
Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 3, 375–384

EGIPSYS: AN ENHANCED GENE EXPRESSION PROGRAMMING APPROACH
FOR SYMBOLIC REGRESSION PROBLEMS †

HEITOR S. LOPES∗, WAGNER R. WEINERT∗

∗ Centro Federal de Educação Tecnológica do Paraná / CPGEI
Av. 7 de setembro, 3165, 80230-901 Curitiba (PR), Brazil

e-mail:hslopes@cpgei.cefet.br , weinert@cpgei.cefetpr.br

This paper reports a system based on the recently proposed evolutionary paradigm of gene expression programming (GEP).
This enhanced system, called EGIPSYS, has features specially suited to deal with symbolic regression problems. Amongst
the new features implemented in EGIPSYS are: new selection methods, chromosomes of variable length, a new approach to
manipulating constants, new genetic operators and an adaptable fitness function. All the proposed improvements were tested
separately, and proved to be advantageous over the basic GEP. EGIPSYS was also applied to four difficult identification
problems and its performance was compared with a traditional implementation of genetic programming (LilGP). Overall,
EGIPSYS was able to obtain consistently better results than the system using genetic programming, finding less complex
solutions with less computational effort. The success obtained suggests the adaptation and extension of the system to other
classes of problems.

Keywords: evolutionary computation, symbolic regression, mathematical modeling, systems identification

1. Introduction

Evolutionary Computation (EC) constitutes an emerging
area of research and it has been successfully applied to
many problems ranging from computer science to engi-
neering and biology. The central idea in EC is that so-
lutions to a problem are represented as entities able to
evolve throughout generations as a consequence of inter-
actions with other candidate solutions and the application
of genetic operators. The main factor in the evolution is
selective pressure caused by the bias towards the best so-
lutions. EC includes several paradigms which use con-
cepts drawn from the natural evolution of living beings
and genetics. Amongst these paradigms, the commonest
are: Genetic Algorithms (GA) (Goldberg, 1989; Holland,
1995), Genetic Programming (GP) (Koza, 1992; 1994),
Evolutionary Programming (EP) (Fogelet al., 1966) and
Evolution Strategies (ES) (Rechenberg, 1973; Schwefel,
1977). More recently, Ferreira (2001; 2003) proposed a
new evolutionary technique as an extension of GP, named
Gene Expression Programming (GEP). Since GEP is very
recent, it has not yet gained widespread use, although
its characteristics suggest a large application range, over-
lapping with those of GA and GP. This encourages the
comparison of GEP with other evolutionary algorithms in

† This work was partly supported by a CAPES grant to W.R. Wein-
ert, and a CNPQ grant to H.S. Lopes, process number
552022/02-0.

particular classes of problems so as to analyse its perfor-
mance.

This paper describes a flexible tool, named EGIPSYS
(Enhanced Gene-expressIon Programming for SYmbolic
regression problemS). This tool is based on GEP and was
specifically developed for symbolic regression problems.
EGIPSYS implements the basic GEP algorithm proposed
in (Ferreira, 2001) and has several other improvements.
Amongst the new features implemented in our system are:
new selection methods, chromosomes of variable length,
a new approach to manipulating constants, new genetic
operators and an adaptable fitness function. In this pa-
per we describe in detail the special features of EGIPSYS
and evaluate the performance of such improvements with
a test problem. An application of this tool to a number of
problems is also reported, and results are compared with
a traditional implementation of GP.

Symbolic regression is a class of problems that are
characterized by a number of data points to which one
wants to fit an equation. Contrary to linear, polynomial
or other types of regression where the nature of the model
is specified in advance, in symbolic regression one is
given only instances of inputs-outputs (independent and
dependent variables), and no information about the model.
Thus, the goal consists in finding a mathematical expres-
sion involving the independent variable(s) that is able to
minimize some measure of error between the values of

H.S. Lopes and W.R. Weinert376

the dependent variable, computed with the expression and
their actual values. In this context, finding both the func-
tional form and the appropriate numeric coefficients of an
expression at the same time is a real challenge for which
no efficient mathematical procedure exists. Consequently,
heuristic approaches, such as GP and GEP, have been de-
vised to solve this problem (see, e.g., Ferreira, 2003; Hoai
et al., 2002; Salhiet al., 1998; Shengwuet al., 2003).

2. Fundamentals of Gene Expression
Programming

Gene Expression Programming was proposed by Ferreira
(2001) as an alternative to overcome the common draw-
backs of GA and GP for real-world problems. The main
difference between GEP, GA and GP resides in the way
individuals of a population of solutions are represented.
GEP follows the same Darwinian principle of the survival
of the fittest and uses populations of candidate solutions to
a given problem in order to evolve new ones. The evolving
populations undergo selective pressure and their individu-
als are submitted to genetic operators.

In GEP, like in GA, an individual is represented by a
genotype, constituted by one or more chromosomes. This
work follows (Ferreira, 2001) in the sense that we use only
one chromosome per individual. In GA, a chromosome is
composed of one or more genes that represent the encoded
variables of the problem. When decoded, they represent
the phenotype. In GP, an individual is represented as a
tree and, usually, there is no encoding, so that the geno-
type and the phenotype are equivalent (this is not true for
particular implementations). In GEP, a chromosome is a
linear and compact entity, easily manipulable with genetic
operators (mutation, crossover, transposition, etc. — see
Section 2.2). In living beings, genes encoded in the DNA
strands of the chromosomes are expressed, meaning that
they are translated into proteins with biological functions.
In the same way, in GEP, expression trees (ETs) are the
expression of a given chromosome. ETs constitute the
phenotypic representation of the problem.

