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The features of an evolutionary algorithm that most determine its performance are the coding by which its chromosomes
represent candidate solutions to its target problem and the operators that act on that coding. Also, when a problem involves
constraints, a coding that represents only valid solutions and operators that preserve that validity represent a smaller search
space and result in a more effective search. Two genetic algorithms for the leaf-constrained minimum spanning tree problem
illustrate these observations. Given a connected, weighted, undirected@raith n vertices and a bound, this problem

seeks a spanning tree @i with at least/ leaves and minimum weight among all such trees. A greedy heuristic for the
problem begins with an unconstrained minimum spanning treé&/pthen economically turns interior vertices into leaves

until their number reache& One genetic algorithm encodes candidate trees with Prifer strings decoded via the Blob Code.
The second GA uses strings of length- ¢ that specify trees’ interior vertices. Both GAs apply operators that generate only

valid chromosomes. The latter represents and searches a much smaller space. In tests on 65 instances of the problem, both
Euclidean and with weights chosen randomly, the Blob-Coded GA cannot compete with the greedy heuristic, but the subset-
coded GA consistently identifies leaf-constrained spanning trees of lower weight than the greedy heuristic does, particularly
on the random instances.
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1. Introduction binatorial optimization, whose solutions they encode as
_ ) _ o strings of symbols. They apply crossover and mutation
An evolutionary algorithm (EA) is a probabilistic search operators to generate offspring, and they select chromo-

heuristic that replicates the defining features of biological ggmes from the population to reproduce via these opera-
evolution: reproduction with variation, selection based on .

fithess, and repetition. An EA maintains a population of

data structures, called chromosomes, that encode candi- The mteract_lon betwegn the coding by which an EA
date solutions to its target problem. Attached to each chro-Tepresents candidate solutions and the operators that gen-

mosome is its fitness, a numerical value that indicates the®rate offs_pnng from the existing chr_or_nosomes 'S the sin-
quality of the solution the chromosome represents. The 9€ Most Important factor in determining whgther the EA
algorithm selects chromosomes to survive or reproduceSF""j‘r(:hes effec_tlvely. Also, when a problem mvones con-
so that those with better fitness are more likely to be se-Straints, a coding that represent.s 'only valid solutions and
lected. Crossover, also called recombination, combinesOPerators that preserve that validity can make the search

genetic information from two parent chromosomes. Mu- SPace considerably smaller and the search correspond-

tation randomly modifies one parent chromosome. When ingly more effective.

the EA has generated enough offspring, they replace their Genetic algorithms for the leaf-constrained mini-

parents and the process continues. As these generationgum spanning tree problem illustrate these observations.

succeed each other, chromosomes that represent better sésiven a connected, weighted, undirected graphand a

lutions evolve. bound ¢, this problem, which Section 2 describes in de-
The several kinds of evolutionary algorithms are dis- t@il: Séeks a spanning tree 6h with at least/ leaves and

tinguished by the problems to which they are applied, the Minimum total weight among all such trees.

codings by which their chromosomes represent candidate A recent greedy heuristic for the leaf-constrained
solutions, the operators they apply to those chromosomesminimum spanning tree problem begins with an uncon-
and how they perform and use selection. Genetic algo-strained minimum spanning tree @d. One step of the
rithms (GAs) are most often applied to problems of com- heuristic turns an interior vertex into a leaf, forms a mini-
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mum spanning tree on the remaining interior vertices, and A leaf of a tree is a vertex in it whose degree is one;
connects each leaf, including the new one, to the nearesthat is, the tree connects a leaf to exactly one other ver-
interior vertex. The interior vertex chosen to become a tex. Imposing a lower bound on the number of leaves in
leaf is the one for which the weight of this tree is smallest. spanning trees also makes the search for a tree of lowest
This step is repeated until the number of leaves reaéhes weight computationally difficult.

Section 3 describes this heuristic in detail and compares it Let ¢ be an integer,2 < ¢ < n — 1. A leaf-

with an earlier one for the problem. constrained spanning tree (LCST) is a spanning tre€'on

Two evolutionary codings represent only spanning that has at least leaves, and a leaf-constrained minimum
trees that satisfy the leaf constraint; that is, that have atspanning tree (LCMST) is an LCST of minimum total
least ¢ leaves. The first uses strings of vertex labels, de- weight. The search for an LCMST with at leasteaves
coded via an algorithm called the Blob Code. The secondon a graphG is the leaf-constrained minimum spanning
specifies sets of leaves and interior vertices in spanningtree problem. Deo and Micikevicius (1999) showed that it
trees; the tree a chromosome represents is identified byis NP-hard.

forming a minimum spanning tree on the interior vertices Like other problems that seek constrained minimum
the chromosome lists and connecting each leaf to the nNearspanning trees, the LCMST problem has applications to
est interior vertex, as in the greedy heuristic. Many other fagijities location and to circuit and network design. It is
codings can represent spanning trees (Ra|dl and JulstromC|ose|y related to the-median problem, in which, given
2003; Rothlauf, 2002, pp.119-197), butin general they do , sjtes, we seelp locations among them, called medians,
not easily honor the leaf constraint. Section 4 describesgg 55 to minimize the sum of the distances from each site
the two codings used here, crossover and mutation operayg the nearest median. Indeed, Hoeltietel. (1995) de-
tors for them, and the sizes of the spaces they represent. g¢ripe the LCMST problem as a variation of thenedian

