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The features of an evolutionary algorithm that most determine its performance are the coding by which its chromosomes
represent candidate solutions to its target problem and the operators that act on that coding. Also, when a problem involves
constraints, a coding that represents only valid solutions and operators that preserve that validity represent a smaller search
space and result in a more effective search. Two genetic algorithms for the leaf-constrained minimum spanning tree problem
illustrate these observations. Given a connected, weighted, undirected graphG with n vertices and a bound̀, this problem
seeks a spanning tree onG with at least` leaves and minimum weight among all such trees. A greedy heuristic for the
problem begins with an unconstrained minimum spanning tree onG, then economically turns interior vertices into leaves
until their number reaches̀. One genetic algorithm encodes candidate trees with Prüfer strings decoded via the Blob Code.
The second GA uses strings of lengthn−` that specify trees’ interior vertices. Both GAs apply operators that generate only
valid chromosomes. The latter represents and searches a much smaller space. In tests on 65 instances of the problem, both
Euclidean and with weights chosen randomly, the Blob-Coded GA cannot compete with the greedy heuristic, but the subset-
coded GA consistently identifies leaf-constrained spanning trees of lower weight than the greedy heuristic does, particularly
on the random instances.
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1. Introduction

An evolutionary algorithm (EA) is a probabilistic search
heuristic that replicates the defining features of biological
evolution: reproduction with variation, selection based on
fitness, and repetition. An EA maintains a population of
data structures, called chromosomes, that encode candi-
date solutions to its target problem. Attached to each chro-
mosome is its fitness, a numerical value that indicates the
quality of the solution the chromosome represents. The
algorithm selects chromosomes to survive or reproduce
so that those with better fitness are more likely to be se-
lected. Crossover, also called recombination, combines
genetic information from two parent chromosomes. Mu-
tation randomly modifies one parent chromosome. When
the EA has generated enough offspring, they replace their
parents and the process continues. As these generations
succeed each other, chromosomes that represent better so-
lutions evolve.

The several kinds of evolutionary algorithms are dis-
tinguished by the problems to which they are applied, the
codings by which their chromosomes represent candidate
solutions, the operators they apply to those chromosomes,
and how they perform and use selection. Genetic algo-
rithms (GAs) are most often applied to problems of com-

binatorial optimization, whose solutions they encode as
strings of symbols. They apply crossover and mutation
operators to generate offspring, and they select chromo-
somes from the population to reproduce via these opera-
tors.

The interaction between the coding by which an EA
represents candidate solutions and the operators that gen-
erate offspring from the existing chromosomes is the sin-
gle most important factor in determining whether the EA
searches effectively. Also, when a problem involves con-
straints, a coding that represents only valid solutions and
operators that preserve that validity can make the search
space considerably smaller and the search correspond-
ingly more effective.

Genetic algorithms for the leaf-constrained mini-
mum spanning tree problem illustrate these observations.
Given a connected, weighted, undirected graphG and a
bound `, this problem, which Section 2 describes in de-
tail, seeks a spanning tree onG with at least` leaves and
minimum total weight among all such trees.

A recent greedy heuristic for the leaf-constrained
minimum spanning tree problem begins with an uncon-
strained minimum spanning tree onG. One step of the
heuristic turns an interior vertex into a leaf, forms a mini-



B.A. Julstrom386

mum spanning tree on the remaining interior vertices, and
connects each leaf, including the new one, to the nearest
interior vertex. The interior vertex chosen to become a
leaf is the one for which the weight of this tree is smallest.
This step is repeated until the number of leaves reaches`.
Section 3 describes this heuristic in detail and compares it
with an earlier one for the problem.

Two evolutionary codings represent only spanning
trees that satisfy the leaf constraint; that is, that have at
least ` leaves. The first uses strings of vertex labels, de-
coded via an algorithm called the Blob Code. The second
specifies sets of leaves and interior vertices in spanning
trees; the tree a chromosome represents is identified by
forming a minimum spanning tree on the interior vertices
the chromosome lists and connecting each leaf to the near-
est interior vertex, as in the greedy heuristic. Many other
codings can represent spanning trees (Raidl and Julstrom,
2003; Rothlauf, 2002, pp.119–197), but in general they do
not easily honor the leaf constraint. Section 4 describes
the two codings used here, crossover and mutation opera-
tors for them, and the sizes of the spaces they represent.

The two codings and operators appropriate for them
are implemented in straightforward generational genetic
algorithms, which Section 5 describes. The GAs are
compared with the greedy heuristic and each other on
65 instances of the leaf-constrained minimum spanning
tree problem, 45 Euclidean instances and 20 whose edge
weights are chosen randomly. Section 6 describes these
comparisons. The greedy heuristic is relatively effective
and the Blob-Coded GA does not do as well as the greedy
heuristic. The subset-coded GA generally identifies the
shortest leaf-constrained minimum spanning trees, though
it takes more time than the greedy heuristic does. The
subset-coded GA’s advantage is greater on the random
than on the Euclidean instances.