The first step of the GEP algorithm is the genera-
tion of the initial population of solutions. This can be ac-
complished by means of a random process or using some
knowledge about the problem. Then, chromosomes are
expressed as ETs, which are evaluated according to a fit-
ness function that determines how good a solution is in the
problem domain. Usually, the fitness function is evaluated
by processing a number of instances of the target problem,
known as fitness cases. If a solution of satisfactory qual-
ity is found, or a predetermined number of generations is
reached, the evolution stops and the best-so-far solution is
returned.

On the other hand, if the stop condition is not met, the
best solution of the current generation is kept (this means
elitism) and the rest is submitted to a selective process.
Selection implements the survival-of-the-fittest rule, and
the best individuals will have a better chance to generate
descendants. This whole procedure is repeated for several
generations. As generations proceed, it is expected that,
on the average, the quality of the population is improved.

2.1. Chromosome Encoding

A chromosome is composed of genes, usually more than
one (multigenic). Each gene is divided into a head and a
tail. The size of the head (h) is defined by the user, but
the size of the tail (t) is obtained as a function ofh and a
parametern. This parameter is the largest arity found in
the function set used in the run. The following equation
relates the tail size with the other parameters:

t = h(n − 1) + 1. (1)

Each gene encodes an expression tree. In the case of
multigenic chromosomes, all ETs are connected together
by their root node using a linking function. Every gene has
a coding region known as an ORF (open reading frame) or
a K-expression that, after being decoded, is expressed as
an ET, representing a candidate solution for the problem.
Symbolic regression problems are modelled using a set
of functions and a set of terminals. The set of functions
usually includes, for instance, basic arithmetic functions,
trigonometric functions or any other mathematical or user-
defined functions that the user believes can be useful for
the construction of the model. The set of terminals is com-
posed of constants and the independent variables of the
problem. In the heads of genes, functions, terminals and
constants are allowed, while in the tails, only terminals or
constants. Figure 1 shows how a chromosome with two
genes is encoded as a linear string and how it is expressed
as an ET. Note that, in this example, both genes have
coding (expressed) and non-coding regions, just like the
coding and non-coding sequences of biological genes.

Fig. 1. Chromosome with two genes and its decoding in GEP.

EGIPSYS: An enhanced gene expression programming approach for symbolic regression problems 377

2.2. Selection Method and Genetic Operators

GEP uses the well-known roulette-wheel method for se-
lecting individuals. This method is sometimes used in
both GA (Goldberg, 1989) and GP (Koza, 1992). In con-
trast to GA and GP, GEP has several genetic operators to
reproduce individuals with modification.

GEP uses simple elitism (known as cloning) of the
best individual of a generation, preserving it for the next
one. Replication is an operation that aims to preserve sev-
eral good individuals of the current generation for the next
one. In fact, this is a do-nothing probabilistic operation
that takes place during selection (using the roulette-wheel
method), and replicated individuals will be subjected to
the action of the genetic operators.

The mutation operator aims to introduce random
modifications into a given chromosome. A particularity of
this operator is that some integrity rules must be obeyed so
as to avoid syntactically invalid individuals. In the head of
a gene, both terminals and functions are permitted (except
for the first position, where only functions are allowed).
However, in the tail of a gene only terminals are allowed.

Similarly to GA, GEP uses one-point and two-point
crossover. The second type is somewhat more interesting
since it can turn on and off noncoding regions within the
chromosome more frequently. In addition to that, another
kind of crossover was implemented — gene recombina-
tion — that recombines entire genes. This operator ran-
domly chooses genes in the same position in two parent
chromosomes to form two new offsprings.

In GEP, there are two transposition operators: IS (in-
sertion sequence) and RIS (root IS). An IS element is a
variable-size sequence of elements extracted from a ran-
dom starting point within the genome (even if the genome
was composed of several chromosomes). Another posi-
tion within the genome is chosen as the insertion point.
This target site must be within the head part of a gene and
cannot be the first element (gene root). The IS element is
sequentially inserted in the target site, shifting all elements
from this point onwards and a sequence with the same
number of elements is deleted from the end of the head, so
that the structural organization is maintained. This oper-
ator simulates the transposition found in the evolution of
biological genomes. RIS is similar to the IS transposition,
except that the insertion sequence must have a function as
the first element and the target point must be also the first
element of a gene (root).

3. Methodology

In this section we describe the improvements in the origi-
nal GEP implemented in EGIPSYS.

3.1. Chromosome Structure and the Initial Population

As mentioned before, we propose a more flexible repre-
sentation for individuals using chromosomes of variable
length. These chromosomes can be formed by one or
more genes of the same size. In the original GEP, finding
the optimal size of the head of a gene is an open problem.
Usually, bigger problems require a larger gene head (Fer-
reira, 2001). Since there is still no procedure for settinga
priori the gene head size, frequently the user has to run the
algorithm several times with different gene head sizes un-
til finding a suitable dimension for a satisfactory solution.
To circumvent this problem, in EGIPSYS the population
of solutions can have chromosomes of various length.