The two codings and operators appropriate for them problem in which the medians are chosen from among the
are implemented in straightforward generational genetic sites and are themselves connected.

algorithms, which Section 5 describes. The GAs are A graph G may have several unconstrained MSTs
compared with the greedy heuristic and each other onyith a variety of numbers of leaves. If one of these trees
65 instances of the leaf-constrained minimum spanning has at least’ leaves, then it solves the problem, and it
tree problem, 45 Euclidean instances and 20 whose edg%an be found qu|ck|y Usua”y' howevd"is a |arge frac-
weights are chosen randomly. Section 6 describes thesgion of the numbern, of G's vertices ( = 0.9n, say)

comparisons. The greedy heuristic is relatively effective and |arger than the number of leaves in any unconstrained
and the Blob-Coded GA does not do as well as the greedymST on . The weight of a leaf-constrained minimum
heuristic. The subset-coded GA generally identifies the spanning tree is non-decreasing as the number of leaves
shortest leaf-constrained minimum spanning trees, thoughincreases, so the weight of an LCMST with at ledst
it takes more time than the greedy heuristic does. The|eaves is generally greater than that of an unconstrained
subset-coded GAs advantage is greater on the randomysT on G. Figure 1 shows an unconstrained minimum
than on the Euclidean instances. spanning tree om = 20 points in the unit square and
a low-weight leaf-constrained spanning tree on the same
points with £ = 17 leaves. The MST has weight 3.178

2. Problem and eight leaves; the LCST has weight 5.041.

Since the LCMST problem is NP-hard, it is a suitable
Given a connected, weighted, undirected graplon n target for heuristics, including evolutionary algorithms.
vertices, a spanning tree is a subgraphfthat con-  The following sections describe a greedy heuristic and two

nectsG's vertices and contains no cycles, and a minimum  genetic algorithms for the problem.

spanning tree (MST) is a spanning tree 6h of mini-

mum total weight. The familiar algorithms of Bortivka

(1926; NesSetl et al, 2001), Kruskal (1956), and Prim 3, Greedy Heuristic

(1957) find MSTs onG in times that are polynomial

in n. However, constraints on the spanning trees often Deo and Micikevicius (1999) described a greedy heuristic
render the search for a tree of smallest weight NP-hard.for the LCMST problem that begins with an unconstrained
Such constraints include an upper bound on trees’ degreesninimum spanning tree on the target graph The al-
(Knowles and Corne, 2000; Narula and Ho, 1980; Raidl, gorithm repeatedly exchanges a tree edge and a non-tree
2000), an upper bound on trees’ diameters (Achuthanedge so as to (a) maintain the structure as a tree; (b) in-
et al, 1994; Deo and Abdalla, 2000; Julstrom and Raidl, crease the number of leaves in the tree; and (c) increase
2003), and the restriction of trees’ leaves to exactly two, the tree’s weight as little as possible. These iterations stop
so that valid trees are Hamiltonian paths. when either the number of leaves reacligs which case
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T «+— MST(V);
while |leaves()|< ¢
L — leavesD);
len < INFINITY;
foreachv e V — L
L, — LU {v};
Ty «— MST(V — L1);
foreachw € L1
u < vertexinV — L1 nearestw;
(@) (b) Ty — Ty U {(w,u)};
if weight(71) < len
len — weight(7);

Fig. 1. On a complete graph whose vertices are points in the
plane and whose edge weights are the Euclidean dis-

tances between the points: (a) An unconstrained mini- T H_ Ty;

mum spanning tree; it has eight leaves and its weight is report 7" and weight(’);

3.178; (b) A low-weight leaf-constrained spanning tree

with ¢ = 17 leaves; its weight is 5.041. Fig. 2. Sketch of the MST-based ML heuristic for the

LCMST problem. V is the set of vertices in the
target graphGG, T is the developing tree, andl is

the algorithm returns the spanning tree witHeaves, or the set of leaves iff".
no edge-swap is possible that will increase the number of
leaves, in which case the algorithm fails to find a tree that
satisfies the problem’s requirements. The algorithm’s time
is O(n?).

A more recent greedy heuristic (Julstrom, 2004) also
begins with an unconstrained MST ofi but focuses 4. Two Evolutionary Codings
on the target graph’s vertices rather than its edges. This
heuristic, which we can call ML as in “more leaves,” iden- The introduction suggested the usefulness of evolution-
tifies the MST'’s leaves and interior vertices, then repeatsary codings that represent only valid candidate solutions
the following step. to problems of constrained optimization. Edelson and

ML relabels each interior vertex in turn as a leaf; for ©@rgano (2000) presented a genetic algorithm for the leaf-
each of these vertices, it forms an unconstrained minimumconstrained minimum spanning tree problem that used
spanning tree on the remaining interior vertices, then con-SUch a coding; it represented spanning trees with at least
nects each leaf, including the new one, to the nearest in-* 18&ves o vertices as strings o$n — £ — 2 symbols.
terior vertex. The new leaf for which the resulting tree 1hiS Section describes two more-parsimonious codings of
is of lowest weight becomes a leaf permanently. ML re- Valid LCSTs and operators appropriate for them. The first
peats this step until the number of leaves reachdbthe is b_ased on Prufer strings; the second specifies interior
target graphG is complete, ML cannot get stuck; it will ~ Vertices.
always return a spanning tree @n with ¢ leaves. Fig-
ure 2 presents a pseudo-code sketch of the ML heuristic. 4.1. Blob Code