2. Problem

Given a connected, weighted, undirected graphG on n
vertices, a spanning tree is a subgraph ofG that con-
nectsG’s vertices and contains no cycles, and a minimum
spanning tree (MST) is a spanning tree onG of mini-
mum total weight. The familiar algorithms of Borůvka
(1926; Nešeťril et al., 2001), Kruskal (1956), and Prim
(1957) find MSTs onG in times that are polynomial
in n. However, constraints on the spanning trees often
render the search for a tree of smallest weight NP-hard.
Such constraints include an upper bound on trees’ degrees
(Knowles and Corne, 2000; Narula and Ho, 1980; Raidl,
2000), an upper bound on trees’ diameters (Achuthan
et al., 1994; Deo and Abdalla, 2000; Julstrom and Raidl,
2003), and the restriction of trees’ leaves to exactly two,
so that valid trees are Hamiltonian paths.

A leaf of a tree is a vertex in it whose degree is one;
that is, the tree connects a leaf to exactly one other ver-
tex. Imposing a lower bound on the number of leaves in
spanning trees also makes the search for a tree of lowest
weight computationally difficult.

Let ` be an integer,2 ≤ ` < n − 1. A leaf-
constrained spanning tree (LCST) is a spanning tree onG
that has at least̀ leaves, and a leaf-constrained minimum
spanning tree (LCMST) is an LCST of minimum total
weight. The search for an LCMST with at least` leaves
on a graphG is the leaf-constrained minimum spanning
tree problem. Deo and Micikevicius (1999) showed that it
is NP-hard.

Like other problems that seek constrained minimum
spanning trees, the LCMST problem has applications to
facilities location and to circuit and network design. It is
closely related to thep-median problem, in which, given
n sites, we seekp locations among them, called medians,
so as to minimize the sum of the distances from each site
to the nearest median. Indeed, Hoeltinget al. (1995) de-
scribe the LCMST problem as a variation of thep-median
problem in which the medians are chosen from among the
sites and are themselves connected.

A graph G may have several unconstrained MSTs
with a variety of numbers of leaves. If one of these trees
has at least̀ leaves, then it solves the problem, and it
can be found quickly. Usually, however,` is a large frac-
tion of the numbern of G’s vertices (̀ = 0.9n, say)
and larger than the number of leaves in any unconstrained
MST on G. The weight of a leaf-constrained minimum
spanning tree is non-decreasing as the number of leaves
increases, so the weight of an LCMST with at least`
leaves is generally greater than that of an unconstrained
MST on G. Figure 1 shows an unconstrained minimum
spanning tree onn = 20 points in the unit square and
a low-weight leaf-constrained spanning tree on the same
points with ` = 17 leaves. The MST has weight 3.178
and eight leaves; the LCST has weight 5.041.

Since the LCMST problem is NP-hard, it is a suitable
target for heuristics, including evolutionary algorithms.
The following sections describe a greedy heuristic and two
genetic algorithms for the problem.

3. Greedy Heuristic

Deo and Micikevicius (1999) described a greedy heuristic
for the LCMST problem that begins with an unconstrained
minimum spanning tree on the target graphG. The al-
gorithm repeatedly exchanges a tree edge and a non-tree
edge so as to (a) maintain the structure as a tree; (b) in-
crease the number of leaves in the tree; and (c) increase
the tree’s weight as little as possible. These iterations stop
when either the number of leaves reaches`, in which case
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(a) (b)

Fig. 1. On a complete graph whose vertices are points in the
plane and whose edge weights are the Euclidean dis-
tances between the points: (a) An unconstrained mini-
mum spanning tree; it has eight leaves and its weight is
3.178; (b) A low-weight leaf-constrained spanning tree
with ` = 17 leaves; its weight is 5.041.

the algorithm returns the spanning tree with` leaves, or
no edge-swap is possible that will increase the number of
leaves, in which case the algorithm fails to find a tree that
satisfies the problem’s requirements. The algorithm’s time
is O(n4).

A more recent greedy heuristic (Julstrom, 2004) also
begins with an unconstrained MST onG but focuses
on the target graph’s vertices rather than its edges. This
heuristic, which we can call ML as in “more leaves,” iden-
tifies the MST’s leaves and interior vertices, then repeats
the following step.

ML relabels each interior vertex in turn as a leaf; for
each of these vertices, it forms an unconstrained minimum
spanning tree on the remaining interior vertices, then con-
nects each leaf, including the new one, to the nearest in-
terior vertex. The new leaf for which the resulting tree
is of lowest weight becomes a leaf permanently. ML re-
peats this step until the number of leaves reaches`. If the
target graphG is complete, ML cannot get stuck; it will
always return a spanning tree onG with ` leaves. Fig-
ure 2 presents a pseudo-code sketch of the ML heuristic.

The number of leaf-increasing steps is bounded
above by the numbern of vertices. Within each step,
the number of interior vertices is also less thann, and for
each candidate interior vertex, the time required to con-
struct an MST on the interior vertices and attach each leaf
to the nearest one isO(n2). Thus the time of the ML algo-
rithm, like that of the heuristic of Deo and Micikevicius,
is O(n4).