When the initial population is created, care must be
taken so as to have a large diversity of chromosomes. That
is, the initial population needs to have as many different
individuals as possible so as to better explore the search
space in further generations. The original GEP gener-
ates the initial population at random. In EGIPSYS, by
default, half of the population is uniformly created with
chromosome sizes proportional to a user-defined parame-
ter that specifies the gene head size range. The remaining
elements of the initial population are randomly generated
within the same range. This method for generating the
initial population was inspired in the well-known ramped-
half-and-half method for GP proposed by Koza (1992).
Experiments reported in Section 4 demonstrate that the
procedure proposed here for generating the initial popula-
tion is beneficial to the evolutionary process.

3.2. Constants

A crucial property that functions and terminals sets must
have in GP is sufficiency (Koza, 1992). This means that
these sets must have all the elements needed to represent
a satisfactory solution for the problem. However, some-
times one does not have a full insight into the problem
to determine those sets beforehand. This is specially true
when considering the use of constants in the terminal set.
In particular, for symbolic regression problems, constants
can be useful, allowing solutions to be fine-tuned.

In GEP, constants can be created either by the al-
gorithm itself or using a list of ephemeral constants that
makes part of the chromosome (Ferreira, 2003). In EGIP-
SYS, we propose a user-defined policy for constants, de-
fined by two parameters: the probability of using con-
stants and their initial range. During evolution the ab-
solute value of the constants can extrapolate the initial
range due to the mutation operator. EGIPSYS implements
a local search operator (see Section 3.5) that uses a hill-
climbing policy to fine-tune constants. Also, the system
allows the use of pre-defined constants, likeπ, e or other
user-defined values. This is particularly interesting when

H.S. Lopes and W.R. Weinert378

the user knows, for example, that some physical constant
will be present in the final expression.

3.3. Alternative Selection Methods

Originally, GEP uses the fitness roulette wheel method to
select individuals to be replicated and then to undergo the
action of genetic operators. For the application of the
operators, replicated individuals are chosen at random.
Besides this strategy, in EGIPSYS we implemented two
other methods: always using the roulette wheel (without
random selection) or always using the stochastic tourna-
ment. Both the strategies are common in GAs. The first
one induces a strong selective pressure and usually makes
convergence faster (most often to a local maximum). To
circumvent this possibility, we also implemented a dy-
namic linear scaling, as proposed by Goldberg (1989) for
GAs, to be used in conjunction with this method (see
Section 3.6 for details). The default selection method in
EGIPSYS is the stochastic tournament. This method uses
a parameter that indicates the percentage of the population
to be chosen at random for the tournament. These individ-
uals will compete and the best ones will be selected to be
replicated.

3.4. Regular Genetic Operators

EGIPSYS uses elitism in the same way as in the origi-
nal GEP. Transposition operators were not changed in
their essence, except that they were adapted to work with
variable-length chromosomes. This adaptation was neces-
sary to warrant the creation of synctactically valid individ-
uals. Single point crossover was not implemented, only
the two-point version was considered. Finally, gene re-
combination operates only over chromosomes of the same
size so as to guarantee that all chromosomes keep their
genes with the same head and tail sizes.

The mutation operator was the one that was most
deeply changed, basically to cope with constants. When
mutation is applied to a constant (with the default prob-
ability, see Table 1), two outcomes of this operation are
possible: either a small perturbation is added to this con-
stant or it is substituted by another element (a function, a
terminal or a random constant). The probability for each
of these outcomes is 50%. In the case when a random
perturbation is to be added to the constant, it works as
follows: if a random-generated number (between0 and
1) is greater than or equal to0.5, another random value
no larger than 10% of the current value of the constant
is added to it. Otherwise, the same value is subtracted
from it. In the case when a constant is substituted by an-
other element, the structural constraints of GEP must be
respected, such that in the tail of genes only terminals and
constants can appear.

3.5. Local Search Operator

The difficulty in finding appropriate values for the con-
stants of an expression is a common problem emerging
when using GP for symbolic regression problems. Usu-
ally, GP (and also GEP) is not able to fine-tune constants,
which results in solutions of lower quality. In EGIPSYS
we devised a local search operator, especially suited for
fine-tuning the constants of a chromosome. Since this op-
erator has a high computational cost, it is probabilistically
applied depending on a user-defined parameter. This op-
erator is intelligent in the sense that, after its application,
the current modified solution is evaluated and, if an im-
proved solution is obtained, it is kept. Otherwise, the op-
eration is undone. The operator is applied in two steps
as follows: first, the current fitness of a chromosome is
saved and, starting from the left outermost chromosome
towards the right outermost one, one seeks for a constant.
Once found, the value of the constant is incremented by
10%. The solution is then re-evaluated and, if the fitness
is higher than before, the constant will be increased again.
This procedure is repeated until the fitness no longer in-
creases, or a limit of 10 operations is reached. If, after
the first increment, the fitness value decreases, the opera-
tion is undone and the constant is then decreased by 10%.
The procedure is repeated as before while the fitness is im-
proving or 10 operations are done. This finishes the first
step. If the limit number of operations was reached in the
first step (either incrementing or decrementing the con-
stant), no further step is needed. Otherwise, the last two
values of the constant are considered:k1 (the last value,
when the fitness has decreased) andk2 (the last but one
value, when the fitness is the highest of the step). It is
not possible to guarantee thatk2 is the best value for the
constant and a new local search procedure is started aim-
ing to fine-tune that value. A new value for the constant
is obtained using the average:knew = (k1 + k2)/2. The
chromosome is re-evaluated: if the fitness increases, we
set k2 = knew , otherwisek1 = knew . The procedure is
repeated 10 times, thus completing Step 2. Then the next
constant of the chromosome is sought and the two-step lo-
cal search procedure is repeated. It is worth emphasizing
that the local search operator has a very high computa-
tional cost and its application must be careful.