The number of leaf-increasing steps is bounded
above by the number. of vertices. Within each step, Cayley’s Formula (Cayley, 1889; Even, 1973, pp.103-4)
the number of interior vertices is also less tharand for tells us that the number of unconstrained spanning trees in
each candidate interior vertex, the time required to con- a complete graph om vertices isn™~2. Prifer (1918;
struct an MST on the interior vertices and attach each leafEven, 1973, pp.104-106) presented a proof of Cayley’s
to the nearest one i9(n?). Thus the time of the ML algo- ~ Formula in the form of inverse one-to-one mappings be-
rithm, like that of the heuristic of Deo and Micikevicius, tween the spanning trees onvertices and the strings of

pare the performances of the two genetic algorithms that
the following sections describe.

is O(n%). length n — 2 over n vertex labels. We call the strings

In comparisons using the Euclidean LCMST in- P_r[]fer strings, and when we use them to represent span-
stances described in Section 6, whes: 0.6n, ML iden- ning trees via Prifer's mappings, Prifer numbers.
tified lower-weight trees than the heuristic of Deo and Mi- As representations of spanning trees, Prifer num-

cikevicius did. When¢ = 0.9n, the earlier algorithm  bers are deceptively appealing. Each string corresponds
always got stuck well below the leaf bound (Julstrom, to exactly one spanning tree, and we can apply conven-
2004). It is, then, the ML heuristic to which we com- tional evolutionary operators liké-point crossover and
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blob — {1,2,...,n —

T «— {(blob— 0)};

for s fromlton — 2
blob — blob —{i};

1} the directed path from vertex v toward vertex O along the
tree’s edges intersects the blob, FALSE otherwise. Fig-
ure 3 summarizes the Blob decoding algorithm. In it,

bibs ... b,_o isaPrifer string and” is the spanning tree.

if path(b;) Consider identifying the spanning tree on ten vertices
T —TU{(i— b)}; {Q, 1,2,...,9} thaF the st.ri.ng (6276622 6)_represents
else via the Blob mapping. Initially, the blob contains the ver-

tices 1 through 9 (all except 0), and the tree contains the
one edge (blob— 0). The first iteration of the algorithm’s
loop removes vertex 1 from the blob, finds tipath(6) is
TRUE (since vertex 6 is in the blob) and so adds the edge
(1 — 6) to the tree.

The second loop iteration removes vertex 2 from the
blob and finds thapath(2) is FALSE; no edge yet leads
from vertex 2, so the (trivial) path from it does not in-
tersect the blob. In consequence, the algorithm replaces
the edge (blob— 0) in T with the two edges (2— 0)
and (blob — 2). Continuing in this way, the algorithm
position-by-position mutation to these strings. Unfortu- constructs the directed spanning tree that the string repre-
nately, Prifer numbers have poor properties for evolu- sents. Ignoring the edges’ directions yields the undirected
tionary search (Gottlieket al, 2001; Palmer and Ker- spanning tree in Fig. 4.
shenbaum, 1994; Rothlauf and Goldberg, 1999). A small
change in a Priifer number generally changes many edges
in the tree it represents, and when crossover generates a
Prufer number, the tree the offspring represents generally
bears little resemblance to the trees of its parents.

T «— T U{(: — sucdblob))};
T — T — {(blob — sucdblob))};
T «— T U{(blob — b;)};

blob — (n — 1) in all edges;

Fig. 3. Blob decoding algorithm, which makes the edges in the
spanning tree a Prifer string represents explicit. The
vertices are labeled, 1,...,n — 1. bibz...bp—2 IS
a Prufer string andl” is the spanning tree.

4
(62766226)=>

However, there are many other one-to-one mappings
between Prifer strings and spanning trees. Picciotto
(1999) examined three of them, which she called the Blob
Code, the Dandelion Code, and the Happy Code. Un-

der these mappings, Priifer strings represent directed trees . . .
ppIng gsTep In the worst case, the Blob algorithm’s time is

rooted at vertex O; we ignore edges’ directions to obtain Om2). b , b h
undirected spanning trees. Prifer strings decoded with the (n"), but on average it appears to be no worse than

Blob Code have much better characteristics for evolution- (™ logﬁ)' To it;nplement the aIg(_)rithrT (hefﬁhcieg.tly, reg)—
ary search than Prifer numbers do (Julstrom, 2001). resent the tr.e(.e y an array, Sy , In whic t € irecte
edge { — j) is indicated by setting[ i] to j, and let
Further, Stl’ingS decoded via the Blob Code (and the vertex numbem — 1 represent the blob.
other mappings) share with Priifer numbers a useful prop-
erty. The degree of each vertex in a spanning tree is always

one greater than the number of times its label appears in4'2' Operators for the Blob Code

the string that represents the tree. The labels of a tree'syariations of conventional positional operators always
leaves do not appear in the tree’s string. Thus we encodeyje|q Priifer strings that contain no more than- ¢ dis-

spanning trees om vertices that have at least leaves  tinct symbols; that is, ones that represent trees with at least
as Prifer strings that contain no more than- ¢ distinct / leaves.