In comparisons using the Euclidean LCMST in-
stances described in Section 6, when` = 0.6n, ML iden-
tified lower-weight trees than the heuristic of Deo and Mi-
cikevicius did. When` = 0.9n, the earlier algorithm
always got stuck well below the leaf bound (Julstrom,
2004). It is, then, the ML heuristic to which we com-

T ← MST(V );

while |leaves(T )|< `

L← leaves(T );

len ← INFINITY;

for eachv ∈ V − L

L1 ← L ∪ {v};
T1 ← MST(V − L1);

for eachw ∈ L1

u← vertex in V − L1 nearestw;

T1 ← T1 ∪ {(w, u)};
if weight(T1) < len

len ← weight(T1);

T ← T1;

report T and weight(T );

Fig. 2. Sketch of the MST-based ML heuristic for the
LCMST problem. V is the set of vertices in the
target graphG, T is the developing tree, andL is
the set of leaves inT .

pare the performances of the two genetic algorithms that
the following sections describe.

4. Two Evolutionary Codings

The introduction suggested the usefulness of evolution-
ary codings that represent only valid candidate solutions
to problems of constrained optimization. Edelson and
Gargano (2000) presented a genetic algorithm for the leaf-
constrained minimum spanning tree problem that used
such a coding; it represented spanning trees with at least
` leaves onn vertices as strings of3n− `− 2 symbols.
This section describes two more-parsimonious codings of
valid LCSTs and operators appropriate for them. The first
is based on Prüfer strings; the second specifies interior
vertices.

4.1. Blob Code

Cayley’s Formula (Cayley, 1889; Even, 1973, pp.103–4)
tells us that the number of unconstrained spanning trees in
a complete graph onn vertices isnn−2. Prüfer (1918;
Even, 1973, pp.104–106) presented a proof of Cayley’s
Formula in the form of inverse one-to-one mappings be-
tween the spanning trees onn vertices and the strings of
length n − 2 over n vertex labels. We call the strings
Prüfer strings, and when we use them to represent span-
ning trees via Prüfer’s mappings, Prüfer numbers.

As representations of spanning trees, Prüfer num-
bers are deceptively appealing. Each string corresponds
to exactly one spanning tree, and we can apply conven-
tional evolutionary operators likek-point crossover and
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blob ← {1, 2, . . . , n− 1};
T ← {(blob→ 0)};
for i from 1 to n− 2

blob ← blob −{i};
if path(bi)

T ← T ∪ {(i→ bi)};
else

T ← T ∪ {(i→ succ(blob))};
T ← T − {(blob → succ(blob))};
T ← T ∪ {(blob → bi)};

blob ← (n− 1) in all edges;

Fig. 3. Blob decoding algorithm, which makes the edges in the
spanning tree a Prüfer string represents explicit. The
vertices are labeled0, 1, . . . , n − 1. b1b2 . . . bn−2 is
a Prüfer string andT is the spanning tree.

position-by-position mutation to these strings. Unfortu-
nately, Prüfer numbers have poor properties for evolu-
tionary search (Gottliebet al., 2001; Palmer and Ker-
shenbaum, 1994; Rothlauf and Goldberg, 1999). A small
change in a Prüfer number generally changes many edges
in the tree it represents, and when crossover generates a
Prüfer number, the tree the offspring represents generally
bears little resemblance to the trees of its parents.

However, there are many other one-to-one mappings
between Prüfer strings and spanning trees. Picciotto
(1999) examined three of them, which she called the Blob
Code, the Dandelion Code, and the Happy Code. Un-
der these mappings, Prüfer strings represent directed trees
rooted at vertex 0; we ignore edges’ directions to obtain
undirected spanning trees. Prüfer strings decoded with the
Blob Code have much better characteristics for evolution-
ary search than Prüfer numbers do (Julstrom, 2001).

Further, strings decoded via the Blob Code (and the
other mappings) share with Prüfer numbers a useful prop-
erty. The degree of each vertex in a spanning tree is always
one greater than the number of times its label appears in
the string that represents the tree. The labels of a tree’s
leaves do not appear in the tree’s string. Thus we encode
spanning trees onn vertices that have at least` leaves
as Prüfer strings that contain no more thann− ` distinct
symbols, and we decode these constrained strings with the
Blob algorithm.

In the Blob decoding algorithm, the eponymous blob
is a set of the graph’s vertices. Initially the blob includes
all the vertices except vertex 0. Each step removes a vertex
from the blob (in ascending order) and records a directed
edge in the spanning tree.

The algorithm uses two functions:succ(v) returns
the successor of vertex v among the edges recorded in
the spanning tree so far; andpath(v) returns TRUE if

the directed path from vertex v toward vertex 0 along the
tree’s edges intersects the blob, FALSE otherwise. Fig-
ure 3 summarizes the Blob decoding algorithm. In it,
b1b2 . . . bn−2 is a Prüfer string andT is the spanning tree.