3.6. Fitness Function

The fitness function evaluates how good a candidate solu-
tion is for the problem. In EGIPSYS, we normalized the
fitness function between 0 and 1 such that 0 represents the
worst possible value and 1, the best. This normalization
helps users to understand the evolution of fitness through-
out generations independently of the problem. For sym-
bolic regression problems, it is customary to employ an
error measure like the sum of absolute or quadratic errors.

EGIPSYS: An enhanced gene expression programming approach for symbolic regression problems 379

We improved these two measures including two parame-
ters, ref _val and mult ,

fitness(i,t) =
ref _val

ref _val+mult
Ne∑
j=1

|S(i, j)−C(j)|
, (2)

fitness(i,t) =
ref _val

ref _val+mult
Ne∑
j=1

[S(i, j)−C(j)]2
, (3)

where:

ref _val : user-defined reference value,

fitness(i,t): fitness of individuali in generationt,

mult : user-defined multiplying factor,

S(i, j): value returned by expressioni for fitness
casej,

C(j): actual value of fitness casej,

Ne: number of fitness cases.

Both mult and ref _val play important roles in the
fitness function since they can be used for scale compres-
sion and uncompression. Depending on the value of the
fitness function for the individuals of a generation, it can
be difficult to establish an efficient selective pressure and,
therefore, evolution can stagnate. On the other hand, if the
discrepancies among fitness values are large, the high se-
lective pressure leads to premature convergence. The two
parameters of the fitness functions in (2) and (3) can be
set by the user to adjust the normalized fitness to the mag-
nitude of the error measure (see Fig. 2). Typical values
for mult are 10, 1 or 0.1, and forref _val they are 1, 10
or 100. Besides this static adjustment of the fitness val-
ues, there is also a dynamic adjustment given by a linear
scaling, as suggested by Goldberg (1989) for GAs. When
this scaling is on, fitness values are adjusted by a linear
equation such that the average fitness is kept constant and
the maximum fitness is adjusted to the doubled average

Fig. 2. Fitness normalization usingref _val = 10
for different values ofmult .

fitness. This fitness adjustment is used only for selection
purposes and is computed in every generation.

3.7. Default Parameters

Based on the original GEP (Ferreira, 2001) and on a num-
ber of empirical experiments (not reported here), we de-
fined standard values for the running parameters of EGIP-
SYS, such that it can reveal a good performance for var-
ious problems. Generality in symbolic regression prob-
lems was the focus instead of efficiency for a specific
problem. It is clear that complex problems may request
a specific configuration of parameters, as will be shown
later. Table 1 defines all default parameters for EGIPSYS.

Table 1. Default parameters for EGIPSYS.

Parameter Value

Population size 30

Number of generations 50

Linking function sum

Function set {+,−, ∗, /}

Number of genes 3

Gene head size 6

Probability of using constants 0.2

Selection method for replication Stochastic tournament

Tournament size 10% of population size

Elitism operator Cloning

Mutation probability 0.05

IS and RIS transpositions probabilities 0.1

Two-point crossover probability 0.3

Gene recombination probability 0.1

Accuracy 0.01

Fitness function cf. Eqn. (2)

mult 0.1

ref _val 10

Use dynamic linear scaling yes

4. Experiments and Results

In this section we present the results of experiments us-
ing EGIPSYS for selected symbolic regression problems.
EGIPSYS was developed under the graphics interface of
Microsoft Windows 2000 and all experiments reported in
this paper were run on a PC-clone with an AMD Athlon-
XP 2.4 MHz processor and 512 MBytes of main memory.
These experiments aimed to evaluate the improvements
featured in EGIPSYS, as well as to compare its perfor-
mance with a popular GP system, namely LilGP (Zongker

H.S. Lopes and W.R. Weinert380

et al., 1998). LilGP is based on the genetic programming
system proposed by Koza (1992), and is useful for vari-
ous problems, including symbolic regression. LilGP ver-
sion 1.1 is freely available on the Internet1 and, for the ex-
periments reported here, we used the default parameters
shown in Table 2.

Table 2. Default parameters for LilGP.

Parameter Value

Population size 500

Number of generations 50

Method for generating the
initial population

Ramped half-and-half

Initial tree depth [2..6]

Maximum tree depth during
run

17

Breeding phases 2 (crossover and reproduction)

Selection method for both
phases

Roulette wheel

Crossover probability 0.9

Reproduction probability 0.1

The first problem (cf. Section 4.1) concerns the pre-
diction of the number of sunspots, based on previous ob-
servations. This is a classical time-series prediction prob-
lem, a special type of symbolic regression. This problem
is used to evaluate the improvements proposed over the
basic GEP.

The next problem (cf. Section 4.2) is the identifica-
tion of a quadratic function corrupted by additive noise.
It consists of a simple toy problem for symbolic regres-
sion and, therefore, shall not represent a great challenge
for both systems. The remaining three problems (Sec-
tions 4.3–4.5) represent increasing levels of difficulty and
were drawn from a database of identification problems
available on the Internet2.