symbols, and we decode these constrained strings with the An extension of two-point crossover maintains a set

Blob algorithm. S.. of n — £ or fewer symbols found in its two parent
In the Blob decoding algorithm, the eponymous blob chromosomes. The operator initializ8s, with the sym-

is a set of the graph’s vertices. Initially the blob includes bols common to both parents. It chooses two cut-points

all the vertices except vertex 0. Each step removes a vertexat random within the chromosomes and copies symbols

from the blob (in ascending order) and records a directedinto the offspring from one parent to a cut-point, from the

Fig. 4. A Prufer string of length eight and the spanning tree on
ten vertices that it represents via the Blob algorithm.

edge in the spanning tree.
The algorithm uses two functionssucc(v) returns

second parent to the second cut-point, then from the first
parent again. As it scans the parents and the offspring, it

the successor of vertex v among the edges recorded irrecords inS., the symbols that it encounters, until the

the spanning tree so far; anghth(v) returns TRUE if

set holdsn — ¢ symbols. AfterS., becomes “full”, any
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parental symbol not found in it is not copied into the off- Build a string of n — 2 vertex labels that contains
spring; the operator writes in its position a random symbol exactly s distinct symbols by choosing the symbols, or-
from S., instead. This mechanism guarantees that anydering them, and assigning them in order to non-empty
position that contains the same symbol in both parents isgroups of positions in the string, so that
preserved and that no more than— ¢ distinct symbols
appear in the offspring. Each instance of crossover begins st _ (n> o

. . i n,s) = sS85,
scanning the parents and offspring at a random position s
and wraps around the chromosomes’ ends, so that the op-
erator does not on average place non-parental symbols in ~ However we arrive at Str( s), the total number of
some positions more often than in others. Prufer strings in which the number of distinct symbols
does not exceed — /—thus the number of spanning trees
on n vertices that have at leagt leaves—is the sum of
Str(n, s) for values ofs from 1ton — £:

Position-by-position mutation is augmented in the
same way. It initializes its sef,,,,, with the symbols of
the parent string, and when it replaces a symbol, the new
symbol is random ifS,,, contains fewer symbols than -
n—/, and is selected fron%,,,,, otherwise. It adds t®,,,,, _
symbols that are new to the offspring, and removes from T(n, ) = ; Str(n, 5)).
Smw Symbols that disappear from the offspring. Mutation B
also begins at a random position in the string each time it For example, the number of distinct spanning trees on
is called. n = 50 vertices is50*8 or about 3.6e81. The number of
The setsS,.,. and S,,, can be implemented so that those that have at least 45 leaved 0, 45) ~ 7.5e39.
every operation on them requires only constant time. Thus

the times of the augmented crossover and mutation oper- ]
ators are stillO(n). 4.4. Subset Coding

As Section 2 observed, usually exceeds the number of
leaves in any unconstrained minimum spanning tree on
G, and the weight of an LCMST is non-decreasing as the
required number of leaves grows. Thus among the lowest-
dveight trees with at least leaves there will be at least one
with exactly ¢ leaves.

4.3. Blob Code’s Search Space

Constrained Prifer strings decoded via the Blob Code rep-
resent only spanning trees with at ledsteaves, and the
correspondence between the strings and the trees is on
to-one, so the number of valid strings is the size of the
space that a GA using this coding searches. Giveand A coding in which each chromosome distinguishes
¢, we find this numbefT'(n, £). the vertices that must be leaves from those that are not so

Let St(n, s) be the number of Priifer strings over an restricted—interior vertices—limits the search space to a
a|phabe'[ of sizen in which exacﬂy s Symbo|s appear. relatively small subset of the Spanning trees with at least

Str(n, s) is given by this recurrence: ¢ leaves. Two steps identify the tree the chromosome rep-
resents. The first step builds a minimum spanning tree

n ifs=1, on the interior vertices; the second connects each leaf to

Str(n, s) = " o1 it; nearest inFerior vertex. Note that thg resulting tree has
< ) (5%2 _ ZSU(S"])) if s> 1. minimum weight among all the spanning trees with the

s a=1 same leaves and interior vertices. If another such tree has

. . lower weight, then either a leaf connects to an interior ver-
Clearly, n strings repeat one symbal — 2 times. To o : ;
tex in it by an edge of lower weight, or the spanning tree

build a string that contains exactly > 1 d'Stm.C.t sym- that connects its interior vertices has lower weight, both
bols, choose the symbols, note that each position may be

. L : contradictions. Note, too, that a vertex that the chromo-
occupied by any one of them, and prohibit all the strings e T .

. some specifies to be an interior vertex may be a leaf in the
containing fewer thars symbols.

] o chromosome’s tree, if no specified leaf is closer to it than
Str(n, s) can also be evaluated using Stirling num- any other interior vertex.

bers of the second kincB,(,’f) (Even, 1973, pp.60-1),
which give the number of waysn items can be parti-
tioned into £ non-empty subsets. Fdr< k < m, S

is defined by this recurrence:

This coding can be implemented in two ways. A
chromosome may be a list of interior vertices or a bit
string that distinguishes interior vertices from leaves. Fig-
ure 5 shows an example of each implementation and the

1 ifk=10rk=m spanning tree om = 20 vertices that both represent. The
Sk — ’ implementations are equivalent, and each may be trans-
Sf,’f:ll) +k S,(qf)_l otherwise formed into the other in time that i©(n).
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chooses vertices at random from the remaining parental
interior vertices, until the offspring containg — ¢ of
them. For example, ifh = 20 and two parent chromo-
14 somes are (14510 14) and (2 5 8 12 14), then their off-
spring might be (15 8 10 14).
1 5 Mutation simply exchanges a leaf and an interior ver-
tex. If the subsets are implemented as lists of elements, as
4 in the example above, the operations’ times éxe: — /).