Consider identifying the spanning tree on ten vertices
{0, 1, 2, . . . , 9} that the string (6 2 7 6 6 2 2 6) represents
via the Blob mapping. Initially, the blob contains the ver-
tices 1 through 9 (all except 0), and the tree contains the
one edge (blob→ 0). The first iteration of the algorithm’s
loop removes vertex 1 from the blob, finds thatpath(6) is
TRUE (since vertex 6 is in the blob) and so adds the edge
(1 → 6) to the tree.

The second loop iteration removes vertex 2 from the
blob and finds thatpath(2) is FALSE; no edge yet leads
from vertex 2, so the (trivial) path from it does not in-
tersect the blob. In consequence, the algorithm replaces
the edge (blob→ 0) in T with the two edges (2→ 0)
and (blob→ 2). Continuing in this way, the algorithm
constructs the directed spanning tree that the string repre-
sents. Ignoring the edges’ directions yields the undirected
spanning tree in Fig. 4.

(6 2 7 6 6 2 2 6) =>

0

1
2

34

5 6

7

8
9

Fig. 4. A Prüfer string of length eight and the spanning tree on
ten vertices that it represents via the Blob algorithm.

In the worst case, the Blob algorithm’s time is
O(n2), but on average it appears to be no worse than
O(n log n). To implement the algorithm efficiently, rep-
resent the tree by an array, sayt[] , in which the directed
edge (i → j) is indicated by settingt[ i] to j, and let
vertex numbern− 1 represent the blob.

4.2. Operators for the Blob Code

Variations of conventional positional operators always
yield Prüfer strings that contain no more thann − ` dis-
tinct symbols; that is, ones that represent trees with at least
` leaves.

An extension of two-point crossover maintains a set
Scr of n − ` or fewer symbols found in its two parent
chromosomes. The operator initializesScr with the sym-
bols common to both parents. It chooses two cut-points
at random within the chromosomes and copies symbols
into the offspring from one parent to a cut-point, from the
second parent to the second cut-point, then from the first
parent again. As it scans the parents and the offspring, it
records inScr the symbols that it encounters, until the
set holdsn − ` symbols. AfterScr becomes “full”, any
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parental symbol not found in it is not copied into the off-
spring; the operator writes in its position a random symbol
from Scr instead. This mechanism guarantees that any
position that contains the same symbol in both parents is
preserved and that no more thann − ` distinct symbols
appear in the offspring. Each instance of crossover begins
scanning the parents and offspring at a random position
and wraps around the chromosomes’ ends, so that the op-
erator does not on average place non-parental symbols in
some positions more often than in others.

Position-by-position mutation is augmented in the
same way. It initializes its setSmu with the symbols of
the parent string, and when it replaces a symbol, the new
symbol is random ifSmu contains fewer symbols than
n−`, and is selected fromSmu otherwise. It adds toSmu

symbols that are new to the offspring, and removes from
Smu symbols that disappear from the offspring. Mutation
also begins at a random position in the string each time it
is called.

The setsScr and Smu can be implemented so that
every operation on them requires only constant time. Thus
the times of the augmented crossover and mutation oper-
ators are stillO(n).

4.3. Blob Code’s Search Space

Constrained Prüfer strings decoded via the Blob Code rep-
resent only spanning trees with at least` leaves, and the
correspondence between the strings and the trees is one-
to-one, so the number of valid strings is the size of the
space that a GA using this coding searches. Givenn and
`, we find this numberT (n, `).

Let Str(n, s) be the number of Prüfer strings over an
alphabet of sizen in which exactly s symbols appear.
Str(n, s) is given by this recurrence:

Str(n, s) =


n if s = 1,(

n

s

)(
sn−2 −

s−1∑
q=1

Str(s, q)
)

if s > 1.

Clearly, n strings repeat one symboln − 2 times. To
build a string that contains exactlys > 1 distinct sym-
bols, choose the symbols, note that each position may be
occupied by any one of them, and prohibit all the strings
containing fewer thans symbols.

Str(n, s) can also be evaluated using Stirling num-
bers of the second kindS(k)

m (Even, 1973, pp.60–1),
which give the number of waysm items can be parti-
tioned into k non-empty subsets. For1 ≤ k ≤ m, S

(k)
m

is defined by this recurrence:

S(k)
m =

 1 if k = 1 or k = m,

S
(k−1)
m−1 + k S

(k)
m−1 otherwise.

Build a string of n − 2 vertex labels that contains
exactly s distinct symbols by choosing the symbols, or-
dering them, and assigning them in order to non-empty
groups of positions in the string, so that

Str(n, s) =
(

n

s

)
s!S(s)

n−2.

However we arrive at Str(n, s), the total number of
Prüfer strings in which the number of distinct symbols
does not exceedn−`—thus the number of spanning trees
on n vertices that have at least` leaves—is the sum of
Str(n, s) for values ofs from 1 to n− `:

T (n, `) =
n−∑̀
s=1

Str(n, s)).

For example, the number of distinct spanning trees on
n = 50 vertices is5048 or about 3.6e81. The number of
those that have at least 45 leaves isT (50, 45) ≈ 7.5e39.

