbest) and,_ . same way as in the previous problems, the average com-
consequently, in the computational effort. The explicit putational effort required by EGIPSYS was much smaller
use of constants is definitely important for some symbolic 1,4 that of LilGP (about 9 times). For outpys it was
regression problems. This was observed in the excellent,[he only case of the experiments where the average com-
performance and small computational effort obtained in plexity of solutions found by LilGP was smaller than the
Experiment F. Finally, Experiment G shows the jointben- ,hq foynd by EGIPSYS. An obvious explanation for this
efits of all previous improvements, demonstrating an in- ¢, can be deduced from the joint analysis of the (low)
teresting trade-off between performance, processing timegq reation coefficient and the (small) number of genera-
and computational effort. tions LiIGP needed to find the best solution: due to the
As expected, the noisy quadratic function problem particularities of the fitness landscape, it was not possible
actually did not represent a real challenge for both sys-for this system to escape from local minima (like in the
tems. Both EGIPSYS and LilGP found good solutions, pH problem).



ames @ H.S. Lopes and W.R. Weinert

From the reported results, it can be observed that theGuidorzi R.P., Losito M.P. and Muratori T. (1980)©n the

standard deviations aof, gen,,,, and nodes.s: are pro- last eigenvalue test in the structural identification of linear
portionaly smaller for EGIPSYS than for LilGP (when multivariable systems— Proc. 5th Europ. MeetinGyber-
compared with the respective averages). This smallervari- ~ netics and Systems Research, Vienna, pp. 217-228.

ance indicates that EGIPSYS (that is, GEP) is more con-Hoai N.X., McKay R.I., Essam D. and Chau R. (2008plving
sistent with results from run to run than LilGP (that is, the symbolic regression problem with tree-adjunct gram-

GP). This analysis, together with the fact that GEP uses mar guided genetic programming: The comparative re-
much fewer individuals than GP, strongly suggests that sults — Proc.2002 Congress on Evolutionary Computa-
the former algorithm explores more efficiently the search tion, Honolulu, USA, Vol. 2, pp. 1326-1331.

space than the latter. Holland J.H. (1995):Adaptation in Natural and Artificial Sys-

Overall, the gene expression programming system tems — Ann Arbor: The University of Michigan Press.

proposed produces consistently better results than the syskoza J.R. (1992)Genetic Programming: On the Programming

tem using genetic programming. Also, it finds less com- of Computers by Means of Natural Selectier Cam-

plex solutions with less computational effort. The main bridge: MIT Press.

contribution of this work consists in the improvements Koza J.R. (1994): Genetic Programming Il: Automatic Dis-

made in the basic gene expression programming algo-  covery of Reusable Programs- Cambridge: MIT Press,

rithm first proposed in (Ferreira, 2001). We understand 1994.

that most of these improvements can be useful for otherMcAvoy T.J., Hsu E. and Lowenthal S. (1972Dpynamics of

types of problems that can be dealt by such an evolution- pH in controlled stirred tank reactor— Ind. Eng. Chem.

ary computation technique. Hence, future work will fo- Process Des. Develop., Vol. 11, No. 1, pp. 71-78.

cus on the adaptation and extension of EGIPSYS to otherMoonen M., De Moor B., Vandenberghe L. and Vandewalle J.

classes of problems. Aiming to encourage further research (1989): On- and off-line identification of linear state-space

and experimentation with this new technique, EGIPSYS models— Int. J. Contr., Vol. 49, No. 2, pp. 219-0232.

will be made freely available for academic use. Rechenberg |. (1973)Evolutionsstrategie: Optimierung Tech-
nischer Systemen nach Prinzipien der Biologischen Evolu-
tion. — Stuttgart: Frommann-Holzboog Verlag.
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