10 If bit-strings implement subsets, the operations’ times are
simply O(n).

(1 44 10 14)
(01001100001000100000) 4.6. Subset Coding’s Search Space

Fig. 5. List of interior vertices, a bit-string that distin-
guishes leaves and interior vertices, and the span-
ning tree on 20 vertices that they both represent.
The chromosomes indicate that vertices 1, 4, 5, 10,
and 14 are interior vertices.

Under the subset coding, a chromosome specifies a set of
n — £ interior vertices, on which the decoding algorithm
identifies a spanning tree of lowest weight, and a comple-
mentary set of¢ leaves. The total number of spanning
trees with a particular set of interior vertices is the prod-
uct of the number of spanning trees on those vertices and
Because this coding represents sets of fixed size—the number of ways the leaves can be connected to them:
sets of n — ¢ vertices—it has been called the fixed-
length subset coding. This coding is appropriate when, (n=0""x(n=0"=n-0"">
as here, candidate solutions are, or can be unambigu-
ously derived from, subsets of the problem’s elements. Of all of these trees, the subset code represents exactly
It has been used in evolutionary algorithms for outlier € and it has minimum weight among them, as Sec-
detection (Crawforcet al, 1995), a problem in chemo- tion 4.4 pointed out. Indeed, the size of thr—_z search space
metrics (Lucasius and Kateman, 1992), and particularly when fixed-length subsets represent candidate LCSTs is

the p-median problem (Alpet al, 2003; Correzet al, simply the number of sets dof leaves, or(n'—f) interior
2001; Dibble and Densham, 1993; Estivill-Castro and Vertices, that can be chosen from thevertices:
Torres-Velasquez, 1999; Hoeltiegal,, 1995; Hosage and n n

Goodchild, 1986; Lim and Xu, 2003). (() = (n B 6)'

In an evolutionary algorithm for the LCMST prob-
lem, a chromosome’s fitness is the total weight of the This number is far smaller thai®'(n, ¢). For exam-
spanning tree it represents. Prim’s algorithm requires time ple, while the number of spanning trees an= 50 ver-
that is O((n — ¢)?) to find a minimum spanning tree on tices with at least/ = 45 leaves isT(n,{) ~ 7.5e39,
the interior vertices a chromosome specifies. ldentifying the number of sets of 45 leaves that can be chosen from
the interior vertex nearest each leaf@¢n). This last 50 vertices is(ig) = 2,118, 760. Note that this value is
step can be efficiently implemented when the underlying smaller than the total number of spanning trees with ex-
graph is represented by adjacency lists, each sorted by thectly 45 leaves by a factor of
weights of the edges in it. Then the interior vertex near-

est a leaf will be the first one on the leaf’s list, and each (n —£)""% = 5% ~ 3.6e33.

search for a nearest interior vertex will examine an aver-

age of n/(n — ¢ + 1) list entries. The entire time for Since the subset coding’s search space is so much
evaluation remaing)(n?), trough. smaller, we would expect a GA using the subset coding to

perform decisively better than one using the Blob Code.

4.5. Operators for the Subset Coding

5. Two Genetic Algorithms
Radcliffe (1993), Radcliffe and George (1993), and Craw-

ford et al. (1997) described and analyzed crossover oper- Two generational genetic algorithms for the LCMST
ators for fixed-length subsets. The crossover used here igroblem encode candidate spanning trees as constrained
named (by Radcliffe) the Random Respectful Recombi- Prifer strings decoded via the Blob Code and as fixed-
nation, abbreviated RRR or’RIt copies into its one off-  length subsets implemented as bit strings of lengtie-
spring the interior vertices common to both parents, then spectively.
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The GAs’ initial populations consist of random chro- ML was run once and each GA was run 30 indepen-
mosomes of the appropriate kind. They select chro- dent times on each instance. Tables 1 through 4 summa-
mosomes to participate in crossover and mutatiorkin  rize the results of these trials. For each instance, the tables
tournaments% chromosomes are chosen at random from list its number, the weight of and number of leaves in an
the population and the one that is most fit—that is, the unconstrained minimum spanning tree on its vertices, and
one that represents the leaf-constrained tree of the lowesthe weight of the tree found by the ML heuristic. For each
weight—is selected to be a parent. They apply crossoverGA applied to each instance, they list the weight of the
and mutation separately; each new chromosome is generbest tree found in the 30 trials, the mean of the trials’ 30
ated by one operator or the other, never both. The prob-weights, and the standard deviation of those values.
abilities with which the operators are applied are param-
eters of the algorithms. The GAs are 1-elitist; the single
most fit chromosome of each generation is preserved un-
changed into the next one. They run through fixed num-
bers of generations.