4.4. Subset Coding

As Section 2 observed,̀ usually exceeds the number of
leaves in any unconstrained minimum spanning tree on
G, and the weight of an LCMST is non-decreasing as the
required number of leaves grows. Thus among the lowest-
weight trees with at least̀ leaves there will be at least one
with exactly ` leaves.

A coding in which each chromosome distinguishes
the vertices that must be leaves from those that are not so
restricted—interior vertices—limits the search space to a
relatively small subset of the spanning trees with at least
` leaves. Two steps identify the tree the chromosome rep-
resents. The first step builds a minimum spanning tree
on the interior vertices; the second connects each leaf to
its nearest interior vertex. Note that the resulting tree has
minimum weight among all the spanning trees with the
same leaves and interior vertices. If another such tree has
lower weight, then either a leaf connects to an interior ver-
tex in it by an edge of lower weight, or the spanning tree
that connects its interior vertices has lower weight, both
contradictions. Note, too, that a vertex that the chromo-
some specifies to be an interior vertex may be a leaf in the
chromosome’s tree, if no specified leaf is closer to it than
to any other interior vertex.

This coding can be implemented in two ways. A
chromosome may be a list of interior vertices or a bit
string that distinguishes interior vertices from leaves. Fig-
ure 5 shows an example of each implementation and the
spanning tree onn = 20 vertices that both represent. The
implementations are equivalent, and each may be trans-
formed into the other in time that isO(n).
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1

4

5

10

14

(1 4 4 10 14)

(01001100001000100000)

Fig. 5. List of interior vertices, a bit-string that distin-
guishes leaves and interior vertices, and the span-
ning tree on 20 vertices that they both represent.
The chromosomes indicate that vertices 1, 4, 5, 10,
and 14 are interior vertices.

Because this coding represents sets of fixed size—
sets of n − ` vertices—it has been called the fixed-
length subset coding. This coding is appropriate when,
as here, candidate solutions are, or can be unambigu-
ously derived from, subsets of the problem’s elements.
It has been used in evolutionary algorithms for outlier
detection (Crawfordet al., 1995), a problem in chemo-
metrics (Lucasius and Kateman, 1992), and particularly
the p-median problem (Alpet al., 2003; Correaet al.,
2001; Dibble and Densham, 1993; Estivill-Castro and
Torres-Velásquez, 1999; Hoeltinget al., 1995; Hosage and
Goodchild, 1986; Lim and Xu, 2003).

In an evolutionary algorithm for the LCMST prob-
lem, a chromosome’s fitness is the total weight of the
spanning tree it represents. Prim’s algorithm requires time
that is O((n − `)2) to find a minimum spanning tree on
the interior vertices a chromosome specifies. Identifying
the interior vertex nearest each leaf isO(`n). This last
step can be efficiently implemented when the underlying
graph is represented by adjacency lists, each sorted by the
weights of the edges in it. Then the interior vertex near-
est a leaf will be the first one on the leaf’s list, and each
search for a nearest interior vertex will examine an aver-
age of n/(n − ` + 1) list entries. The entire time for
evaluation remainsO(n2), trough.

4.5. Operators for the Subset Coding

Radcliffe (1993), Radcliffe and George (1993), and Craw-
ford et al. (1997) described and analyzed crossover oper-
ators for fixed-length subsets. The crossover used here is
named (by Radcliffe) the Random Respectful Recombi-
nation, abbreviated RRR or R3. It copies into its one off-
spring the interior vertices common to both parents, then

chooses vertices at random from the remaining parental
interior vertices, until the offspring containsn − ` of
them. For example, ifn = 20 and two parent chromo-
somes are (1 4 5 10 14) and (2 5 8 12 14), then their off-
spring might be (1 5 8 10 14).

Mutation simply exchanges a leaf and an interior ver-
tex. If the subsets are implemented as lists of elements, as
in the example above, the operations’ times areO(n− `).
If bit-strings implement subsets, the operations’ times are
simply O(n).

4.6. Subset Coding’s Search Space

Under the subset coding, a chromosome specifies a set of
n − ` interior vertices, on which the decoding algorithm
identifies a spanning tree of lowest weight, and a comple-
mentary set of` leaves. The total number of spanning
trees with a particular set of interior vertices is the prod-
uct of the number of spanning trees on those vertices and
the number of ways the leaves can be connected to them:

(n− `)n−`−2 × (n− `)` = (n− `)n−2.

Of all of these trees, the subset code represents exactly
one, and it has minimum weight among them, as Sec-
tion 4.4 pointed out. Indeed, the size of the search space
when fixed-length subsets represent candidate LCSTs is
simply the number of sets of̀ leaves, or(n− `) interior
vertices, that can be chosen from then vertices:(

n

`

)
=

(
n

n− `

)
.

This number is far smaller thanT (n, `). For exam-
ple, while the number of spanning trees onn = 50 ver-
tices with at least̀ = 45 leaves isT (n, `) ≈ 7.5e39,
the number of sets of 45 leaves that can be chosen from
50 vertices is

(
50
45

)
= 2, 118, 760. Note that this value is

smaller than the total number of spanning trees with ex-
actly 45 leaves by a factor of

(n− `)n−2 = 548 ≈ 3.6e33.