The results of the experiments are presented in ta-
bles for both systems, EGIPSYS and LilGP. We present
the correlation coefficient (r) that quantifies the similar-
ity between the given set of points of a problem and those
produced by the equation found. This statistical measure
ranges from+1 to −1. At the extremes, there are ex-
act correlations between the observed and predicted val-
ues (directly proportional, i.e.,r = 1, or inversely pro-
portional, i.e., r = −1). The closer r to zero, the
less correlation between observed and predicted values.
We also present the number of generations necessary to
find the best solution (genbest) that will be used to esti-
mate the computational effort, and the number of nodes

1http://garage.cps.msu.edu/software/software-index.html
2http://www.esat.kuleuven.ac.be/~tokka/daisydata.html

(functions and terminals) of the best result found
(nodesbest). Due to the stochastic nature of both systems,
we run each experiment 10 times, with different random
seeds and we report the average values and their standard
deviation. Except for the sunspot problem, unless other-
wise stated, all the experiments used the default param-
eters shown in Table 1 for EGIPSYS and the parameters
shown in Table 2 for LilGP.

4.1. Sunspot Problem

In this section, in contrast to the following, we aimed
at verifying what is the effect of the proposed improve-
ments implemented in EGIPSYS, compared with the orig-
inal GEP. Data used in this experiment are related to the
number of sunspots observed yearly, from 1700 to 1988.
This dataset was used for testing several machine-learning
systems, including GEP (Ferreira, 2003; Weigendet al.,
1992). Originally, there were 289 consecutive observa-
tions, but we use only 100, as the same data were used by
(Ferreira, 2003). For this time-series problem, it was as-
sumed that the prediction of a given value depends on the
previous 10 observations. Therefore, the problem has 10
inputs and one output.

We run EGIPSYS using parameters simulating the
basic GEP (Ferreira, 2001) as the baseline for further com-
parisons. Next, using the same parameters, the effect of
five features implemented in EGIPSYS was tested sepa-
rately. Finally, all the proposed improvements were used
together. These experiments were arranged in seven series
in which the system was run 100 times each with different
random seeds. The following experiments were done:

(A) Basic GEP;

(B) GEP with different chromosome lengths. The obje-
tive is to verify the influence of a larger diversity in
the initial population. Gene head lengths were set to
the range[6..12];

(C) GEP with tournament selection. The objective is to
verify the influence of the selection method in the
overall performance;

(D) GEP with linear scaling. This experiment aims to
check whether or not linear scaling can alleviate the
selective pressure caused by the roulette wheel selec-
tion method throughout generations;

(E) GEP with a different fitness function. The objective
is to verify the utility of the fitness function defined
in Eqn. (2), in comparison with the original method
proposed in (Ferreira, 2001). Parametersref _val
and mult were set to default values (see Table 1);

(F) GEP with constants and the special mutation operator.
This experiment aims to evaluate the impact of using
constants as building blocks for the algorithm. The

EGIPSYS: An enhanced gene expression programming approach for symbolic regression problems 381

probability of using constants was set to0.2 and the
initial range to[−10, 10];

(G) EGIPSYS with default parameters3. The objective is
to verify the joint effect of (B+C+D+E+F).

In Table 3, fbest is the average fitness value of the
best individual (using the fitness function originally pro-
posed for GEP),AME is the average of the sums of the
absolute mean errors (used in the fitness function),ptime

is the average processing time (in seconds) for the com-
plete run. The other measures were defined before. Notice
that, for Experiments E and G, we used Eqn. (2) as the fit-
ness function. However, in these cases, the original fitness
of GEP was also computed for the best individual, but it
was used only for comparison with the other experiments.

Table 3. Results of different experiments for
100 runs of the sunspot problem.

Exp. fbest AME ptime r genbest nodesbest

A 7502.95 16.63 56.19 0.799 44.8 22.7

B 7604.12 15.51 48.21 0.837 42.4 19.5

C 7620.84 15.32 61.23 0.825 44.6 23.5

D 7586.90 15.70 56.43 0.822 43.6 21.2

E 7551.51 16.09 57.99 0.820 44.2 22.1

F 7705.66 14.38 55.28 0.836 44.5 21.2

G 7756.88 13.81 50.50 0.845 46.9 19.8

In Table 3 it can be seen that, except forgenbest and
nodesbest , the basic GEP performed worse than any other
improvement, notably for the performance measures. On
the other hand, Experiment G demonstrates that the im-
provements implemented in EGIPSYS are really advanta-
geous.

4.2. Noisy Quadratic Function Problem

This is a synthetic problem of a simple polynomial regres-
sion where the output is corrupted by additive noise. For
this problem, a total of 201 data points were generated by

y = 2x2 − 3x + 4 + noise, (4)

where noise = (rnd/5) − 0.1, and rnd is a randomly
generated number in the range[0, 1]. The input vector
x(i) was obtained fromx(i + 101) = sin(i/10), with
i = −100, . . . , 100.

The results presented in Table 4 show that both sys-
tems produced very good results. To illustrate this, the
best solution found by EGIPSYS wasy = 2x2 − 3x +
3.981, rather close to Eqn. (4).

3Parameters shown in Table 1, except for the use of different gene
head lengths, see Experiment B.

Table 4. Results of 10 runs for the noisy
quadratic function problem.