Three observations stand out: (a) The Blob-Coded
GA cannot compete with the ML heuristic; (b) the subset-
coded GA can; and (c) both the disadvantage of the Blob-
Coded GA and the advantage of the subset-coded GA are
larger on the random-weight instances than on the Eu-

Except for their population sizes, the parameters of clidean instances.
the two genetic algorithms are the same. On an LCMST
problem instance ofn vertices, the population of the
Blob-Coded GA contain$sn chromosomes. Since its
search space is so much smaller, the population of the

subset-coded GA contains on3n chromosomes. Both :
exceed the weights of ML's trees by 14.5% to 28.8%. The

algorithms select chromosomes to be parents in tourna-="" disad he | . h
ments of size two: note that these tournaments assign to>/\S disadvantage grows on the larger instances. When

chromosomes the same probabilities as linear normaliza-"* = 250 and £ = 225, the weights of the GAs trees are,
tion does (Goldberg and Deb, 1991: Julstrom, 1999). The ON average nearly 50% greater than the weights of ML's

Consider first the Blob-Coded GA on the Euclidean
instances. Even on the smallest of these, the weights of
the GA's best trees exceed the weights of ML's trees by
1.9% to 11.2%, and the average weights of the GA's trees

GAs’ probability of crossover is 70% (and their probabil- T€€S:

|ty of mutation is therefore 30%) In the Blob-Coded GA, On the random-weight instances, the Blob-Coded
the probability that mutation modifies any one symbol in. GA's performance does not improve. Here, when=

a chromosome i2/n. Both algorithms run throughon 100 and ¢ = 90, the weights of the GA's best trees are

generations, then report the fitness of the single best chrofrom 16.1% to 41.2% greater than the weights of ML's
mosome; that is, the total weight of the leaf-constrained trees, and the average weights of the GA's trees are 35.2%
spanning tree that the chromosome represents. to 71.0% greater. On the instances with= 300 and
¢ = 270, the weights of the Blob-Coded GA's trees are on
average 49.7% greater than the weights of the trees ML
6. Comparisons identifies.

The greedy ML heuristic, the Blob-Coded GA, and the . The subset-coded GA does much better. Again, con-
. sider the Euclidean instances first. On every instance but
subset-coded GA were compared on 65 instances of the

. - . one (the last withn = 50, a tie), the best tree in each set
leaf-constrained minimum spanning tree problem. Forty- : .
) . . . . of 30 trials has smaller weight than the tree ML returns,
five of these instances are Euclidean, fifteen instances ) L .
: - though the GA's advantage diminishes as the instances get
each ofn = 50, 100, and 250 vertices. The remaining raer
twenty instances are non-Euclidean, ten instances each OP ger.
n = 100 and 300 vertices. In every case, the leaf bound When n = 50 and ¢ = 45, the weights of the GA's
¢ was set t00.9n; thus ¢ = 45, 90, and 225 respectively  best trees are up to 5.6% smaller than those of ML's trees,
for the Euclidean instances arfd= 90 and 270 for the  with an average improvement over ML of 2.7%. Over all
non-Euclidean instances. the trials on these instances, the GA's trees have weights
The Euclidean instances are listed in Beasley's on average 2.6% smaller than the weights of ML's trees.
(1990) OR-Library as instances of the Euclidean Steiner When n = 100 and ¢ = 90, the GA’s best trees have
problem; they consist of random points in the unit square. weights from 2.6% to 4.6% smaller than the weights of
We treat the points as the vertices of complete graphsML's trees; over all the trials on these instances, the GAs
whose edge weights are the distances between the pointdrees have weights on average 2.4% less than ML’s trees.
The edge weights of the remaining instances were chosefWhen n = 250 and ¢ = 225, the GAs best trees have
at random on the intervgD.01, 0.99]. weights from 1.5% to 3.6% smaller than the weights of
ML's trees, and the GA's trees have weights on average
Lhttp://mscmga.ms.ic.ac.uk/info.html 2.2% smaller than ML’s trees.
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On the random instances, the subset-coded GA does T
quite well. Here, whem = 100 and ¢ = 90, the GA and
ML tie once, but the best tree the GA finds on the second 1
instance has weight 15.4% smaller than that of ML's tree.
On average, the weights of the GA's trees are 7.1% smaller . /
than the weights of ML's trees. | — m

When n = 300 and ¢ = 270, the GAs advantage AN /
diminishes slightly. Its best trees are from 4.7% to 10.1% ’ ) |
better than ML's trees, and on average the GA's trees have %
weights 6.0% smaller than those ML identifies.

Itis clear that the smaller size of its search space and
the effectiveness of its search benefit the subset-coded GA
relative to the Blob-Coded GA, but why should its advan-
tage over the ML heuristic be larger on the random than
on the Euclidean instances? The structure and regularity
of the Euclidean instances may make them amenable to
the ML heuristic, whose results can then be only a little
improved, while on the random instances there is more
room for the subset-coded GA to identify leaf-constrained
trees of lower weight.