Since the subset coding’s search space is so much
smaller, we would expect a GA using the subset coding to
perform decisively better than one using the Blob Code.

5. Two Genetic Algorithms

Two generational genetic algorithms for the LCMST
problem encode candidate spanning trees as constrained
Prüfer strings decoded via the Blob Code and as fixed-
length subsets implemented as bit strings of lengthn, re-
spectively.



Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem 391

The GAs’ initial populations consist of random chro-
mosomes of the appropriate kind. They select chro-
mosomes to participate in crossover and mutation ink-
tournaments:k chromosomes are chosen at random from
the population and the one that is most fit—that is, the
one that represents the leaf-constrained tree of the lowest
weight—is selected to be a parent. They apply crossover
and mutation separately; each new chromosome is gener-
ated by one operator or the other, never both. The prob-
abilities with which the operators are applied are param-
eters of the algorithms. The GAs are 1-elitist; the single
most fit chromosome of each generation is preserved un-
changed into the next one. They run through fixed num-
bers of generations.

Except for their population sizes, the parameters of
the two genetic algorithms are the same. On an LCMST
problem instance ofn vertices, the population of the
Blob-Coded GA contains5n chromosomes. Since its
search space is so much smaller, the population of the
subset-coded GA contains only2n chromosomes. Both
algorithms select chromosomes to be parents in tourna-
ments of size two; note that these tournaments assign to
chromosomes the same probabilities as linear normaliza-
tion does (Goldberg and Deb, 1991; Julstrom, 1999). The
GAs’ probability of crossover is 70% (and their probabil-
ity of mutation is therefore 30%). In the Blob-Coded GA,
the probability that mutation modifies any one symbol in
a chromosome is2/n. Both algorithms run through10n
generations, then report the fitness of the single best chro-
mosome; that is, the total weight of the leaf-constrained
spanning tree that the chromosome represents.

6. Comparisons

The greedy ML heuristic, the Blob-Coded GA, and the
subset-coded GA were compared on 65 instances of the
leaf-constrained minimum spanning tree problem. Forty-
five of these instances are Euclidean, fifteen instances
each of n = 50, 100, and 250 vertices. The remaining
twenty instances are non-Euclidean, ten instances each of
n = 100 and 300 vertices. In every case, the leaf bound
` was set to0.9n; thus ` = 45, 90, and 225 respectively
for the Euclidean instances and̀= 90 and 270 for the
non-Euclidean instances.

The Euclidean instances are listed in Beasley’s
(1990) OR-Library1 as instances of the Euclidean Steiner
problem; they consist of random points in the unit square.
We treat the points as the vertices of complete graphs
whose edge weights are the distances between the points.
The edge weights of the remaining instances were chosen
at random on the interval[0.01, 0.99].

1http://mscmga.ms.ic.ac.uk/info.html

ML was run once and each GA was run 30 indepen-
dent times on each instance. Tables 1 through 4 summa-
rize the results of these trials. For each instance, the tables
list its number, the weight of and number of leaves in an
unconstrained minimum spanning tree on its vertices, and
the weight of the tree found by the ML heuristic. For each
GA applied to each instance, they list the weight of the
best tree found in the 30 trials, the mean of the trials’ 30
weights, and the standard deviation of those values.

Three observations stand out: (a) The Blob-Coded
GA cannot compete with the ML heuristic; (b) the subset-
coded GA can; and (c) both the disadvantage of the Blob-
Coded GA and the advantage of the subset-coded GA are
larger on the random-weight instances than on the Eu-
clidean instances.

Consider first the Blob-Coded GA on the Euclidean
instances. Even on the smallest of these, the weights of
the GA’s best trees exceed the weights of ML’s trees by
1.9% to 11.2%, and the average weights of the GA’s trees
exceed the weights of ML’s trees by 14.5% to 28.8%. The
GA’s disadvantage grows on the larger instances. When
n = 250 and ` = 225, the weights of the GA’s trees are
on average nearly 50% greater than the weights of ML’s
trees.

On the random-weight instances, the Blob-Coded
GA’s performance does not improve. Here, whenn =
100 and ` = 90, the weights of the GA’s best trees are
from 16.1% to 41.2% greater than the weights of ML’s
trees, and the average weights of the GA’s trees are 35.2%
to 71.0% greater. On the instances withn = 300 and
` = 270, the weights of the Blob-Coded GA’s trees are on
average 49.7% greater than the weights of the trees ML
identifies.

The subset-coded GA does much better. Again, con-
sider the Euclidean instances first. On every instance but
one (the last withn = 50, a tie), the best tree in each set
of 30 trials has smaller weight than the tree ML returns,
though the GA’s advantage diminishes as the instances get
larger.