Output System r genbest nodesbest

y EGIPSYS 0.987±0.003 34.8±10.9 27.4±3.6

LilGP 0.989±0.000 39.2±7.4 158.8±84.9

4.3. Lake Erie Problem

The data for this problem are a result of a simulation re-
lated to the identification of the western basin of the lake
Erie (USA/Canada) and were first reported in (Guidorziet
al., 1980). This database has 4 series of 57 samples with
5 input and 2 output parameters. The four series are: the
original data with no noise and the same data with 10%,
20% and 30% additive white noise. The input variables
are: water temperature (x1), water conductivity (x2), wa-
ter alkalinity (x3), NO3 concentration (x4), and the to-
tal hardness of water (x5). The output variables are: the
amount of dissolved oxygen (y1) and algae concentration
(y2). In this study we choose only the output (y1) for test-
ing EGIPSYS and LilGP.

The results for this problem are shown in Table 5.
Note that, in all cases, EGIPSYS performed considerably
better than LilGP, even though the population size used in
LilGP exceeds that of EGIPSYS by a factor of 16.

Table 5. Results of 10 runs for the lake Erie problem.

Output System r genbest nodesbest

y1 – no noise EGIPSYS0.891±0.038 45.5±6.0 31.2±17.9

LilGP 0.731±0.164 36.5±13.0 155.8±102.5

y1 – 10% noise EGIPSYS0.890±0.030 47.2±2.4 25.2±4.9

LilGP 0.718±0.125 38.6±14.1 44.8±62.3

y1 – 20% noise EGIPSYS0.847±0.037 48.3±1.9 24.8±3.5

LilGP 0.666±0.127 38.8±10.5 104.8±74.4

y1 – 30% noise EGIPSYS0.746±0.067 45.5±5.3 25.8±4.3

LilGP 0.691±0.129 32.6±12.4 146.0±74.9

4.4. pH Problem

This is a highly nonlinear problem of the process industry
and it is related to the simulation of a pH neutralization
process in a constant-volume stirred tank (McAvoyet al.,
1972). The problem has two input variables: the acid so-
lution inflow (x1) and the base solution inflow (x2), and
one output dependent variable: the pH of the solution in
the tank (y). There are 2001 samples collected at regular
intervals (10 sec), which are used as fitness cases in both
systems.

As shown in Table 6, EGIPSYS performs again con-
siderably better than LilGP, despite the tremendous differ-
ence in population sizes.

H.S. Lopes and W.R. Weinert382

Table 6. Results of 10 runs for the pH problem.

Output System r genbest nodesbest

y EGIPSYS 0.630±0.339 41.6±6.2 24.4±3.7

LilGP 0.184±0.171 7.8±9.8 17.4±19.1

Another experiment was performed considering the
output of the system as dependent not only on the current
inputs, but also on the previous ones. Therefore, a new
experiment was performed using both the current sample
(i-th) and the previous one ((i− 1)-th). The notation used
is: ix1 for the current acid solution inflow andi−1x1 for
the previous sample, andix2 for the current base solution
inflow and i−1x2 for the previous sample. Consequently,
the problem now is to find a mathematical relationship be-
tween the current value of pH (iy) as a function ofix1,
ix2, i−1x1 and i−1x2. Two further runs of EGIPSYS
were performed to test its specific features. In the first
run, the range for the head of genes was set to[6..15], the
population size was increased to 100 and the number of
generations was set to 250. For the second run, the same
parameters were used and we included the local search op-
erator, being applied with a probability of0.1 only in the
last 10 generations, just to fine-tune the constants. All the
remaining default parameters listed in Table 1 were used
in both runs.

The results of these two runs are shown in Table 7,
where it can be seen that EGIPSYS was able to improve
the previous result further, at the expense of more genera-
tions.

Table 7. Results for two additional runs of EGIPSYS for the pH
problem with non-standard parameters.

Output System run r genbest nodesbest

y EGIPSYS 1 0.766 150 24

EGIPSYS 2 0.800 243 42

4.5. Power Plant Problem

This problem uses data collected from a 120 MW thermo-
electric power plant (Pont-sur-Sambre in France). They
were used in (Guidorzi and Rossi, 1974) and, later, in
(Moonenet al., 1989). There are 5 input variables: gas
flow (x1), turbine valves opening (x2), super heater spray
flow (x3), gas dumpers (x4) and air flow (x5), and 3 out-
put variables: steam pressure (y1), main steam tempera-
ture (y2) and reheat steam temperature (y3). A total of
200 samples are available as fitness cases.

Table 8 reports the results obtained for this problem.
Each independent variable represents a different degree of

Table 8. Results of 10 runs for the power plant problem.

Output System r genbest nodesbest

y1 EGIPSYS 0.827±0.057 47.6±2.6 28.6±8.4

LilGP 0.790±0.090 25.4±12.3 40.0±29.1

y2 EGIPSYS 0.634±0.087 47.6±2.2 26.0±6.3

LilGP 0.458±0.150 21.9±20.5 22.4±26.9

y3 EGIPSYS 0.616±0.070 47.5±5.2 25.2±5.5

LilGP 0.525±0.117 26.9±13.8 162.2±147.1

difficulty for symbolic regression. For all three subprob-
lems, EGIPSYS performed better than LilGP.

Again, an additional run of EGIPSYS was done with
special parameters. Now, only outputy3 was used (the
one with the worst average results in Table 8). The same
parameters of the second additional run of the pH problem
were used, except that the local search operator was also
applied every 50 generations (with a probability of0.1).

The results for this additional run are in Table 9. With
the additional computational effort needed by the local
search operator (and more generations), an improvement
over the previous solution was observed.