Figure 6 illustrates the performance of all three algo- @
rithms on the first 250-point Euclidean instance. It shows Fig- 6. For the first Euclidean LCMST problem instance
an unconstrained minimum spanning tree on the points with n = 250 vertices andf = 225 leaves: (a)
and the leaf-constrained spanning trees with 225 leaves cgrt;ineiﬂsggrx;g?t'%ng& Zazn;é?gag::_ ?br; _trr;]ee
identified by the ML heuristic, the Blob-Coded GA, and ' ' :

. ) spanning tree found by the greedy ML heuristic; it
the subset-coded GA. The unconstrained tree has weight hgs Weight 20.655: (c)yThe Igwest¥weight spanning

10.605 and 56 leaves; the ML heuristic’s tree has weight tree found by the Blob-Coded GA; it has weight
20.655; the Blob-Coded GA's tree has weight 26.389; and 26.389; (d) The lowest-weight spanning tree found
the subset-coded GA's tree has weight 20.411. by the subset-coded GA,; it has weight 19.921.

. and the efficacy of searching a smaller space of feasible
7. Conclusion solutions to the target problem.
) ) ) The poor performance of the Blob-Coded GA does
Two genetic algorithms seek good solutions to the leaf- ot necessarily rule out all Priffer string codings of span-
constrained minimum spanning tree problem. One en-pning rees in evolutionary search. Other mappings of
codes spanning trees with at leastleaves as Prifer  pyijer strings to spanning trees preserve the degree prop-
strings in which no more tham — ¢ distinct symbols gty that made both Priifer numbers and the Blob Code
appear, and it identifies the trees that these strings réP-appear suited to the LCMST problem. These include
resent with the Blob Code mapping. The second encodesne pandelion Code and the Happy Code of Picciotto
a tiny subset of the spanning trees vy!th exadtlyeaves (1999) and the mapping described by Deo and Micike-
as subsets of length — (; each specifies the leaves and icjys (2002) from which the represented tree’s diameter
the interior vertices in a tree. can be extracted without making the tree itself explicit.
In tests of 65 instances of the LCMST problem, Any of these codings, or some other, might be more con-
45 Euclidean and twenty with randomly chosen weights, ducive to evolutionary search than the Prifer or Blob map-
the Blob-Coded GA could not compete with a greedy, pings.
spanning-tree-based heuristic. The subset-coded GA con-  Similarly, the subset-coded GA can be modified in
sistently returned trees of lower weight than did the a number of ways that might improve its performance.
heuristic, though the GA's advantage was smaller on theln particular, Radcliffe (1993), Radcliffe and George
larger instances. Its advantage was greater on the randonf1993), and Crawforet al. (1997) described a variety of
instances, where it identified trees whose weights were ascrossover operators for fixed-length subsets, any of which
much as 15% less than those of the heuristic’s trees. Thesenight provide more effective search, and one can always
results support both the primary importance of codings tinker with a GA's parameters: population size, tourna-
and the operators that act on them in genetic algorithmsment size, and operator probabilities.
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Table 1. Results of the trials of the ML heuristic and the two genetic algorithms on the fifteen LCMST problem instances with
n = 50 and ¢ = 45. For each instance, the table lists its number, the weight and number of leaves in an unconstrained
minimum spanning tree, and the weight of the tree the ML heuristic found. For each GA, it lists the weight of the best
tree found in 30 trials, the mean of the 30 weights, and the standard deviation of these values.

Blob-Coded GA Subset-coded GA
Instance w(MST) Leaves|| ML Best Mean StdDev Best Mean  StdDey
1 4.968 12 10.550| 10.753 12.618 1.04| 10.111 10.116 0.01
2 5.143 13 10.066| 10.912 12.252 0.67| 9.652  9.652 0.00
3 4.929 12 9.702 | 10.047 11.352 0.69| 9.243 9.252 0.03
4 4.600 14 8.754 | 9.572 10.529 0.53| 8.510 8.514 0.02
5 5.023 12 9.280 | 9.496 11.144 0.99| 9.161 9.161 0.00
6 5.099 11 9.177 | 9.846 11.043 0.70 | 9.032 9.032 0.00
7 4.501 13 8.627 | 9.120 10.976 1.29 | 8.480 8.568 0.07
8 4.828 12 9.332 | 9.852 11.274 0.82| 9.128 9.132 0.00
9 4.825 12 9.059 | 9.690 11.034 0.81| 8578 8.587 0.01
10 4763 11 8.735 | 9.304 10.223 0.65| 8554 8.570 0.01
11 4.788 12 9.481 | 9.982 11.480 0.97 | 9.236  9.279 0.09
12 4.810 13 8.933 | 9.931 11.292 0.81| 8.807 8.807 0.00
13 4.825 11 9.506 | 10.496 11.816 0.78| 9.398 9411 0.05
14 4.845 12 10.143| 10.579 11.611 0.55| 9.577 9.591 0.02
15 4.735 13 8.440 | 9.028 10.873 0.62 | 8.440 8.440 0.00
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Table 2. Results of the trials of the ML heuristic and the two genetic algorithms on the fifteen
LCMST problem instances withh = 100 and ¢ = 90, as in Table 1.