When n = 50 and ` = 45, the weights of the GA’s
best trees are up to 5.6% smaller than those of ML’s trees,
with an average improvement over ML of 2.7%. Over all
the trials on these instances, the GA’s trees have weights
on average 2.6% smaller than the weights of ML’s trees.
When n = 100 and ` = 90, the GA’s best trees have
weights from 2.6% to 4.6% smaller than the weights of
ML’s trees; over all the trials on these instances, the GA’s
trees have weights on average 2.4% less than ML’s trees.
When n = 250 and ` = 225, the GA’s best trees have
weights from 1.5% to 3.6% smaller than the weights of
ML’s trees, and the GA’s trees have weights on average
2.2% smaller than ML’s trees.
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On the random instances, the subset-coded GA does
quite well. Here, whenn = 100 and ` = 90, the GA and
ML tie once, but the best tree the GA finds on the second
instance has weight 15.4% smaller than that of ML’s tree.
On average, the weights of the GA’s trees are 7.1% smaller
than the weights of ML’s trees.

When n = 300 and ` = 270, the GA’s advantage
diminishes slightly. Its best trees are from 4.7% to 10.1%
better than ML’s trees, and on average the GA’s trees have
weights 6.0% smaller than those ML identifies.

It is clear that the smaller size of its search space and
the effectiveness of its search benefit the subset-coded GA
relative to the Blob-Coded GA, but why should its advan-
tage over the ML heuristic be larger on the random than
on the Euclidean instances? The structure and regularity
of the Euclidean instances may make them amenable to
the ML heuristic, whose results can then be only a little
improved, while on the random instances there is more
room for the subset-coded GA to identify leaf-constrained
trees of lower weight.

Figure 6 illustrates the performance of all three algo-
rithms on the first 250-point Euclidean instance. It shows
an unconstrained minimum spanning tree on the points
and the leaf-constrained spanning trees with 225 leaves
identified by the ML heuristic, the Blob-Coded GA, and
the subset-coded GA. The unconstrained tree has weight
10.605 and 56 leaves; the ML heuristic’s tree has weight
20.655; the Blob-Coded GA’s tree has weight 26.389; and
the subset-coded GA’s tree has weight 20.411.

7. Conclusion

Two genetic algorithms seek good solutions to the leaf-
constrained minimum spanning tree problem. One en-
codes spanning trees with at least` leaves as Prüfer
strings in which no more thann − ` distinct symbols
appear, and it identifies the trees that these strings rep-
resent with the Blob Code mapping. The second encodes
a tiny subset of the spanning trees with exactly` leaves
as subsets of lengthn − `; each specifies the leaves and
the interior vertices in a tree.

In tests of 65 instances of the LCMST problem,
45 Euclidean and twenty with randomly chosen weights,
the Blob-Coded GA could not compete with a greedy,
spanning-tree-based heuristic. The subset-coded GA con-
sistently returned trees of lower weight than did the
heuristic, though the GA’s advantage was smaller on the
larger instances. Its advantage was greater on the random
instances, where it identified trees whose weights were as
much as 15% less than those of the heuristic’s trees. These
results support both the primary importance of codings
and the operators that act on them in genetic algorithms

(a) (b)

(c) (d)

Fig. 6. For the first Euclidean LCMST problem instance
with n = 250 vertices and` = 225 leaves: (a)
An unconstrained minimum spanning tree on the
vertices; it has weight 10.605 and 56 leaves; (b) The
spanning tree found by the greedy ML heuristic; it
has weight 20.655; (c) The lowest-weight spanning
tree found by the Blob-Coded GA; it has weight
26.389; (d) The lowest-weight spanning tree found
by the subset-coded GA; it has weight 19.921.

and the efficacy of searching a smaller space of feasible
solutions to the target problem.

The poor performance of the Blob-Coded GA does
not necessarily rule out all Prüfer string codings of span-
ning trees in evolutionary search. Other mappings of
Prüfer strings to spanning trees preserve the degree prop-
erty that made both Prüfer numbers and the Blob Code
appear suited to the LCMST problem. These include
the Dandelion Code and the Happy Code of Picciotto
(1999) and the mapping described by Deo and Micike-
vicius (2002) from which the represented tree’s diameter
can be extracted without making the tree itself explicit.
Any of these codings, or some other, might be more con-
ducive to evolutionary search than the Prüfer or Blob map-
pings.

Similarly, the subset-coded GA can be modified in
a number of ways that might improve its performance.
In particular, Radcliffe (1993), Radcliffe and George
(1993), and Crawfordet al. (1997) described a variety of
crossover operators for fixed-length subsets, any of which
might provide more effective search, and one can always
tinker with a GA’s parameters: population size, tourna-
ment size, and operator probabilities.
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Table 2. Results of the trials of the ML heuristic and the two genetic algorithms on the fifteen
LCMST problem instances withn = 100 and ` = 90, as in Table 1.