Table 9. Results for an additional run of EGIPSYS for the
power plant problem with non-standard parameters.

Output System r genbest nodesbest

y3 EGIPSYS 0.699 200 31

5. Discussion and Conclusions

In this paper we presented an enhanced gene expres-
sion programming system (EGIPSYS) specially suited for
symbolic regression and we compared its performance
against a traditional genetic programming system (LilGP)
in several instances of identification problems. Besides,
we experimentally showed that all improvements pro-
posed in EGIPSYS over the basic GEP are advantageous.

For both EGIPSYS and LilGP, one can evaluate the
average computational effort necessary for finding the best
solution by means of a product(genbest ·nodesbest ·Ne).
This product reflects the number of trials that an algorithm
needed to find the best solution of the run. Since the runs
were performed using the same number of fitness cases
(Ne) for each problem, this parameter can be disregarded
for comparison purposes between the methods.

Another performance metric to be analyzed is the
complexity of the solution, related to the number of nodes
of the tree representing the best solution. Solutions with
a large number of nodes, besides being difficult to under-
stand (especially in systems where the transfer function

EGIPSYS: An enhanced gene expression programming approach for symbolic regression problems 383

has some physical meaning), can be overfitted to the in-
put data (fitness cases). In this case, the extrapolation of
the mathematical expression obtained beyond the range
of input data should be performed with care. Therefore,
less complex solutions tend to be more general. Nei-
ther EGIPSYS nor LilGP have any explicit mechanism to
simplify the mathematical expressions manipulated (like
the edition operator suggested by Koza (1992)). Conse-
quently, all obtained solutions could be simplified, reduc-
ing the overall number of nodes. Nevertheless, it is possi-
ble that the form GEP represents individuals (coding and
non-coding regions within the chromosome) that may lead
to simpler solutions than those obtained by GP. The bloat
effect is a well studied issue in GP, but not in GEP. There-
fore, although this hypothesis seems to be fair, its proof is
beyond the scope of this paper. This seems to be an open
field for further research.

The experiments performed to evaluate the improve-
ments proposed in EGIPSYS clearly show their advan-
tages. In all these experiments, the performance measured
by fbest and AME was equivalent and the use of a dif-
ferent fitness function (experiment E) led to a small im-
provement over the basic GEP. The small difference in
the r values for all experiments suggests that this is not a
good quality measure for a solution. The use of a stochas-
tic tournament as the selection method is computation-
ally more expensive than roulette wheel. This is observed
in the high ptime value of Experiment C. However, this
method does not impose a high selective pressure through-
out generations, thus avoiding fast convergence to local
minima. This can be inferred from the good performance
regarding bothfbest , AME and r. It is possible that for
harder problems this selection method can be more useful.
The use of linear scaling to control the selective pressure
induced by roulette wheel (Experiment D) did not show
significative improvements in performance, but, on the
other hand, a small computational effort was needed. The
use of chromosomes of different lenghts (Experiment B)
decreases significantly the processing time (ptime). This
is because the average length of chromosomes is smaller
than in the case where the population was created with
full-length chromosomes. This is reflected directly in the
average size of the obtained solutions (nodesbest) and,
consequently, in the computational effort. The explicit
use of constants is definitely important for some symbolic
regression problems. This was observed in the excellent
performance and small computational effort obtained in
Experiment F. Finally, Experiment G shows the joint ben-
efits of all previous improvements, demonstrating an in-
teresting trade-off between performance, processing time
and computational effort.

As expected, the noisy quadratic function problem
actually did not represent a real challenge for both sys-
tems. Both EGIPSYS and LilGP found good solutions,

fitting the target transfer function, cf. Eqn. (4), almost per-
fectly. This can be inferred by the average correlation co-
efficients in Table 4, which are practically the same and
close to1. However, the computational effort needed by
LilGP was 18 times higher than that of EGIPSYS (recall
the population size of both systems), and the best solu-
tions found were about 6 times larger than those found by
EGIPSYS.

For the lake Erie problem, EGIPSYS found good re-
sults, whereas LilGP was unable to do so. As expected,
the quality of solutions for both systems decreased as the
noise increased (see Table 5). However, EGIPSYS con-
sistently found better solutions than LilGP. Regarding the
number of generations to find the best solutions, they re-
mained almost the same, independently of the noise level
of the problem. Also, EGIPSYS needed much less com-
putational effort than LilGP (around 13 times less, inde-
pendently of the noise level). For most cases, the solutions
found by LilGP were about 5 times more complex than
those found by EGIPSYS.

For the pH problem, neither EGIPSYS nor LilGP
was capable of finding good solutions. The extremely low
quality solutions found by LilGP suggest that this algo-
rithm was not able to escape from local minima. Even
so, overall, EGIPSYS revealed again a better performance
than LilGP. The two independent runs of EGIPSYS
with non-standard parameters showed its potential to deal
with difficult nonlinear problems. The assumption that
the previous inputs have influence on the current output
is commonly made in nonlinear identification problems.
With this approach the difficulty of the problem increased,
as more independent variables were used. Therefore, a
greater computational effort was necessary to find a better
solution (see Table 7). When the local search operator was
turned on, an even better result was found, reinforcing its
usefulness in difficult problems.