Blob-Coded GA Subset-coded GA
Instance w(MST) Leaves|| ML Best Mean StdDey Best Mean StdDey
1 6.609 20 12.995| 16.784 18.909 1.32| 12.590 12.626 0.04
2 6.833 20 12.966| 14.805 17.234 1.03| 12.374 12.398 0.02
3 6.763 25 13.140| 15.789 18.567 158 | 12.762 12.774 0.02
4 6.798 18 13.307| 15.164 17.950 1.40| 12.899 12911 0.01
5 6.903 24 13.661| 15.727 17.949 1.27| 13.299 13.326 0.06
6 6.694 25 13.099| 16.255 19.063 1.35| 12.753 12.772  0.03
7 7.277 20 13.614| 15482 18599 1.50| 13.305 13.345 0.04
8 6.631 23 13.361| 16.229 18.336  1.53| 12.964 13.039 0.10
9 7.165 28 13.419| 16.333 18.500 1.43| 13.202 13.238 0.03
10 6.954 25 | 13.515| 15.586 18.198 1.59| 13.123 13.136  0.02
11 7.031 25 13.774| 17.212 18.734 1.13| 13.578 13.583 0.01
12 6.855 23 || 13.303| 16.730 18.888  1.37| 13.174 13.213 0.03
13 6.683 18 || 13.073| 14.642 17.360 0.99| 12.752 12.796  0.06
14 7.137 26 || 13.504| 16.002 18943 1.45| 13.280 13.317 0.03
15 6.383 23 || 12.672| 14995 16.410 0.76| 12.216 12.226 0.01
Table 3. Results of the trials of the ML heuristic and the two genetic algorithms on the fifteen
LCMST problem instances with = 250 and ¢ = 225, as in Tables 1 and 2.
Blob-Coded GA Subset-coded GA
Instance w(MST) Leaves|| ML Best Mean StdDey Best Mean  StdDey
1 10.605 56 || 20.655| 26.389 30.708 2.80| 19.921 19.994  0.08
2 10.421 58 || 20.779| 26.703 30.743  2.13| 20.279 20.342  0.06
3 10.392 57 || 20.363| 26.710 30.628 2.12| 19.841 19.897 0.05
4 10.739 58 || 20.992| 27.984 30.846  1.71| 20.455 20.540 0.09
5 10.610 58 || 20.678| 26.203 31.271  2.41| 19.957 20.021 0.08
6 10.538 47 || 20.656| 27.580 30.652  1.77| 20.341 20.376 0.03
7 10.427 54 20.574| 27.520 31.407 2.35| 20.025 20.059 0.03
8 10.689 62 | 20.011| 26.976 30.468 1.87| 19.594 19.640 0.03
9 10.640 59 || 21.124| 26.536 31.172  3.12| 20.461 20.510 0.05
10 10.608 63 || 20.391| 28535 30.536 1.53| 19.888 19.994 0.04
11 10.222 64 || 19.502| 25.328 28.704 1.69| 19.044 19.086 0.03
12 10.858 59 || 20.142| 26.722 30.666 2.21| 19.844 19.890 0.04
13 10.498 58 || 20.218| 25.223 29.687  2.82| 19.777 19.854  0.05
14 10.586 60 || 20.396| 25.743 30.543 2.05| 19.938 20.036 0.07
15 10.484 57 || 20.078| 26.181 30.372 2.44| 19.494 19.532  0.03
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Table 4. Results of the trials of the ML heuristic and the two genetic algorithms on the twenty LCMST problem
instances with random distances|in01, 0.99]. There are ten instances with= 100 and ¢ = 90

and ten withn = 300 and ¢ = 270. Presentation is as in Tables 1, 2, and 3.

Blob-Coded GA Subset-coded GA
Instance w(MST) Leaves|| ML Best Mean StdDey Best Mean StdDey
n = 100, £ = 90
1 2.190 39 6.174 | 7.925 9.340 0.84 | 5,594 5.843 0.14
2 2.047 40 6.588| 7.904 9.402 0.82 | 5,574 5.696 0.09
3 2.332 40 6.219| 7.521 9.357 0.94 | 5.923 5.990 0.08
4 2.029 40 6.343| 7.799 8.953 0.75 | 5.389 5.575 0.17
5 2.214 35 | 6.850| 8.136 9.581 0.74 | 5,904 5.958 0.09
6 2.311 42 6.952| 8.070 9.399 0.81 | 6.292 6.414 0.09
7 2.007 44 5.748 | 7.491 8.976 0.84 | 5,558 5.761 0.11
8 2.071 41 5.889| 7.768 9.015 0.80 | 5.423 5.509 0.13
9 2.162 45 5.138| 7.254  8.785 0.79 | 5.138 5.208 0.06
10 2.301 38 6.652 | 8.258 9.486 0.91 | 5.709 5.949 0.12
n = 300, ¢ = 270
1 4.106 124 || 8.221| 11.823 12.975 0.65| 7.835 7.938 0.06
2 4.266 121 || 8.637| 11.846 12.860 0.63| 8.091 8.223 0.07
3 4131 121 || 8.611| 11.729 12.647 0.68 | 7.893 8.047 0.08
4 4.348 123 || 8.814| 12.281 13.109 0.53 | 8.061 8.185 0.06
5 4.124 121 || 8.701| 11.938 12.888 0.78| 7.818 7.992 0.10
6 4.182 115 || 8.646| 11.975 12.891 0.60| 8.092 8.186 0.06
7 4.152 118 || 8.544 | 11.976 13.052 0.61| 7974 8.111 0.09
8 4.048 123 || 8.795| 11.817 12.797 0.52| 7972 8.122 0.07
9 4.228 124 || 8.575| 11.630 12.592 0.76 | 7.752 7.883 0.09
10 4.203 125 || 8.166| 11.700 12.584 0.55| 7.684 7.854 0.06