Blob-Coded GA Subset-coded GA

Instance w(MST) Leaves ML Best Mean StdDev Best Mean StdDev

1 6.609 20 12.995 16.784 18.909 1.32 12.590 12.626 0.04

2 6.833 20 12.966 14.805 17.234 1.03 12.374 12.398 0.02

3 6.763 25 13.140 15.789 18.567 1.58 12.762 12.774 0.02

4 6.798 18 13.307 15.164 17.950 1.40 12.899 12.911 0.01

5 6.903 24 13.661 15.727 17.949 1.27 13.299 13.326 0.06

6 6.694 25 13.099 16.255 19.063 1.35 12.753 12.772 0.03

7 7.277 20 13.614 15.482 18.599 1.50 13.305 13.345 0.04

8 6.631 23 13.361 16.229 18.336 1.53 12.964 13.039 0.10

9 7.165 28 13.419 16.333 18.500 1.43 13.202 13.238 0.03

10 6.954 25 13.515 15.586 18.198 1.59 13.123 13.136 0.02

11 7.031 25 13.774 17.212 18.734 1.13 13.578 13.583 0.01

12 6.855 23 13.303 16.730 18.888 1.37 13.174 13.213 0.03

13 6.683 18 13.073 14.642 17.360 0.99 12.752 12.796 0.06

14 7.137 26 13.504 16.002 18.943 1.45 13.280 13.317 0.03

15 6.383 23 12.672 14.995 16.410 0.76 12.216 12.226 0.01

Table 3. Results of the trials of the ML heuristic and the two genetic algorithms on the fifteen
LCMST problem instances withn = 250 and ` = 225, as in Tables 1 and 2.

Blob-Coded GA Subset-coded GA

Instance w(MST) Leaves ML Best Mean StdDev Best Mean StdDev

1 10.605 56 20.655 26.389 30.708 2.80 19.921 19.994 0.08

2 10.421 58 20.779 26.703 30.743 2.13 20.279 20.342 0.06

3 10.392 57 20.363 26.710 30.628 2.12 19.841 19.897 0.05

4 10.739 58 20.992 27.984 30.846 1.71 20.455 20.540 0.09

5 10.610 58 20.678 26.203 31.271 2.41 19.957 20.021 0.08

6 10.538 47 20.656 27.580 30.652 1.77 20.341 20.376 0.03

7 10.427 54 20.574 27.520 31.407 2.35 20.025 20.059 0.03

8 10.689 62 20.011 26.976 30.468 1.87 19.594 19.640 0.03

9 10.640 59 21.124 26.536 31.172 3.12 20.461 20.510 0.05

10 10.608 63 20.391 28.535 30.536 1.53 19.888 19.994 0.04

11 10.222 64 19.502 25.328 28.704 1.69 19.044 19.086 0.03

12 10.858 59 20.142 26.722 30.666 2.21 19.844 19.890 0.04

13 10.498 58 20.218 25.223 29.687 2.82 19.777 19.854 0.05

14 10.586 60 20.396 25.743 30.543 2.05 19.938 20.036 0.07

15 10.484 57 20.078 26.181 30.372 2.44 19.494 19.532 0.03
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Table 4. Results of the trials of the ML heuristic and the two genetic algorithms on the twenty LCMST problem
instances with random distances in[0.01, 0.99]. There are ten instances withn = 100 and ` = 90
and ten withn = 300 and ` = 270. Presentation is as in Tables 1, 2, and 3.

Blob-Coded GA Subset-coded GA

Instance w(MST) Leaves ML Best Mean StdDev Best Mean StdDev

n = 100, ` = 90

1 2.190 39 6.174 7.925 9.340 0.84 5.594 5.843 0.14

2 2.047 40 6.588 7.904 9.402 0.82 5.574 5.696 0.09

3 2.332 40 6.219 7.521 9.357 0.94 5.923 5.990 0.08

4 2.029 40 6.343 7.799 8.953 0.75 5.389 5.575 0.17

5 2.214 35 6.850 8.136 9.581 0.74 5.904 5.958 0.09

6 2.311 42 6.952 8.070 9.399 0.81 6.292 6.414 0.09

7 2.007 44 5.748 7.491 8.976 0.84 5.558 5.761 0.11

8 2.071 41 5.889 7.768 9.015 0.80 5.423 5.509 0.13

9 2.162 45 5.138 7.254 8.785 0.79 5.138 5.208 0.06

10 2.301 38 6.652 8.258 9.486 0.91 5.709 5.949 0.12

n = 300, ` = 270

1 4.106 124 8.221 11.823 12.975 0.65 7.835 7.938 0.06

2 4.266 121 8.637 11.846 12.860 0.63 8.091 8.223 0.07

3 4.131 121 8.611 11.729 12.647 0.68 7.893 8.047 0.08

4 4.348 123 8.814 12.281 13.109 0.53 8.061 8.185 0.06

5 4.124 121 8.701 11.938 12.888 0.78 7.818 7.992 0.10

6 4.182 115 8.646 11.975 12.891 0.60 8.092 8.186 0.06

7 4.152 118 8.544 11.976 13.052 0.61 7.974 8.111 0.09

8 4.048 123 8.795 11.817 12.797 0.52 7.972 8.122 0.07

9 4.228 124 8.575 11.630 12.592 0.76 7.752 7.883 0.09

10 4.203 125 8.166 11.700 12.584 0.55 7.684 7.854 0.06