For the power plant problem, only for outputy1 it
was possible to find satisfactory solutions. Both EGIP-
SYS and LilGP failed to find good solutions for the other
two outputs using the default parameters (see Table 8).
However, for all cases the quality of solutions found by
EGIPSYS was better than those found by LilGP. In the
same way as in the previous problems, the average com-
putational effort required by EGIPSYS was much smaller
than that of LilGP (about 9 times). For outputy2 it was
the only case of the experiments where the average com-
plexity of solutions found by LilGP was smaller than the
one found by EGIPSYS. An obvious explanation for this
fact can be deduced from the joint analysis of the (low)
correlation coefficient and the (small) number of genera-
tions LilGP needed to find the best solution: due to the
particularities of the fitness landscape, it was not possible
for this system to escape from local minima (like in the
pH problem).

H.S. Lopes and W.R. Weinert384

From the reported results, it can be observed that the
standard deviations ofr, genbest and nodesbest are pro-
portionaly smaller for EGIPSYS than for LilGP (when
compared with the respective averages). This smaller vari-
ance indicates that EGIPSYS (that is, GEP) is more con-
sistent with results from run to run than LilGP (that is,
GP). This analysis, together with the fact that GEP uses
much fewer individuals than GP, strongly suggests that
the former algorithm explores more efficiently the search
space than the latter.

Overall, the gene expression programming system
proposed produces consistently better results than the sys-
tem using genetic programming. Also, it finds less com-
plex solutions with less computational effort. The main
contribution of this work consists in the improvements
made in the basic gene expression programming algo-
rithm first proposed in (Ferreira, 2001). We understand
that most of these improvements can be useful for other
types of problems that can be dealt by such an evolution-
ary computation technique. Hence, future work will fo-
cus on the adaptation and extension of EGIPSYS to other
classes of problems. Aiming to encourage further research
and experimentation with this new technique, EGIPSYS
will be made freely available for academic use.

References

Ferreira C. (2001):Gene Expression Programming: A new
adaptive algorithm for solving problems. — Complex Sys-
tems, Vol. 13, No. 2, pp. 87–129.

Ferreira C. (2003):Function finding and a creation of numerical
constants in gene expression programming, In: Advances
in Soft Computing, Engineering Design and Manufactur-
ing (J.M. Benitez, O. Cordon, F. Hoffmann and R. Roy,
Eds.). — Springer-Verlag: Berlin, pp. 257–266.

Fogel L.J., Owens A.J. and Walsh M.J. (1966):Artificial Intelli-
gence Through Simulated Evolution. — New York: Wiley.

Goldberg D.E. (1989):Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. — Reading: Addison-Wesley.

Guidorzi R.P. and Rossi P. (1974):Identification of a power
plant from normal operating records. — Automat. Contr.
Theory Applic., Vol. 2, No. 1, pp. 63–67.

Guidorzi R.P., Losito M.P. and Muratori T. (1980):On the
last eigenvalue test in the structural identification of linear
multivariable systems. — Proc. 5th Europ. MeetingCyber-
netics and Systems Research, Vienna, pp. 217–228.

Hoai N.X., McKay R.I., Essam D. and Chau R. (2002):Solving
the symbolic regression problem with tree-adjunct gram-
mar guided genetic programming: The comparative re-
sults. — Proc.2002 Congress on Evolutionary Computa-
tion, Honolulu, USA, Vol. 2, pp. 1326–1331.

Holland J.H. (1995):Adaptation in Natural and Artificial Sys-
tems. — Ann Arbor: The University of Michigan Press.

Koza J.R. (1992):Genetic Programming: On the Programming
of Computers by Means of Natural Selection. — Cam-
bridge: MIT Press.

Koza J.R. (1994):Genetic Programming II: Automatic Dis-
covery of Reusable Programs. — Cambridge: MIT Press,
1994.

McAvoy T.J., Hsu E. and Lowenthal S. (1972):Dynamics of
pH in controlled stirred tank reactor. — Ind. Eng. Chem.
Process Des. Develop., Vol. 11, No. 1, pp. 71–78.

Moonen M., De Moor B., Vandenberghe L. and Vandewalle J.
(1989):On- and off-line identification of linear state-space
models. — Int. J. Contr., Vol. 49, No. 2, pp. 219–0232.

Rechenberg I. (1973):Evolutionsstrategie: Optimierung Tech-
nischer Systemen nach Prinzipien der Biologischen Evolu-
tion. — Stuttgart: Frommann-Holzboog Verlag.

Salhi A., Glaser H. and DeRoure D. (1998):Parallel implemen-
tation of a genetic-programming based tool for symbolic
regression. — Inf. Process. Lett., Vol. 66, pp. 299–307.

Schwefel H-P. (1977):Numerische Optimierung von Computer-
Modellen mittels der Evolutionsstrategie. — Basel:
Birkhäuser.

Shengwu X., Weinu W. and Feng L. (2003):A new genetic pro-
gramming approach in symbolic regression. — Proc. 15th
IEEE Int. Conf.Tools with Artificial Intelligence, Sacra-
mento, USA, pp. 161–165.

Weigend A.S., Huberman B.A. and Rumelhart D.E. (1992):Pre-
dicting sunspots and exchange rates with connectionist net-
works, In: Nonlinear Modeling and Forecasting (S. Eu-
bank and M. Casdagli, Eds.). — Redwood City: Addison-
Wesley, pp. 395–432.

Zongker D., Punch B. and Rand B. (1998):Lilgp 1.1 User’s
Manual. — Lansing: Michigan State University.

